Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46458
Titel: Interpretable and explainable machine learning methods for predictive process monitoring: a systematic literature review
VerfasserIn: Mehdiyev, Nijat
Majlatow, Maxim
Fettke, Peter
Sprache: Englisch
Titel: Artificial Intelligence Review
Bandnummer: 58
Heft: 12
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2025
Freie Schlagwörter: Explainable artificial ingelligence (XAI)
Interpretable machine learning
Predictive process monitoring
Process mining
DDC-Sachgruppe: 330 Wirtschaft
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: This study presents a systematic literature review on the explainability and interpretability of machine learning models within the context of predictive process monitoring. Given the rapid advancement and increasing opacity of artificial intelligence systems, understanding the "black-box" nature of these technologies has become critical, particularly for models trained on complex operational and business process data. Using the PRISMA framework, this review systematically analyzes and synthesizes the literature of the past decade, in cluding recent and forthcoming works from 2025, to provide a timely and comprehen sive overview of the field. We differentiate between intrinsically interpretable models and more complex systems that require post-hoc explanation techniques, offering a structured panorama of current methodologies and their real-world applications. Through this rig orous bibliographic analysis, our research provides a detailed synthesis of the state of explainability in predictive process mining, identifying key trends, persistent challenges and a clear agenda for future research. Ultimately, our findings aim to equip researchers and practitioners with a deeper understanding of how to develop and implement more trustworthy, transparent and effective intelligent systems for predictive process analytics.
DOI der Erstveröffentlichung: 10.1007/s10462-025-11399-0
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s10462-025-11399-0
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-464586
hdl:20.500.11880/40736
http://dx.doi.org/10.22028/D291-46458
ISSN: 1573-7462
Datum des Eintrags: 24-Okt-2025
Fakultät: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Fachrichtung: HW - Wirtschaftswissenschaft
Professur: HW - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s10462-025-11399-0.pdf13,8 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons