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Abstract

This study presents a systematic literature review on the explainability and interpretability
of machine learning models within the context of predictive process monitoring. Given the
rapid advancement and increasing opacity of artificial intelligence systems, understanding
the "black-box" nature of these technologies has become critical, particularly for models
trained on complex operational and business process data. Using the PRISMA framework,
this review systematically analyzes and synthesizes the literature of the past decade, in-
cluding recent and forthcoming works from 2025, to provide a timely and comprehen-
sive overview of the field. We differentiate between intrinsically interpretable models and
more complex systems that require post-hoc explanation techniques, offering a structured
panorama of current methodologies and their real-world applications. Through this rig-
orous bibliographic analysis, our research provides a detailed synthesis of the state of
explainability in predictive process mining, identifying key trends, persistent challenges
and a clear agenda for future research. Ultimately, our findings aim to equip researchers
and practitioners with a deeper understanding of how to develop and implement more
trustworthy, transparent and effective intelligent systems for predictive process analytics.
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1 Introduction

Business process management (BPM) has long served as a foundational discipline for the
systematic analysis, monitoring and optimization of organizational processes to enhance
operational efficiency and strategic alignment. At the intersection of BPM and data sci-
ence, process mining has emerged as a powerful paradigm, transforming voluminous, low-
level event data captured by process-aware information systems (PAIS) into actionable
evidence-based knowledge (Van Der Aalst 2012). By applying analytical techniques such
as automated process discovery and conformance checking to event logs, which meticu-
lously record activity sequences, timestamps and resource allocations, organizations can
move beyond standard process models. This methodological rigor allows for the data-driven
visualization of "as-is" processes, the quantification of deviations and the identification of
bottlenecks, thereby providing a robust foundation for intelligent systems designed to diag-
nose inefficiencies and recommend improvements.

Building upon these diagnostic capabilities, predictive process monitoring (PPM) has
become a rapidly evolving branch of process mining that leverages machine learning (ML)
to predict the future states and outcomes of running process instances (Di Francescomarino
et al. 2018). While early PPM approaches often relied on traditional classifiers and regres-
sors trained on manually engineered features from event logs, recent advancements have
been dominated by deep learning architectures. These sophisticated models can directly
process complex sequential dynamics to predict next activities, remaining times and com-
pliance risks with ever-increasing accuracy (Evermann et al. 2017; Mehdiyev and Fettke
2021). This progression has yielded significant operational value by enabling proactive,
data-driven decision support.

However, the very complexity that drives the high performance of these advanced
models simultaneously renders them opaque, creating a significant "black-box" problem
(Guidotti et al. 2018). This lack of transparency is a critical barrier to adoption, particularly
in high-stakes domains where understanding the rationale behind a prediction is as impor-
tant as the prediction itself. For these powerful tools to be trusted and effectively integrated
into operational decision-making, it is essential for stakeholders to comprehend the reason-
ing that underpins their outputs (Marquez-Chamorro et al. 2017). Consequently, a growing
body of research has begun to focus on enhancing the interpretability and explainability of
these models within the PPM context.

Despite the surge in academic interest, the literature on explainable and interpretable
PPM remains fragmented. The rapid proliferation of studies has resulted in a scattered
landscape of knowledge, making it difficult for researchers to identify critical gaps and for
practitioners to make informed decisions about the most suitable methodologies for their
needs. This paper addresses this gap by presenting a systematic literature review (SLR),
conducted according to the preferred reporting items for systematic reviews and meta-anal-
yses (PRISMA) framework (Page et al. 2021), to provide a comprehensive and structured
synthesis of the field. We survey the literature of the last decade, distinguishing between
intrinsically interpretable models and black-box approaches that require post-hoc explana-
tion techniques, to map the current state of research and outline future directions.

Building on this rigorous systematic survey, this paper offers the following key contribu-
tions to the study of explainable and interpretable predictive process monitoring:
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o Comprehensive, structured panorama of the field This review consolidates scattered
work into a single, well-organized synthesis that links application domains, benchmark
datasets and predictive tasks to the explainable artificial intelligence (XAI) techniques
employed.

o Unified taxonomy and critical appraisal of methods All intrinsically interpretable mod-
els and post-hoc explanation approaches are classified and compared in terms of their
transparency mechanisms, data requirements and present limitations when applied to
event logs.

e Systematic evaluation audit A detailed examination of experimental designs, quantita-
tive metrics, qualitative user studies, and functional, application-grounded and human-
grounded tests yields harmonized guidelines for judging explanation quality and repro-
ducibility.

® [Evidence-based research agenda Cross-study comparison reveals under-explored do-
mains, dataset biases, untested method combinations and missing evaluation evidence,
thereby outlining concrete gaps and priorities for future work.

® Actionable guidance for practitioners and researchers By matching domain character-
istics, data availability and explanation needs to suitable XAI approaches, the review
provides a decision-support framework that promotes transparency, reliability and user
trust in real-world predictive-process-monitoring deployments.

The remainder of this paper is organized as follows. Section 2 details the methodology
of our systematic literature review, outlining the formal foundations of PPM and XAI,
the research questions guiding our analysis and the PRISMA-based protocol for literature
search, selection and synthesis. Section 3 presents a comprehensive discussion of our find-
ings, systematically addressing our research questions by analyzing the application contexts,
the landscape of interpretable and explainable Al methods and the evaluation paradigms
employed in the reviewed literature. Section 4 provides a broader discussion, situating our
contributions relative to existing surveys and exploring the key challenges, open issues, and
the practical, scientific and theoretical implications of our findings. Finally, Sect. 5 outlines
promising directions for future work, and Sect. 6 concludes the paper with a summary of
its contributions.

2 Methodology

Our systematic literature review employs a rigorously structured methodology aligned with
the PRISMA guidelines to ensure transparency and reproducibility (Page et al. 2021). It
unfolds in six tightly linked subsections. We first ground the study in Formal Foundations
(Section 2.1), defining core process-mining concepts, the predictive process-monitoring
pipeline and the distinction between interpretable and explainable machine-learning models.
Building on this base, we articulate the Rationale and Objectives (Section 2.2), converting
the field’s open issues into precise research questions. The next three subsections detail how
these goals are operationalized. Information Sources, Search Strategy and Selection Process
(Section 2.3) specifies where and how the literature was retrieved, while Eligibility Criteria
(Section 2.4) formalizes the inclusion and exclusion rules that guard the review’s scope
and rigor. Data Collection and Synthesis Methods (Section 2.5) explains how evidence is
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extracted and thematically integrated through template analysis. Finally, Study Selection
and Descriptive Analysis (Section 2.6) reports the descriptive analysis of PRISMA-based
screening results, presenting the corpus on which all later analyses rest.

2.1 Formal foundations

The section explores core aspects of explainable and interpretable predictive process moni-
toring. It begins with primary ideas and formal definitions crucial to process mining, fol-
lowed by a focus on predictive process monitoring, including the essential components of
the data pipeline and various problem areas. In addition, it differentiates between interpre-
table and explainable ML, providing foundational understanding through formal definitions
and relevant methods. This structured approach ensures a clear presentation of essential
background, preparing for further study in the intersection of ML, interpretability/explain-
ability and predictive process monitoring.

2.1.1 Predictive process monitoring

To enable a precise understanding of predictive process monitoring, we first introduce the
formal definitions of its key data constructs such as events, traces, event logs, and their
transformation into features and labels for supervised learning, based on established litera-
ture in the field (Polato et al. 2014; Teinemaa et al. 2019; De Leoni et al. 2015).

Definition 1 (Event) An event is denoted by the tuple e = (a, ¢, tstart, tcompletes

v1,...,Un), where a € A is a categorical variable denoting the process activity, ¢ € C
is a categorical variable signifying the unique identifier for the trace, also called case ID,
tstart € Tstart aNd teomplete € Tecomplete Tepresent the event’s commencement and com-
pletion timestamp (utilizing an epoch time representation like Unix) respectively, and
v1,...,U, denoting the event-specific attributes, where V1 < i < n:v; € V; denote the
domain of the *" attribute. Consequently, these variables create a multi-dimensional space
for the universe of events €.
In essence, an event in the context of predictive process monitoring is a multi-faceted entity
characterized by its activity type, its association with a specific process trace, its start and
completion times and any additional attributes that may be relevant. These elements collec-
tively define a multi-dimensional space £ which can be thought of as the set of all possible
events that could occur in the system under study. The exemplary Table 1, derived from a
manufacturing scenario, depicts an event in each row, with the first event being character-
ized by its Activity "Plasma Welding", its Start Time "2019-04-18 06:26:47", its End Time
"2019-04-18 09:51:25", the resource (Worker ID), the Processing Time "03:24:38" as well
as other variables. Based on Definition 1 we now define traces and partial traces:

Definition 2 (Trace, Partial Trace, Prefix and Suffix) A trace o € £ is a finite sequence
of unique events o = (ey, e, ..., €||), With || denoting the amount of events in the trace,
also called trace length, ordered chronologically and pertaining to a shared trace identifier
c € C, also called case ID. We denote the set of all possible traces by S C £*, with each trace
o € 8 belonging to this universe. A partial trace is a subsequence o/ = (e;,, €y, ... ,€;,)
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Table 1 Process event log sample

Case ID Activity Start time End time Worker ID Processing time
162384 Plasma 2019-04-18 2019-04-18 409 . 03:24:38
Welding 06:26:47 09:51:25
162384 Grinding 2019-04-18 2019-04-18 108 " 06:55:44
Weld. Seam 12:11:30 19:07:14
162384 Dishing 2019-04-23 2019-04-23 150 07:43:40
Press (2) 10:50:31 18:34:11
162384 Beading 2019-04-24 2019-04-24 726 09:37:32
10:20:13 19:57:45
162384 X-Ray 2019-04-25 2019-04-25 703 00:00:09
Examination 10:26:23 10:26:32
162384 Edge 2019-04-26 2019-04-26 742 03:41:49
Deburring 09:08:38 17:50:27
177566 3D Micro- 2021-06-21 2021-06-21 139 03:21:59
step 07:04:38 10:26:37

Exemplary event log, depicting the trace identifier (Case ID), timestamps for Start time and End time, the
executed Activity, the executing resource (Worker ID), as well as a label (Processing time)

of a given trace o, where 1 < iy < is < ... <4 < |o|and 1 < k < |o|. A partial trace also
shares the same unique identifier ¢ € C as its parent trace o. The set of all possible partial
traces derived from o is denoted by S,.

The prefix and suffix denote specific types of partial traces, yielded by employing the

hd'(o.) and tl’(o.) functions, respectively. This is realized by employing a selection
operator (.): (i) = 0y,Vi € [1,|o|] C N, such that hd'(c) = (e1, €2, ..., €min(i,|0))) and
(o) = (€ Cwrt1s - - €|o|), where w = max(1, [o| —i +1).
In Table 1, two traces are depicted with the the Case IDs "162374" and "177566". The first
trace starts with "Plasma Welding" and concludes with "Edge Deburring", while the second
trace is initiated with "3D Microstep" and terminated after "Surface Polishing", with the
events pertaining to a trace following a chronological order.

Definition 3 (Event Log) An event log is denoted by the set Log, where
Log = {01,02,...,0,} and 0; € S for 1 <i < n, n € NT. Each o; is a trace as previ-
ously defined. The event log Log is a collection of traces that may or may not share the same
unique identifiers ¢ € C.

Based on Definition 3, Table 1 represents an excerpt from an event log. Such event logs can
be utilized to extract features and labels, which can then be leveraged for the construction
of predictive models:

Definition 4 (Feature Extraction) Feature extraction is a mapping function denoted by
¢: EUS — X, where £ is the set of all possible events, S is the set of all possible traces,
and X is the feature space. Given an event e € £ or atrace o € S, the function ¢ transforms
it into a feature vector x € X.
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For event-level feature extraction, @event : € — Xevent Maps each event e to a feature
vector Zevent in the event-level feature space Xovent, While for trace-level feature extrac-
tion, Grrace : S — Xirace Maps each trace o to a feature vector Zirace in the trace-level
feature space Xirace-

Definition 5 (Labeling) Let ) be the set of all possible response variable values. For a non-
emptytracec # () suchthato € SandS C £*,thelabeling functionresp,en; : € X S = ),
resp(e, o) = y maps an event e within the trace o to its respective response variable value
y € Y and is defined for all e € 0 and o € S. The labeling function resp;.4c. : S — J,
resp(o) = y maps a trace o to its respective response variable value y € ) and is defined
forallo € S.

The concepts of feature extraction and labeling serve as a mechanisms to associate specific
attributes or outcomes with individual events within a trace. By mapping each event or trace
to a response variable, the labeling function facilitates the transformation of raw event data
into a format amenable to analytical or ML methods. This enables researchers and practitio-
ners to derive insights, make predictions or evaluate hypotheses based on the labeled data.
The feature extraction and labeling functions thus acts as bridges between the raw, multi-
dimensional event space and the target outcomes or attributes, thereby enriching a dataset
for more advanced analyses. On the basis of previous definitions, we are now able to for-
malize the concept of supervised learning in the context of predictive process monitoring:

Definition 6 (Supervised Learning) Supervised learning is a paradigm in ML where a pre-
dictive model is constructed based on a labeled dataset. The dataset D is generated from an
event log Log, feature extraction function ¢ : £ US — X, and a use-case-dependent label-
ing function resp : € X S — Y or resp : S — ). Each entry in D is a tuple (x,y), where
x € X is a feature vector and y € ) is the corresponding response variable.

The dataset D is partitioned into training Di,ain, validation Dy,1 and testing Dyest, Sub-
sets. A predictive model f : X — ) is trained on Diyain by minimizing a loss function
L(f(2),y).

The validation set Dy, is utilized for hyperparameter tuning and to mitigate the risk of

overfitting. The testing set Dycgt 1S employed to evaluate the generalization performance of
the model, providing an unbiased assessment of its predictive capabilities.
It should be noted that supervised learning on the event level can be considered a special case
of trace-level supervised learning, in that partial traces of length one are being employed.
With a variety of predictive process monitoring application scenarios (see Fig. 1), we pro-
vide definitions for predominant prediction tasks:

Definition 7 (Process Outcome Prediction) Given a labeling function
resPoutcome - O — Youtcome Mapping each (partial) trace o to its final outcome Youtcomes
the predictive model foutcome : X — Voutcome 1S constructed via supervised learning to
approximate this function.
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Process Outcome

Case Dataj| ) Resources:| ~ Sensor Dataj| ProceiD_@ —_ ? (Risk, Anomaly,
. 5 : s - Failure)
‘ H H H % _—— = — > Next Event
. ) R ? PPIs
Event Sequences:| Execution Times:|' %————————————L——{ (Time, Cost,
Quality)

Fig. 1 Sources of input data accumulated in an event log and predictands of supervised learning (Rehse
etal. 2018)

Definition 8 (Next Event Prediction) Given a labeling function resp, oyt : € X S = Enext
mapping each event e within a trace o to its subsequent event epext, the predictive model
Snext + X — Enext 1s constructed via supervised learning to approximate this function.

Definition 9 (Process Performance Indicator (PPI) Prediction) Given a labeling func-
tion respppy : S — Ypp1 mapping each (partial) trace o to a performance metric yppi, the
predictive model fppr : X — Vppr is constructed via supervised learning to approximate
this function.

Process data facilitates the development of predictive models that serve various objectives.
These include the identification of the next likely activity (Evermann et al. 2017; Sindh-
gatta et al. 2020), the process outcome prediction (Mehdiyev and Fettke 2021; Rizzi et al.
2020), anomaly detection (Bohmer and Rinderle-Ma 2020; Pauwels and Calders 2019a) and
remaining time prediction (Polato et al. 2014, 2018).

When it comes to developing accurate, reliable and suitable models for the specific appli-
cation context, the complexity and variability inherent in modern business processes may
pose significant challenges. Additionally, the complexity of the models required to make
such predictions is rising in tandem with the demand for more sophisticated estimations.
Specifically, opaque models frequently achieve high predictive accuracy, which makes them
appealing choices. Having said that, the complexity of these models presents a significant
disadvantage, as they can be extremely difficult to grasp. For practical applications, where
it is essential to comprehend the reasoning behind predictions to establish trust and make
decisions, this is a significant limitation that must be considered (Méarquez-Chamorro et al.
2017; Di Francescomarino et al. 2018). As a result, the development of models that strike
a balance between accuracy and interpretability continues to be a significant challenge in
the field of predictive process monitoring despite the fact that this area has tremendous
potential.

2.1.2 Interpretable and explainable Al
To clearly distinguish between interpretable and explainable machine learning models in the
context of predictive process monitoring, we now present formal definitions and classifica-

tions of the main model types and explanation techniques, grounded in established research
(Guidotti et al. 2018; Barredo Arrieta et al. 2020).
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Definition 10 (Intrinsically Interpretable Model) Let M be the class of predictive mod-
els. Amodel f € M is termed an intrinsically interpretable model if it possesses a humanly
interpretable internal structure, denoted by Z(f), such that Z(f) : X — Z, where Z is the
space of humanly interpretable representations.

Considering a production process scenario where the objective is to predict the remaining
time until case completion, an intrinsically interpretable approach might involve using a
DT that makes its predictions based on a small set of easily interpretable features, such
as the type of activity and the duration of the previous event. Because DTs are inherently
interpretable, the model satisfies the interpretability constraints Z( f) intrinsically. Among
approaches that are commonly considered intrinsically interpretable, Stierle et al. (2021)
differentiate between rule-based (for example (evolutionary) decision rules (Maliou-
tov et al. 2017; Marquez-Chamorro et al. 2017)), regression-based (for example logistic
regression (Teinemaa et al. 2016)), tree-based (for example decision trees (DTs) (Allah
Bukhsh et al. 2019)) and probabilistic models (for example Bayesian networks (Dey and
Stori 2005)). Additionally, algorithmically transparent approaches like k-Nearest Neighbors
(k-NN) (Kumar et al. 2005) as well as generalized additive models (GAMs) (Coussement
et al. 2010) are generally considered transparent as well (Barredo Arrieta et al. 2020). None-
theless, it is worth noting that these white-box models are often outperformed by more
complex, opaque models in terms of predictive accuracy (Guidotti et al. 2018).

Definition 11 (Black-Box Model) Let M be the class of predictive models. A model
f € Mis termed a black-box model if its internal structure is not readily humanly interpre-
table, denoted by Z(f) = 0.

The characteristics of black-box models encompass a complexity in their behavior and
decision making processes which necessitate post-hoc explanations for understanding, with
deep learning (DL) methods (like convolutional neural networks (CNN), deep feedforward
neural networks (DNN) or recurrent neural networks (RNN)) (Mehdiyev and Fettke 2021;
Sindhgatta et al. 2020), gradient boosting models (GBM) (Petsis et al. 2022) and RFs (RF)
(Verenich et al. 2016) being among the most prominent.

Definition 12 (Local Post-hoc Explanations) Let M be the class of predictive models and
f € M be a specific model with predictive mapping f : X — ). A local explanation is
denoted by fiocal : M X X X YV — Zlocal, Where Zjocq1 is the space of interpretable local
representations. For a given instance (f,z,y) € M X X X Y, fiocal(f,x,y) explains the
model’s decision f(x) = y in the vicinity of 2. Model-agnostic local explanations can take
any f € M as input, whereas model-specific local explanations are restricted to a subset
Mlocal,f c M.

Prominent examples of local post-hoc explanations are individual conditional expectation
(ICE) plots (Goldstein et al. 2013), Shapley Additive exPlanations (SHAP) (Lundberg and
Lee 2017) or local interpretable model-agnostic explanations (LIME) (Ribeiro et al. 2016),
which are model-agnostic approaches. Model-specific approaches finding use in deep neu-
ral networks are layer-wise relevance propagation (Montavon et al. 2019) or DeepLIFT
(Shrikumar et al. 2017). For tree-based models exhibiting a high complexity, tree Shapley
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Additive exPlanations (TreeSHAP) (Lundberg et al. 2020) realizes a model-specific expla-
nation technique.

Definition 13 (Global Post-hoc Explanations) Let M be the class of predictive models
and f € M be a specific model with predictive mapping f : X — ). A global explanation
is denoted by fglobal : M X X' X V — Zgiohal, Where Zgiobal is the space of interpretable
global representations. The function fg1obal(f, X, )) elucidates the model’s overall deci-
sion-making mechanism across the entire domain X'. Model-agnostic global explanations
can take any f € M as input, whereas model-specific global explanations are restricted to
a subset Mglobal,f c M.

Prominent examples of global, model-agnostic post-hoc explanations are accumulated local
effects (ALE) (Apley and Zhu 2020), decision rules (Frank and Witten 1998; Malioutov
et al. 2017), feature importance (Fisher et al. 2019), partial dependence plots (PDP) (Fried-
man 2001) (also in conjunction with ICE plots (Goldstein et al. 2013)) and global surrogate
models like CART decision trees (Rutkowski et al. 2014).

2.2 Rationale and objectives

The rationale for carrying out this SLR is firmly grounded in the ever-evolving and fast-
paced domain of interpretable and explainable Al. In recent years, there has been also a
significant increase in the number of academic studies that concentrate on the implementa-
tion of pertinent methodologies and concepts for the purpose of predictive process moni-
toring. Nevertheless, the rapid proliferation of academic investigation, combined with a
lack of comprehensive meta-analytical studies, has resulted in a fragmented landscape of
knowledge. The absence of a systematic framework and cohesive integration of knowledge
presents notable challenges for researchers and practitioners alike, rendering the synthesis
and practical application of existing information a formidable task. The primary objectives
of this SLR are focused on providing nuanced understanding of the PPM domain. Through
a comprehensive analysis of the existing research landscape, rigorous evaluation of the
methodologies used, awareness of gaps, and the provision of unambiguous evidence-based
recommendations, our aim is to enhance the quality and reliability of research conducted
within this field. This study adheres to answering the following research questions:

RQ1—Application domain Which real-world domains (e.g., finance, healthcare, manu-
facturing) are most addressed by explainable PPM studies and how do domain characteris-
tics guide model selection and explanation requirements?

RQ2—Benchmark datasets Which public event logs (BPIC series, Sepsis, Helpdesk,
etc.) are used most often in explainable PPM, what key features do they contain and how do
those features affect benchmarking and generalizability?

RQ3—Application tasks Which predictive tasks, such as process outcome, next event,
time-related, or other PPIs, dominate explainable PPM research and how do task demands
influence the pairing of models with explanation techniques?

RQ4—Interpretable AI Which families of intrinsically interpretable models (rules,
trees, GAMs, Bayesian, k-NN) are favored for PPM and what design aspects ensure their
transparency on event-log data?
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RQ5—Explainable AI Which post hoc methods (e.g., SHAP, LIME, TreeSHAP, LRP)
explain black-box PPM models and how are they distributed across local vs. global and
model-agnostic vs. model-specific categories?

RQ6—Study evaluation How do individual explainable PPM studies structure and
report their evaluations—covering dataset choice, baselines, predictive metrics and expla-
nation quality measures - to ensure rigor and reproducibility?

RQ7—Quantitative versus qualitative measures What relative strengths and weak-
nesses emerge when quantitative metrics (fidelity, stability, sparsity) are compared with
qualitative user studies in assessing explanation usefulness in PPM?

RQ8—Evaluation paradigms How are functional, application-grounded and human-
grounded evaluation paradigms applied in PPM research, and what insights do they yield
about explanation quality and decision support?

2.3 Information sources, search strategy, selection process

We have explored various online databases including ACM Digital Library, AIS eLibrary,
IEEE Xplore, Science Direct and SpringerLink to gather relevant publications. These data-
bases, which include but are not limited to topic-specific literature, were searched via que-
ries. The search queries are specified as follows: Each query includes one of the terms
"business process prediction", "predictive process monitoring", "prescriptive process ana-
lytics", or "process mining" and are combined with either of the terms "expla*", "inter-
pretab*" or "XAI" via the AND-operator, in order to narrow the results to domain-specific
subjects. Where it was possible, the following query was used to yield any potentially rel-
evant literature from a database: Qcomp= (expla* OR interpret* OR XAI) AND ("process
mining" OR "business process prediction" OR "predictive process monitoring" OR "pre-
scriptive process analytics"). The Symbol "*", as in "expla*", is being used as a wildcard if
a database allowed the usage of wildcards. In databases that did not allow using wildcards,
the terms "explanation", "explainable" and "explainability" were used instead of "expla*",
as well as "interpretable" and "interpretability" instead of "interpret*". Table 2 presents a
concise summary of the composition and usage of queries in case (comp could not be pro-
cessed by a database.

The inconsistencies between the search tools of each of the aforementioned databases
make it challenging to conduct a systematic literature search using only the specified que-
ries. In order to conduct an exhaustive search, the queries were applied to the title, keywords
and complete text where it was possible:

e For the ACM digital library, the "Search items from"-option was set to "The ACM full-
text collection", the queries were searched within "Anywhere" (see "search within"-
option) and the filter "research article" was applied to reduce the number of irrelevant
results.

e For the AIS eLibrary, the queries were searched within "all fields" and restricted to
"peer-reviewed only" articles.

For the IEEE Xplore, the queries were searched using the "command search"-tool

e For the Springer Nature Link, due to the large volume of irrelevant results, the search
was restricted to the content type "article" as well as to the subdiscipline "artificial intel-
ligence".
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Table2 Summary of employed Representation Search query Used for

search queries for retrieval of querying

relevant literature databases
Q1 "Business process prediction” False
Q2 "Predictive process monitoring" False
Q3 "Prescriptive process analytics" False
Q4 "Process mining" False
Qs "Expla*" False
Qs "Interpretab*" False
Q7 "XAI" False
Q1,5 Q1 AND Qs True
Qlﬂ(j Ql AND Q6 True
Q1,7 Q1 AND Q7 True
Q2,5 Q2 AND Q5 True
Q2,6 Q2 AND Q¢ True
Q2,7 Q2 AND Q7 True
Q35 Q3 AND Qs True
Q3,6 Q3 AND Qs True
Q3,7 Q3 AND Q7 True
Q4,5 Q4 AND Q5 True
Q4,6 Q4 AND Qg True
Qa7 Q4 AND Q7 True
Qcomp (Ql OR Q2 OR QS OR Q4) True

AND (@5 OR Qs OR Q7)

Following the database querying, the resulting literature was filtered using pre-defined crite-
ria (for details, see Sect. 2.4). Subsequently, a forward and backward search was conducted
on the results to capture additional topic-relevant publications that could not be discovered
by searching the databases directly, including relevant articles from the arXiv outlet as well.

2.4 Eligibility criteria

Studies retrieved through a systematic search may nevertheless exhibit characteristics that
are not topic-specific for this systematic review, necessitating additional screening to meet
research rigor. Therefore, inclusion and exclusion criteria for the literature are defined. The
identified literature must satisfy all of the predefined inclusion criteria while also not meet-
ing any of the exclusion criteria in order to be considered for inclusion. A comprehensive
list of all inclusion and exclusion criteria can be found in Table 3.

These criteria were applied in the following manner: After querying a database, the title
and abstract of each of the resulting publications were analyzed respectively with regard to
the inclusion and exclusion. This represents first filtering step after the retrieval of literature.
The next filtering step takes place by expanding the analysis from title and abstract to the
full text of each publication that passed the first filtering step. Based on the results of the
second filtering step, a forward and backward search was conducted, which immediately
applied filtering with the previously described inclusion and exclusion criteria. No tempo-
ral limits were imposed on the database searches, although it must be acknowledged that
relevant studies may have been omitted if they were not indexed in the selected sources.
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Table 3 Inclusion and exclusion

le. Representation Criteria for Description
criteria

IN Inclusion Publication outlet is a
1
peer-reviewed source
e.g. journal, conference
proceedings, etc

IN5 Inclusion Publication addresses
PPM tasks

IN3 Inclusion Publication incorporates
XAI methodology

INy Inclusion Publication is written in
English

EXq Exclusion Publication outlet is not a

peer-reviewed source

and not identified by for-
ward-/backward search

EXso Exclusion Publication does not ad-
dress PPM tasks
EX3 Exclusion Publication neither incor-

porates XAl methodology
nor uses any interpretable

methods

EX4 Exclusion Publication does not use
an event log

EXs5 Exclusion Publication is not written
in English

2.5 Data collection process and synthesis methods

The primary phase of our data collection procedure entails the methodical extraction of
pertinent information from every chosen study. This encompasses, though is not exclusively
confined to, the study’s aims, predictive process monitoring and explainability approaches,
results, and issues or contextual factors that are essential for comprehending its impact on
the discipline. In order to uphold uniformity and precision, a standardized data extraction
form is employed, encompassing all essential particulars that will subsequently prove piv-
otal in the synthesis and analysis stages.

After the completion of data collection, the research proceeds to the subsequent phase,
known as a qualitative synthesis of studies. In this phase, the primary methodology employed
is template analysis proposed by King (King 2012), which offers a flexible yet methodical
framework for the thematic arrangement and understanding of textual data. The process of
template analysis encompassed a series of fundamental stages, beginning with formulating
an initial template. To ensure that our qualitative synthesis remains tightly aligned with
the eight research questions (RQ1-RQ8), we re-engineered the template so that each top-
level theme directly corresponds to one RQ. A dedicated branch now captures the evidence
required for every question: application domain (RQ1) aggregates references to the sector
or context addressed; benchmark datasets (RQ2) records which event logs are employed,
their salient attributes and notes on accessibility; Application Tasks (RQ3) distinguishes
outcome, next-event, time-related and other PPI predictions; intrinsic models (RQ4) col-
lects details on rule-, tree-, GAM-, Bayesian- and k-NN-based approaches together with
the features that make them transparent; post-hoc methods (RQ5) stores information on
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SHAP, LIME, PDP, and similar techniques, tagging whether they provide local or global,
model-agnostic or model-specific explanations; evaluation design (RQ6) registers dataset
choices, baselines, predictive metrics and explanation-quality measures; evaluation type
(RQ7) contrasts quantitative metrics (e. g., fidelity, stability, sparsity) with qualitative user
studies; and evaluation paradigms (RQ8) logs whether assessments are functional, applica-
tion-grounded, or human-grounded.

During coding, any newly encountered concept was inserted beneath its corresponding
RQ branch, while redundant or overly granular codes were merged. Iteration ceased once
no further themes emerged and the structure provided full coverage of the data. This RQ-
driven template guarantees that every extracted datum feeds directly into answering a spe-
cific research question, thereby streamlining later aggregation and ensuring a transparent,
auditable chain of evidence from primary study to final synthesis.

2.6 Study selection and descriptive analysis

The selection process commenced with the identification of records through an extensive
search across multiple databases and registers, including ACM, AIS, IEEE, Science Direct,
Springer Link as well as additional backward and forward searches. This initial step identi-
fied a total of 1,415 records as potentially eligible for inclusion. Each record was subjected
to a careful screening process. Titles and abstracts were reviewed to determine their rel-
evance to the study’s inclusion criteria, which led to the exclusion of 1,279 records for not
meeting the specified research scope and objectives as per inclusion criteria defined in Table
3. Consequently, 136 publications were selected for retrieval and further evaluation. In the
eligibility assessment phase, the full texts of these studies were meticulously examined
to ascertain their suitability for inclusion in the review. During this phase, articles were
excluded based on predefined exclusion criteria (see Table 3), predominantly for not using
event logs or not addressing PPM tasks. This resulted in the exclusion of an additional 29
articles. The culmination of this rigorous selection process was the inclusion of 107 studies
in the final review. These studies were deemed to align closely with the research objectives
and met all the criteria set forth for the systematic review. No additional reports of included
studies were identified, affirming the thoroughness of the search and selection strategy. The
transparent and systematic approach to study selection, as evidenced by the PRISMA flow
diagram (see Fig. 2), aims to ensure a high level of confidence in the comprehensiveness and
relevance of the studies included in this review. This process underscores the robustness and
reliability of the findings and discussions that will be presented, providing a solid founda-
tion for the synthesis and analysis that follow.

For metadata analysis, the publication venue, year and associated keywords of each arti-
cle were examined: Of the 107 studies reviewed, 53 appeared in peer-reviewed journals, 51
in conference proceedings and three as arXiv preprints (see Fig. 3). Except for the arXiv
entries, all venues comply with the peer-review standards mandated by systematic literature
review protocols. Nonetheless, to ensure comprehensiveness, arXiv submissions identified
via backward-search were retained.

Regarding the publishing date of identified literature, Fig. 4 illustrates the publications
per year and publication medium in the form of a stacked bar chart. On closer examination,
a spike in the amount of publications around the year 2020 can be observed. The major-
ity of retrieved literature was published in 2020 and onward (76 out of 107 articles), with
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Fig. 2 Flowchart depicting the retrieval and selection of retrieved publications, following the PRISMA
approach

2020, 2024 and 2022 being the years with the most publications (48 out of 107 articles),
suggesting an increased relevance regarding the adoption of interpretable ML approaches
for predictive process monitoring.

For the analysis of keywords, either chosen by the authors or proposed by the publication
outlet, the identified articles were visualized via a circle packing chart depicted in Fig. 5,
illustrating the employed keywords and corresponding frequency of occurrence. Visually,
larger circles depict a more frequent use of the keyword (or phrase) within the circle com-
pared to smaller circles, with "Process Mining" emerging as the most prevalent phrase,
occurring in 41 publications. It is noteworthy that different representations of the same
concepts were used, such as "explainable artificial intelligence" and "Explainable AI" being
used as a key-phrase to depict the domain of an article. For the visualization, keywords
describing the same concepts were grouped together under a single keyword. The analysis
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Fig. 3 Number of identified pub-
lications per publication outlet
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Fig. 4 Number of identified publications per publication outlet grouped by year of publication

of keywords shows, that approximately a third of the articles (36 out of 107) aimed to con-
tribute directly to the XAI domain. Considering the search process for relevant literature,
the variety in employed keywords and their formulation outlines the challenges in the ade-
quate formulation of search queries in order to cover various iterations of the terminology
specific to the XAl-domain.

3 Discussion of findings

This section presents the findings of the literature review and is systematically divided into
four key subsections, each addressing a specific aspect of our research. Section 3.1 explores
the application domains of the approaches described in the found articles. This part pro-
vides an in-depth look at the implications of our results in different domains and highlights
prevalent application fields. Section 3.2 analyzes the employed approaches and ML models
as well as the utilized explanation methods. Lastly, Sect. 3.3 examines the evaluation of
employed explanation techniques. Each of these subsections collectively contributes to a
comprehensive understanding of our research findings, offering a multi-faceted view of our
study’s impact and significance.
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Fig.5 Circle packing diagram of usage and frequency of article keywords

3.1 Application context

This subsection presents the examination of the retrieved publications, encompassing iden-
tified application domains (RQ1), used benchmark datasets (RQ2) and central application
tasks (RQ3). For the remainder of this section, we refer to Tables 5, 6, 7, and 8 for a detailed
documentation of application domains and tasks, as well as utilized datasets identified in the
retrieved literature.

3.1.1 Application domain

For the identification of the application domain, the properties of the used data sets, as well
as explicit statements of the authors, were analyzed and aggregated. These characteristics
allow for the distinction between domain-agnostic and domain-specific applications of the
presented approaches and give insight into the work areas covered in the literature (see
Tables 5, 6, 7, and 8). As the most prevalent application domains finance (represented in 55
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out of 107 articles), healthcare (31 out of 107 articles), customer support related services
(25 out of 107 articles) and manufacturing (16 out of 107 articles) were identified. Approxi-
mately two fifths of the publications (42 out of 107) were identified as domain-agnostic,
due to their independence towards the field of application, thus, demonstrating the transfer-
ability of the underlying methodology. For the rest of the publications, the transferability
of findings from these studies to other domains is potentially challenging due to the unique
structures of event logs, domain-specific methodologies, and tailored analytical approaches
inherent in their respective fields. Considering the close relationship between the appli-
cation domain and the data sets utilized for model training and evaluation, the following
section provides a deeper analysis of the benchmark data sets used in the retrieved articles.

3.1.2 Benchmark datasets

Since the employed datasets dictate the possible application domains, examining the uti-
lized event logs not only provides information about the presented application domains, but
also about the degree of transferability and adaptiveness of the approaches presented in the
analyzed articles. Figure 6 is a treemap diagram depicting the usage of various event logs,
arranged by the frequency in ascending order, with the size of each area correlating to the
amount of publications that used the corresponding dataset.

For the systematic literature review, we distinguished the business process intelligence
challenge (BPIC) logs from four additional high-frequency datasets due to their promi-
nence in predictive process monitoring. Other logs were either inaccessible or appeared
too infrequently to merit individual discussion. The BPIC event logs span multiple real-
world domains: BPIC 2011 comprises anonymized diagnoses and treatment records from
the gynecology department of a Dutch academic hospital (healthcare). BPIC 2012 and BPIC
2017 both pertain to a Dutch financial institute, with the former event log covering personal-
loan applications and the latter an upgraded loan process (finance). BPIC 2016 captures cus-
tomer interactions (web, messaging, call centre) at the Dutch Employee Insurance Agency
during unemployment-benefit requests (insurance). BPIC 2018 covers EU direct-payment
applications by German farmers under the European Agricultural Guarantee Fund (finance).
BPIC 2019 documents purchase-order handling and invoice-matching workflows at a mul-
tinational paints and coatings company (finance). BPIC 2013 originates from Volvo IT’s

® Others ® BPIC

Helpdesk Sepsis

2020 2018
Road TrafficFine
Uncommen or Synthetic Event Logs Management Production 2011 2016 | 2019

Fig. 6 Treemap diagram representing the usage of various event logs

@ Springer



378 Page 18 of 92 N. Mehdiyev et al.

VINST incident-management system and is therefore allocated to customer-support ser-
vices. BPIC 2015 records municipal construction-permit applications in five Dutch cities
and, despite its public-administration context, lacked sufficient representation in the litera-
ture to warrant a distinct domain label. BPIC 2020 introduces two years of business-travel
and expense-management events for Eindhoven University of Technology employees,
including travel permits, domestic and international expense declarations, prepaid costs and
payment requests, and is classified under the finance domain as it reflects administrative
travel-expense management.

Beyond BPIC, the four most frequently used additional datasets are Helpdesk, which
pertains to customer-support services; Production, which involves manufacturing pro-
cesses; Sepsis, which covers clinical healthcare pathways; and Road Traffic Fine Manage-
ment, which relates to law-enforcement procedures. All other datasets were either synthetic,
inaccessible, or employed too infrequently to be listed explicitly here. Table 4 illustrates
the most frequently used event logs and provides a brief description as well as application
domain.

In the found literature, the BPIC dataset catalogue is predominantly employed, with
57% (61 out of 107 articles) using at least one of the provided datasets. The usage of the
same data over various publications facilitates the benchmarking of results, which is one
of the main reasons for the utilization of the BPIC event logs stated within the articles.

Table 4 Predorr}inantly used Event log Description Application
event logs within analyzed domain
literature - 5
BPIC 2011 (van Dongen Academic hospital’s care Healthcare
2011) process
BPIC 2012 (van Dongen Loan application process Finance
2012)
BPIC 2013 (Steeman 2013) Incident management Customer
processes support
BPIC 2014 (van Dongen Incident and change man- Customer
2014) agement processes support
BPIC 2015 (van Dongen Building permit applica-  Govern-
2015) tion processes ment
BPIC 2016 (Dees and van ~ Unemployment-benefit ~ Finance
Dongen 2016) request process
BPIC 2017 (van Dongen Loan application process Finance
2017)
BPIC 2018 (van Dongen Subsidy application and ~ Finance
and Borchert 2018) payment process
BPIC 2019 (van Dongen Purchase order handling  Finance
2019) process
BPIC 2020 (van Dongen University’s travel permit Finance
2020)
Helpdesk (Polato 2017) Ticketing process of a Customer
help desk support
Production (Levy 2014) Manufacturing process Manufac-
event log turing
Road Traffic Fine Man- Fine management Customer
agement (de Leoni and process support
Mannhardt 2015)
Sepsis (Mannhardt 2016)  Hospital treatment Healthcare
process
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Another reason is the open-source nature of these datasets, making them easily accessible to
the public and therefore contributing to the transparency and replicability of the presented
approaches. Lastly, all of the BPIC datasets are real-life event logs, facilitating approaches
that aim to be grounded in reality. Regarding the frequency of utilization, the BPIC 2012
event log was employed the most (utilized in 26 out of 107 articles), thus contributing to the
finance domain being the prevalent application domain. With 39% of articles (42 out of 107)
implementing their approach on at least two event logs from differing application domains,
43% (46 out of 107 articles) evaluated their approaches on two or more datasets, examining
the robustness of the proposed methodology across data from different sources.

3.1.3 Application tasks

The adoption of certain ML models depends heavily on the prediction tasks at hand. Espe-
cially in process prediction, there are prevalent prediction tasks that entail certain types of
explanations as well as corresponding explanation objects and subjects. Since the prediction
task is integral for the selection of the employed ML model and accompanying explanation
methods, this section presents the application tasks of the retrieved articles and categorizes
them into the following four groups: The first group deals with the prediction of process
outcomes. These predictions often involve classifying events, traces or trace segments into
predefined categories, such as identifying anomalies within a process at runtime. The sec-
ond group focuses on the prediction of the next event in an unfinished process trace. In
scenarios involving non-deterministic processes, various features, context factors and pre-
ceding events within the trace play a pivotal role in influencing the subsequent activity. The
third and fourth group deals with the prediction of process performance indicators, with the
third group particularly encompassing predictions of time-related PPI, such as the remain-
ing time until completion for an event or an unfinished process trace. The fourth group is
comprised of PPI prediction tasks unrelated to time, such as the prediction of context vari-
ables, costs and others. First, publications that aimed for the prediction of the next event are
being presented, followed by those that predicted process outcomes. Afterwards, articles
that predicted time-related process performance indicators are being presented, and lastly,
literature with other process performance indicators prediction tasks.

3.1.3.1 Process outcome prediction Process outcome prediction emerges as a central theme
within the reviewed body of literature, illustrating its prevalence and significance in diverse
application contexts. Approximately 60% of the retrieved literature (65 out of 107 articles)
explicitly focus on tasks related to the prediction of the outcomes of various processes.
The correct prediction of process outcomes harbors considerable relevance across various
domains, with finance and healthcare at the forefront among the analyzed literature (see
Fig. 7). In each of these domains, the ability to foresee and act upon future outcomes pro-
vides a strategic advantage, making process outcome prediction an invaluable tool in opera-
tional decision-making and strategic planning.

The diversity of prediction tasks addressed within these articles underscores the adapt-
ability of PPM techniques. These include trace classification or clustering, as seen in the
works of De Koninck et al. (2017), De Oliveira et al. (2020a), De Oliveira et al. (2020b),
Di Francescomarino et al. (2016), Francescomarino et al. (2019), Folino et al. (2017) and
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Fig. 7 Sankey-diagram representing the application task, the application domains and the corresponding
application datasets. The line width represents the amount of scenarios found in the analyzed literature

Verenich et al. (2016). Anomaly detection, another prevalent focus, is extensively explored
by Bohmer and Rinderle-Ma (2020), Garcia-Baiuelos et al. (2017), Irarrazaval et al. (2021)
and Pauwels and Calders (2019a, 2019b). Additionally, specific application-driven pre-
dictions such as maintenance (Allah Bukhsh et al. 2019), risk detection (Conforti et al.
2016) and insurance reclamation (De Leoni et al. 2015) further demonstrate the contex-
tual specificity of the methodologies applied. Other articles examining process outcome
prediction include Agarwal et al. (2022), Bezerra et al. (2009), Bezerra and Wainer (2011,
2013), Diamantini et al. (2024), Elkhawaga et al. (2023, 2024), Folino et al. (2011, 2024,
2025), Galanti et al. (2020, 2023a), Gupta et al. (2015), Harl et al. (2020), Horita et al.
(2016), Huang et al. (2022), Khemiri et al. (2018), Kim et al. (2024), Lakshmanan et al.
(2011), Maggi et al. (2014), Maita et al. (2025), Malashin et al. (2025), Mehdiyev and Fettke
(2020a, 2020b, 2021), Mehdiyev et al. (2021), Montoya et al. (2023), Myers et al. (2018),
Ouyang et al. (2021), Pasquadibisceglie et al. (2021, 2024), Porouhan (2024), Prasidis et al.
(2021), Rauch et al. (2024), Rehse et al. (2019), Rizzi et al. (2020, 2024), Saini et al. (2020),
Sarno et al. (2020), Savickas et al. (2014), Sindhgatta et al. (2020), Stevens and De Smedt
(2022a), Stevens et al. (2022b, 2022c¢), Teinemaa et al. (2016), Tripathi et al. (2024), van
Zelst et al. (2020), Velmurugan et al. (2021a, 2021b) and Voélzer et al. (2023).

A crucial aspect of preparing data for process outcome prediction involves a pivotal
decision point where all available data must be aggregated into a format that is amenable
to the employed machine learning model. This transformation process is indispensable for
aligning event log data with the specific requirements of various process outcomes. Such
transformations may involve the normalization of numerical and categorical data formats,
the aggregation of event attributes as well as the engineering and selection of new features
to enhance the predictive capability of process monitoring systems. These adaptations are
crucial not only for achieving accurate predictions but also for ensuring the robustness and
transferability of predictive models across various domains. The documented literature thus
highlights the intricate interplay between data characteristics and predictive model perfor-
mance in process outcome prediction.
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3.1.3.2 Next event prediction The prediction of the next event in an unfinished process
trace is the second most prevalent application task within the retrieved literature, accounting
for 30 out of 107 articles. Among the analyzed publications, next event prediction is pre-
dominantly employed in domains such as finance, healthcare and customer support related
fields, where it facilitates real-time decisions distinct from the broader scope of process
outcome prediction. This task is predominantly aimed at enhancing production processes
through forward planning capabilities through its operational immediacy. The prediction
of the next event often leads to immediate adjustments in the process execution, differing
from the more strategic or overarching implications of process outcome predictions. While
next event prediction shares the predictive process monitoring goal with process outcome
prediction, the former uniquely focuses on the short-term sequence of activities within a
process trace. For example, studies like those by Lakshmanan et al. (2011) and Unuvar et al.
(2016) not only predict the next event but also extend to forecast subsequent activities up
to the completion of a process trace. Moreover, next event prediction sometimes serves as a
secondary outcome of broader research aims, as noted in the works of Maggi et al. (2014),
where the main focus isn’t solely on predicting the next event but encompasses a wider
scope of process analysis. Similarly, Verenich et al. (2017, 2019) implement this prediction
as an implicit function within their models, assigning probabilities to possible future states
of a process trace. Other articles examining next event prediction include Agarwal et al.
(2022), Aversano et al. (2023), Bohmer and Rinderle-Ma (2018, 2020); Brunk et al. (2021),
De Leoni et al. (2015), Gerlach et al. (2022), Hanga et al. (2020), Hsieh et al. (2021); Kim
et al. (2024), Majumdar et al. (2023), Mayer et al. (2021), Pasquadibisceglie et al. (2023,
2024a, 2024b), Rauch et al. (2024), Rehse et al. (2019), Rizzi et al. (2024), Savickas and
Vasilecas (2018), Sindhgatta et al. (2020), Tama et al. (2020), Weinzierl et al. (2020), Wick-
ramanayake et al. (2022a, 2022b) and Zilker et al. (2023).

3.1.3.3 Time related prediction Time-related prediction tasks within PPM are fundamen-
tally geared towards forecasting temporal parameters that directly impact process efficiency
and outcome. These tasks typically employ regression models to estimate variables such as
the duration of tasks, intervals between events, or the completion time of ongoing processes.
The complexity of these predictions stems from the need to precisely model the time-depen-
dent aspects of process flows, which requires a deep understanding of process dynamics
and the factors that influence time variations. Exemplary time-related prediction problems
encompass the prediction of the timestamp of the next event (Béhmer and Rinderle-Ma
2018, 2020), the prediction of execution times of activities for a given trace (Rehse et al.
2019; Verenich et al. 2017, 2019) and the prediction of remaining time until completion for
a given unfinished trace (De Leoni et al. 2015; Ouyang et al. 2021; Sindhgatta et al. 2020;
Galanti et al. (2020, 2023a, 2023b). Other articles examining time related prediction tasks
include Cao et al. (2023a, 2023b), Guo et al. (2024), Hermann et al. (2024), Mayer et al.
(2021), Mehdiyev et al. (2024, 2025a, 2025b), Padella et al. (2022), Polato et al. (2018),
Saha et al. (2024) and Toh et al. (2022).

Among the analyzed literature, these types of predictions were especially relevant in the

finance sector and for customer support related tasks (see Fig. 7), predicting the time until
a case is closed or a resolution is reached. As processing times can directly influence cus-
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tomer satisfaction, enabling to manage expectations and allocate resources more efficiently
is a central motivation for these prediction tasks. The intricacies involved in time-related
prediction include the preprocessing of event logs where significant temporal features must
be identified and extracted. These transformations involve handling large datasets with
time-stamped events, dealing with missing time entries, as well as correcting or filtering
anomalies in time data. Additionally, the selection of the right regression techniques and
their calibration to align with the specific characteristics of the process at hand is vital with
regard to ensuring the accuracy of the model’s predictions.

3.1.3.4 Other process performance indicator predictions Beyond the time-related PPIs,
PPM also encompasses a broad spectrum of other PPI-related prediction tasks, which are
crucial for enhancing operational efficiency and strategic decision-making across various
domains. The analyzed publications demonstrate that the quantification and estimation of
these PPIs is specifically tailored to meet the unique needs of each application context and
is implemented predominantly within the domains of finance and customer support (refer to
Fig. 7). The goals of predicting these PPIs are multifaceted, with applications that typically
aim to provide actionable insights that can lead to improved process outcomes. Examples
include Bayomie et al. (2022), who develop a numeric indicator for event-case correla-
tion, essential for understanding process interdependencies, as well as Coma-Puig and Car-
mona (2022), who focus on quantifying and predicting non-technical energy loss, which
is a critical factor in operational efficiency. Similarly, Fu et al. (2021) work on quantifying
and predicting customer experience scores, pivotal in customer support services. Galanti
et al. (2020, 2023a, 2023b) predict costs associated with process traces to determine their
relevance, an approach also adopted by Mayer et al. (2021) for comparable cost estima-
tions. Additionally, Petsis et al. (2022) predict the number of patient visits, which is vital for
resource planning in healthcare settings. The remaining articles examining prediction tasks
related to other process performance indicators include Aguilar Magalhdes et al. (2025),
Hermann et al. (2024), Montoya and Astudillo (2023), Park et al. (2024), Rizzi et al. (2024),
Saha et al. (2024) and Trescato et al. (2024).

3.1.3.5 Further insights The analysis of the surveyed literature reveals a significant empha-
sis on classification tasks in 87 unique studies, with 30 articles focusing on next event pre-
diction and 65 on process outcome prediction. Regression tasks, featured in 32 out of 107
articles, primarily targeted time-related PPIs in 23 articles, while 15 articles examined other
process-related PPIs. For a detailed understanding, the Sankey diagram in Fig. 7 consoli-
dates the information from Tables 5, 6, 7, and 8 and visualizes the connections between the
application tasks, domains and datasets utilized in these studies. This illustration highlights
the predominance of process outcome predictions, followed by next event and time-related
predictions. The finance domain is most frequently addressed, largely due to its prominent
representation in the BPIC datasets, with the BPIC 2012 event log used in about a quarter
of the articles (26 out of 107).

Regarding the interplay between utilized datasets, the application task and domain, our

analysis suggests that the limited availability of publicly accessible process logs may sub-
stantially influence the scope and diversity of application domains and tasks within predic-
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tive process monitoring, effectively restricting the range of research topics and curtails the
generalizability and applicability of models and techniques across various industries. The
dominance of certain datasets, like the BPIC 2012 and BPIC 2017 in finance or BPIC 2011
and Sepsis in healthcare, illustrates how the availability of domain-specific datasets has a
potential to skew research focus toward particular industries and problem types.

3.2 Interpretable and explainable Al for PPM

This subsection turns to the methodological backbone of explainable and interpretable PPM.
Guided by RQ4 and RQ5, we first review the classes of intrinsically interpretable models
reported in the literature and discuss the structural features, such as rule transparency, addi-
tive decompositions and proximity-based reasoning, that make these models understandable
when applied to event-log data. We then survey the range of post-hoc explanation tech-
niques used to illuminate black-box predictors, grouping them by the scope of their insights
(local versus global) and their dependency on a specific model architecture (model-agnostic
versus model-specific). A consolidated overview of the evidence extracted from individual
studies is provided in Tables 9, 10, 11.

3.2.1 Interpretable Al for PPM

Intrinsically interpretable models such as DTs, linear regression and rule-based systems are
favored for their transparency and ease of understanding, making them particularly suitable
for domains where interpretability is critical for compliance and operational transparency.
These models allow stakeholders to comprehend how predictions are made, which is crucial
in sectors like healthcare and finance where decisions based on model predictions can have
significant consequences.

Within the surveyed publications, DTs emerged as the most prevalent interpretable Al
models, featured in 22 out of 64 articles employing white-box prediction models. The fol-
lowing articles provide a conceptual overview of the versatile utilization of these interpre-
table models: While Lakshmanan et al. (2011) implemented a binary DT using C4.5 on a
synthetic event log to simulate an insurance claim scenario, focusing on predicting process
outcomes, Maggi et al. (2014) developed a more sophisticated framework that classifies
traces of an event log based on specific scenarios and use cases, building C4.5 decision trees
to predict not only process outcomes, but the next events as well. The latter framework was
operationalized within the ProM framework (van Dongen et al. 2005) and validated on the
BPIC 2011 event log, with performance metrics including accuracy, AUROC, F-1 scores
and ROC characteristics. Allah Bukhsh et al. (2019) applied Classification and Regression
Trees (CART) method and evaluated the model performance alongside a RF and gradient
boosting trees to predict maintenance requirements for railway switches. The models were
assessed based on accuracy, F-1 scores, kappa and misclassification rates. De Leoni et al.
(2015) implemented the proposed framework as a plug-in for the ProM framework and,
given an event log as input, mines a process model yielding either a corresponding DT
(C4.5, see Quinlan (1993) and Mitchell (1997)) or Regression Tree (RepTree, see Witten
etal. (2011)). As application tasks, the presented framework allows for predicting upcoming
events, process outcomes or the remaining time until process completion and was evaluated
on the BPIC 2016 event log. Di Francescomarino et al. (2016) introduced a PPM framework

@ Springer
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that was integrated into the ProM framework to allow operation during runtime. This frame-
work utilizes either frequency-based or sequence-based encoding for event logs, which are
then processed using either agglomerative clustering, DBSCAN or K-Means Clustering.
Following clustering, the framework allows for DTs and RFs to be employed as classifica-
tion models alongside manual optimization of certain hyperparameters. Building on this
foundation, Francescomarino et al. (2019) developed a subsequent version of the previ-
ous framework that also operates within ProM and introduces enhancements in the cluster-
ing stage by incorporating two distinct methods: model-based clustering, as outlined by
Fraley and Raftery (2003), for frequency-based encoding and DBSCAN for sequence-based
encoding.

Bayesian networks (8 articles) and linear or logistic regression models (12 articles), con-
stitute for the further most prevalent approaches in the reviewed literature. Bayesian net-
works have been utilized for transparent analysis of event logs, tackling tasks such as next
event prediction, process outcome forecasting and anomaly detection. As exemplary work,
Brunk et al. (2021) employed a Dynamic Bayesian Network with a manually defined struc-
ture in order to predict the next event within a given trace of an event log. This approach
aimed at differentiating attributes of the event log that are the cause or the effect of a given
process and was evaluated on the BPIC 2012 and BPIC 2013 data sets. For benchmark-
ing, implementations of probabilistic finite automata and n-grams were utilized to com-
pare accuracy and various approaches presented in other publications for the given event
logs. Similarly, linear or logistic regression models have been applied in diverse contexts
to enhance decision-making processes. Agarwal et al. (2022) proposed a decision support
system employing logistic regression for process outcome and next event prediction, while
Stevens and De Smedt (2022a) and Stevens et al. (2022b) presented a methodology for pro-
cess outcome prediction with a strong focus on the evaluation of model explanations. Teine-
maa et al. (2016) presented an approach of predicting the process outcome for two real-life
event logs by employing techniques from text-mining in order to encode process traces. A
logistic regression model has been utilized as a classifier for said task and was benchmarked
for computation time, F-1 scores and earliness, though it was noted that it was outperformed
by RF models across all evaluation metrics.

Other white-box approaches, such as k-means clustering, heuristic rule-based cluster-
ing, and methods integrating multiple interpretable AI models, were explored across 39 of
the 64 articles employing white-box models. These articles leveraged a variety of mixed
approaches for diverse PPM tasks. For instance, Bohmer and Rinderle-Ma (2020) intro-
duced sequential prediction rules in the context of next event prediction and evaluated their
approach ("LoGo") on the BPIC 2012 and Helpdesk data sets based on the mean abso-
lute error and accuracy, comparing their approach to LSTM and RNN models. These rules
predict the next activity at a general level for specific event log traces, using probability-
based heuristics as classifiers when no general rules apply. Conforti et al. (2016) introduced
"PRISM," a risk detection model that operates in real-time during process execution, uti-
lizing dedicated sensors developed from a risk-annotated process model. This model trig-
gers alerts when predefined risk conditions are met and employs a similarity measure to
proactively identify and manage risks in similar instances. Folino et al. (2017) present a
rule-based clustering approach employing propositional patterns.

These studies showcase the adaptability and efficacy of white-box approaches in address-
ing specific predictive needs in process monitoring, enhancing both the interpretability and

@ Springer
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applicability of predictive models in real-world scenarios. However, these models often
encounter limitations in handling complex datasets or sophisticated predictive tasks where
higher-dimensional interactions are present. This underscores a common scenario in pre-
dictive modeling where the simplicity and transparency of white-box models can lead to
diminished predictive performance compared to black-box models.

3.2.2 Explainable Al for PPM

Black-box approaches such as DL, GBMs and RFs are chosen for their sophisticated mod-
eling capabilities and superior performance on complex datasets. These models excel in
environments where the primary focus is on predictive accuracy and handling high-dimen-
sional data with complex patterns. However, these gains in performance come at the cost
of reduced interpretability. The internal workings of these models are often opaque or
overly complex, making it challenging to discern which features are influencing the predic-
tions, thereby complicating efforts to validate and trust the model’s decisions. This trade-
off necessitates a balanced approach, especially in industries where the stakes are high.
Regarding the retrieved literature, the number of articles relying on opaque models (59 out
of 107 articles) is slightly below those utilizing interpretable models (64 out of 107). How-
ever, considering the literature retrieval process, specifically the exclusion of articles which
omit to provide explainability to employed black-box models, a large amount of publication
relying on opaque models in PPM was filtered out during the identification, screening and
detailed assessment of articles.

3.2.2.1 Black-box models DL methods, such as DNN, RNN, especially LSTM, stand out
for their ability to detect and learn complex patterns in extensive datasets. However, the
multi-layered architecture that contributes to their strength also obscures the reasoning
behind their decisions, making them less interpretable than simpler models. Among the sur-
veyed publications, 38 out of 59 articles utilizing black-box models employed DL. Exem-
plary applications include Mehdiyev and Fettke (2020a, 2020b, 2021) utilized DNNs across
their studies, focusing on high-performing models and post-hoc explainability. Galanti et al.
(2020) utilized a conventional LSTM, while Hanga et al. (2020) performed a compara-
tive analysis between a conventional and bidirectional LSTM, comparing both against the
results of similar studies. Similarly, Rehse et al. (2019) utilized an LSTM, exploring poten-
tials of explainability within process prediction in the context of Industry 4.0 (see Rehse
et al. 2018). While Huang et al. (2022) focused solely on using an LSTM in their "LORE-
LEY" approach, tailored for event log analysis, Hsieh et al. (2021) introduced an innovative
approach that combines a DNN and an LSTM into an ensemble, implementing "DiCE4EL"
- a variant of "DiCE" (Mothilal et al. 2020). The former framework uniquely merges the
strengths of both neural network architectures to enhance predictive accuracy while provid-
ing explainability adapted from established methodologies. In their study, Sindhgatta et al.
(2020) tailored their approach by using a bidirectional LSTM in one case, while opting for
an ensemble of two bidirectional LSTMs in two additional cases, based on the application
task. Weinzierl et al. (2020) presented "XNAP", a model-specific approach that employs a
bidirectional LSTM RNN that is able to propagate feature relevance scores from one layer
to another, thus providing insight into the model’s decision process. Building on Sindh-
gatta et al. (2020) and Wickramanayake et al. (2022a) introduced two architectures using
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ensembles of bidirectional LSTM models. They further developed an explanation frame-
work in Wickramanayake et al. (2022b) using this architecture. In a similar vein, Stevens
et al. (2022c¢) as well as Stevens and De Smedt (2022a) employed LSTM models, with the
former integrating an XGBoost model for benchmarking and the latter using a CNN and RF
for comprehensive model evaluation.

GBM approach allows for optimizing complex loss functions and handling various types
of data, including unbalanced datasets. Unlike deep learning, which uses a holistic approach
through layers, gradient boosting focuses on improving predictions incrementally, which
can lead to better performance on structured data. However, the sequential nature of boost-
ing can make these models computationally intensive and still difficult to interpret due to the
aggregation of numerous small models, each contributing to the final outcome. While they
share the high performance of deep learning in complex tasks, their operational intricacy
often prevents a clear understanding of how specific features influence predictions. GBMs
were utilized in a variety of the surveyed studies to assess predictive methodologies, with 26
out of 59 articles employing black-box approaches opting for these models: In the study by
Stevens and De Smedt (2022a), GBMs like XGBoost were part of a broader ensemble that
included various predictive models such as GLRM, logistic regression and logit leaf model,
along with CNN, LSTM and RF. These models were evaluated across multiple event logs
including BPIC 2011, BPIC 2015, Production and Sepsis, with a focus on process outcome
predictions. The performance was assessed based on AUROC scores, with this diversified
model application being guided by the "X-MOP" framework, which assists in choosing the
appropriate model for specific tasks. Stevens et al. (2022c) further explored these models,
comparing white-box and black-box approaches in terms of functional complexity, mono-
tonicity and parsimony. Velmurugan et al. (2021b) examined the stability of the LIME
and SHAP explanation methods for process outcome predictions. They employed logis-
tic regression as a white-box model and compared it with an XGBoost black-box model,
evaluating their performance on the BPIC 2012, Production and Sepsis event logs while
considering different data encoding techniques. Additionally, Ouyang et al. (2021), Petsis
et al. (2022), Sindhgatta et al. (2020), Velmurugan et al. (2021a) and Verenich et al. (2019)
all employed XGBoost models to assess post-hoc explainability techniques, further high-
lighting the adaptability and utility of gradient boosting in predictive process monitoring.

RF's are a robust and versatile machine learning approach that combines multiple DTs to
enhance predictive accuracy and prevent overfitting. While RFs are more interpretable than
deep learning models due to their reliance on DTs, the ensemble nature still limits transpar-
ency compared to single-tree models. In the reviewed literature, RF models were frequently
used for process outcome prediction tasks, either alone or in comparison with other machine
learning methods, with 16 out of 59 articles employing black-box approaches using the RF
model. Allah Bukhsh et al. (2019) employed RF alongside DT and GBMs and compared
their predictive performance. Similarly, Teinemaa et al. (2016) contrasted RF and logistic
regression models in their methodology. Rizzi et al. (2020) adopted RF and enhanced its
performance through iterative retraining based on prior explanations. Verenich et al. (2016)
presented an approach that builds a RF on top of an event log after the corresponding traces
have been clustered using one of two proposed clustering algorithms. In similar fashion,
Verenich et al. (2017) used a RF model as a classifier for activities within traces after match-
ing them to a discovered process model from the event log.
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While the majority of research focuses on the aforementioned types, a subset of stud-
ies explores alternative black-box models that do not fit into these conventional catego-
ries. These models, often designed for specific use-cases, integrate unique methodologies
to enhance predictive accuracy while addressing the interpretability challenges inherent in
black-box approaches. Out of the 59 articles using black-box models 10 publications uti-
lized approaches which are considered opaque, with the following publications exemplify-
ing models that do not fit into the previously discussed categories: De Koninck et al. (2017)
introduced an approach for trace clustering, utilizing a modified "search for explanations for
clusters of process instances" (SECPI) architecture (De Weerdt and vanden Broucke 2014).
This method employs SVMs for each identified cluster to identify the minimal set of fea-
tures that keep an instance within its designated cluster. Meanwhile, Verenich et al. (2016,
2017, 2019) expanded their methodologies by incorporating clustering and two process
model discovery components, adding an interpretable layer to their black-box approaches.

3.2.2.2 Post-hoc explanation methods Post-hoc explanation methods exhibit a variety of
differences, depending on the model that is explained, as well as the application context
and PPM task that is being tackled. In particular, the following characteristics are differenti-
ated: regarding explanation scope, local and global explanations are distinguished, with the
former focusing on explanations pertaining to individual model predictions and the latter
referring to the general workings of the examined model. The model relation differentiates
between model-specific explanation methods, which leverage the intricacies of the model
methodology, and model-agnostic explanation methods, which can be applied regardless of
the utilized model. Lastly, the output format of the explanation can be in numeric, textual,
rule-based, or visual form as well as a mixture thereof.

3.2.2.3 Local post-hoc explanation methods Local XAl methods focus on revealing the
relevance of variables for predictions on a single data point. These explanations do not
necessarily uncover general model behavior but provide valuable insight into specific pre-
diction instances.

3.2.2.4 Counterfactual explanations Counterfactual explanations is a contrastive method
of providing insight by presenting conditions, specifically certain variable values, under
which the prediction score would exceed or fall below a certain threshold compared to its
original score. These explanations aim to identify the least amount of intervention in order
to flip a prediction label for classification tasks or bring the prediction score across a certain
threshold for regression tasks. Counterfactual explanations have informative characteristics
and provide actionable advice for attaining specific prediction scores. However, the fact that
an exhaustive search for counterfactual explanations is likely to suffer from a combinatorial
explosion for categorical variables and that it can be expected to find various such explana-
tions necessitates an implementation that is suitable for its corresponding application con-
text. Figure 8 is an example of a visual counterfactual explanation from Hsieh et al. (2021),
illustrating the original instance as well as counterfactual instances with modified feature
values that result in the prediction score exceeding a given threshold. In a similar fashion,
Hsieh et al. (2021) implemented counterfactual explanations using a tabular visualization
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Fig. 8 Counterfactual explana- .00
tion as it is implemented by
Hsieh et al. (2021), demonstrat-
ing the original instance and the
found counterfactual instances 0.75
=
Fo.s0 !l
=
&
0.25
0.00
(A_SUBMITTED, 112, $15,500),
(A_PARTLYSUBMITTED, 112, $15,500),
A_PREACCEPTED, 112, $15,500),
(A_ACCEPTED, 10939, $15,500),
Prediction: O_SELECTED
Milestone: A_FINALISED
Counterfactual: What would I have had to change for the loan
to be A_FINALISED?
(a)
Counterfactual 1 Counterfactual 2 Counterfactual 3
Activity Resource | Activity Resource | Activity Resource
A_SUBMITTED 112 A_SUBMITTED 112 A_SUBMITTED 112
A_PARTLYSUBMITTED 112 A_PARTLYSUBMITTED 112 A_PARTLYSUBMITTED 112
A_PREACCEPTED 112 A_PREACCEPTED 10910 A_PREACCEPTED 10939
A_ACCEPTED 10931 W_Complete request 10912 W_Handling leads 10939
A_FINALISED 10931 A_ACCE D 10932 A_ACCEPTED 11189
A_FINALISED 10932 | 11189
— — — — 11189
(b)

Fig. 9 Counterfactual explanation as implemented by Hsieh et al. (2021). a demonstrates the original
instance, whereas b demonstrates the counterfactual explanations and the features that have been altered
to achieve the desired prediction—in this case, the acceptance of a loan of $15,500

for the altered features of the counterfactual explanations, as seen in Fig. 9. Further counter-
factual explanations for PPM can be found in De Koninck et al. (2017), Huang et al. (2022),
Mayer et al. (2021) and Padella et al. (2022).

3.2.2.5 Individual conditional expectation (ICE) ICE plots are a model-agnostic approach
that illustrate the impact of an iterated feature for a single data point. Algorithmically, the
value of a given variable of an instance is iterated over its observed values for categorical
variables or over certain ranges for numerical variables, and the resulting change in the pre-
diction score is captured. In practice, ICE plots can be visualized for an individual instance
or for a group of instances in a single plot, depending on the use case, although the latter
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approach qualifies as a global explanation. Figure 10 is an example of an ICE plot from
Mehdiyev and Fettke (2021), illustrating the changes of prediction scores for each single
instance within a group (visualized as one line per instance) across value changes of the
"Overall Equipment Effectiveness" variable. A visualization such as Fig. 10 facilitates the
identification of and differentiation between global and local model behavior. Other publica-
tions employing ICE are Mayer et al. (2021) and Mehdiyev et al. (2021).

3.2.2.6 Local interpretable model-agnostic explanations (LIME) LIME ((Ribeiro et al.
2016)) explains an individual prediction by training a simple, interpretable surrogate model
in the neighborhood of the instance. It generates perturbed samples near that point, queries
the black-box model for their predictions, weights those samples by proximity (using a
locality kernel), and fits an interpretable model on an interpretable representation of the
data. When the surrogate achieves good local fidelity, its parameters provide a locally faith-
ful account of which features drove the prediction. Across the analyzed literature, LIME
was used as an explanation technique in the following works: Allah Bukhsh et al. (2019)
(see Fig. 11a), Mayer et al. (2021), Mehdiyev et al. (2021), Ouyang et al. (2021) (Fig. 11b),
Rizzi et al. (2020), Sindhgatta et al. (2020), Velmurugan et al. (2021a), and Velmurugan
et al. (2021b). Notably, Velmurugan et al. (2021b) adopted the style of Visani et al. (2021),
estimating feature contributions with LIME across ten surrogate models to assess the sta-
bility of the explanations. Although LIME benefits from interpretable surrogate models,
identifying and clustering instances that belong to a specific locality is a substantial chal-
lenge for non-image data and depends heavily on the use case. To address this, Mehdiyev
and Fettke (2020a) proposed a modified, model-specific approach conceptually based on
LIME and K-LIME (Hall et al. 2017). They used neural codes from the last hidden layer of a
DNN as vectors for distance calculation between instances, thereby defining localities from

1.00-

0.50-

0.25

Predicted Probability for Class Pa§sed

0.00-

04 0.6 08 1.0
Overall Equipment Effectiveness

Fig. 10 Example of an ICE plot (Mehdiyev and Fettke 2021) with the green line depicting a true positive
instance and the red line depicting a true negative instance
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No

Prediction probabilities

No -
ves [N 0.8 Rollers Fitted=No

Direction= Bi-directional

Bearer Type= Timber

Condition Score=1

Rail Type Used= 113Ib Flatbottom
18.00 < Age <= 28.00

Functional Location=1
003l
Track Type= Ballast

Stretcher Type= Cogifer shallow 60MM

Problem Cause= Installation Error

(a)

[ ——

: static JIDIGQHOSIS Treatment Combination ID_DTC187241 <= 0.00

: statu(iTreatment code_TC813 <= 0.00
_____ bl
: static {Dnagnosns Gynaecologische tumoren <= 0.00

agg__ Activity_ AC10307 <= 0.00
: slatl(iDlagnosns Treatment Combination ID_other <= 0.00
b ]

: S(B[I(JDIGQHOSIS code_M11 <= 0.00

(b)

Fig. 11 Example for LIME as it is implemented by a Allah Bukhsh et al. (2019) and bOuyang et al. (2021)
for PPM

the model’s learned representations. Rehse et al. (2019) reported a similar idea, also using
neural codes from the last hidden layer to identify localities for specific instances.

3.2.2.7 Shapley-based local explanations Shapley (1953), from cooperative game theory,
allocate a final payoff among players by averaging each player’s marginal contribution
across all possible orderings. In the context of local explanations for ML models, features
act as the players and the model’s prediction for a specific instance is treated as the payoff
(often relative to a baseline), so each feature receives a contribution that reflects its influence
on that prediction. Because exact computation requires evaluating all coalitions and grows
exponentially with the number of features, practical methods use approximations. SHAP
(Lundberg and Lee 2017) provides a unified framework with model-agnostic and model-
specific estimators, including Kernel SHAP, Linear SHAP, and Deep SHAP, to produce
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local attributions for individual instances. An example of such a local Shapley-based expla-
nation is shown in Fig. 12, illustrating the implementation by Mehdiyev and Fettke (2021).

Other local explanation methods For LSTMs, layerwise relevance propagation (LRP)
(Lapuschkin et al. 2015; Arras et al. 2017) is a local, model-specific attribution method
that reveals the impact of each feature on the prediction for a given instance, as demon-
strated by Harl et al. (2020), Sindhgatta et al. (2020), Stevens et al. (2022c), Weinzierl
et al. (2020), Wickramanayake et al. (2022a), and Wickramanayake et al. (2022b). Although
presented here as a local XAI method, Sindhgatta et al. (2020) and Stevens et al. (2022c)
report only global explanations derived from LRP attributions. Related to LRP, Hanga et al.
(2020) propose a model-specific approach for LSTMs in next-event prediction that allo-
cates probability scores to candidate events. For an unfinished trace, the model encodes the
trace as a graph and displays the estimated probability for each predicted activity. While
this provides users with a confidence measure, the interpretability of these probabilities is
highly use-case dependent and the approach does not explain how the probabilities were
formed. De Koninck et al. (2017) employ SECPI, which trains an SVM, an inherently non-
interpretable model, to determine the minimum set of characteristics a trace must retain
to stay in its assigned cluster. This primarily explains the clustering method. The authors
define “explainable” instances as “instances for which such an explanation can be extracted
from the underlying SVM,” an interpretation that may warrant further discussion. Huang
et al. (2022) present LORELEY, an approach based on LORE (Guidotti et al. 2019), which,
similar to LIME, creates local explanations by training a decision tree within the instance’s

Predicted Value: 0.142885 - Average Value: 0.477261 - Difference: -0.334376

Total_Number_of_Process_Steps=23- +

Planned_Setup_Time=1847 - '

Planned_Production_Duration=18267 - I-(
phi
0.0

Ol Eqipier Frecheness=0441 _ ik
02
Employee_Productiit=0.47- -
Average_kWh_Per_Process_Step=8 - l
Average_Duration_Per_Process_Step=2008 - }—l—{

0.3 0.2 0.1 0.0
Feature Value Contribution

Fig. 12 Example of a Shapley-based local explanation as it is implemented by Mehdiyev and Fettke
(2021), illustrating feature impact on the predictions score using bars, with their length and color repre-
senting the contribution of the corresponding feature. The specific feature values as well as the numerical
value of their contribution are visible on the axes, the prediction score, the average prediction score and
the difference due to feature impact are displayed at the top of the plot
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neighborhood to capture local model behavior. LORELEY adapts algorithms for trace simi-
larity, distance, and clustering to predictive process monitoring. Because the surrogate is a
decision tree, these explanations can also serve as counterfactuals.

3.2.2.8 Global post-hoc explanation methods While local explanations zoom in on indi-
vidual predictions, global explanations aim at describing interdependence and relationships
between variable expressions and model predictions on a general level, giving insight about
the underlying data as well as the model that was trained on said data. Global explana-
tions enable the assessment of the general model behavior by domain experts and allow for
uncovering discrepancies between model behavior and domain knowledge.

3.2.2.9 Shapley-based global explanations Local SHAP attributions can be aggregated to
reveal global model behavior. This has been demonstrated by Galanti et al. (2020) (Fig. 13)
and by Petsis et al. (2022) (Fig. 14). In practice, common global visualizations include
SHAP summary plots, which display the distribution of SHAP values for every feature
across the entire scored dataset, and SHAP dependence plots, which are similar in spirit to
PDP and use Shapley values to show how variation in a feature relates to its contribution to
the prediction. Beyond ranking features by mean absolute contribution, summary plots con-
vey directionality and heterogeneity across instances. Dependence plots can be enhanced by
coloring points by a second feature to reveal potential interactions. Analysts often compute
global importance by averaging absolute SHAP values, create class-specific summaries for
classification tasks, and stratify results by cohorts to compare populations. Shapley-based
approaches are attractive because they rest on a clear cooperative game theoretic foundation
and yield additive, instance-level attributions that aggregate naturally to the global level.
The reference point for these explanations can be set to specific subsets of the dataset, which
increases applicability across use cases. As with any attribution method, results depend on
the background data, on correlations between features, and on the coverage of the feature
space, so it is good practice to report the chosen background set and to validate patterns
across subgroups.

3.2.2.10 Feature importance Feature importance (Gevrey et al. 2003; McDermid et al.
2021) is an umbrella term for methods that quantify how much each feature contributes to
a model’s predictions. These techniques are often used to summarize global behavior, while
some implementations can also be adapted to provide local views for individual instances.
A widely used approach is permutation feature importance (Fisher et al. 2019). For each
feature in turn, its values are shuffled across the dataset, the model is re-scored, and the
change in error is recorded. Repeating this across features yields a ranking of influential
variables; however, this procedure does not explicitly capture interaction effects. The per-
mutation approach is employed by Ouyang et al. (2021), Sindhgatta et al. (2020), Stevens
and De Smedt (2022a) and Stevens et al. (2022c). For LSTMs, feature importance can be
derived from layerwise relevance propagation by averaging relevance scores per variable
across the scored dataset, as shown by Harl et al. (2020), Sindhgatta et al. (2020), Stevens
et al. (2022c), Weinzierl et al. (2020), Wickramanayake et al. (2022a) and Wickramanayake
et al. (2022b). Another option is leave-one-feature-out retraining in the style of Feng et al.
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Fig. 13 Shapley-based global explanation as it is implemented by Galanti et al. (2020), illustrating fre-
quency of features and corresponding values when they were significantly relevant for the prediction by
using a heatmap

(2013), where a model is retrained without a given feature and the change in performance is
measured; Allah Bukhsh et al. (2019) adopt this strategy. Galanti et al. (2023a) and Stevens
et al. (2022c) apply SHAP feature importance and SHAP summary plots, which aggregate
local SHAP values for each variable over the dataset to show overall impact and variation.
For DNN, connection weight-based importance following Gedeon (1997) has been used
by Mehdiyev and Fettke (2020b) and Rehse et al. (2019) to characterize global behav-
ior. For tree-based models, such as XGBoost in Stevens et al. (2022c¢), feature importance
can be computed from the average contribution to impurity reduction (for example, Gini-
based purity).Fig. 15 illustrates an example from Mehdiyev and Fettke (2020b), showing
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Fig. 15 Feature importance as described by Mehdiyev and Fettke (2020b)
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the scaled importance of the ten most influential features in a bar plot, where bar length and
color convey each feature’s impact on the prediction score.

3.2.2.11 Partial dependence plots (PDP) PDP Friedman (2001) provides a model-agnostic,
global view of how the expression of a single feature influences a model’s prediction while
averaging out the effects of all other features. The core idea is straightforward. Select a
grid of values for the feature of interest. For each grid value, replace that feature in every
instance of the dataset with the grid value, score the modified data with the trained model,
and compute the average prediction. Repeating this across the grid traces the marginal effect
of the feature on the prediction score. For categorical variables, the procedure is performed
per category; for numeric variables, it is performed over a set of representative values such
as quantiles or evenly spaced points. PDPs are popular because they are easy to read and
can reveal global trends such as monotonic relationships, thresholds, and regions of dimin-
ishing or increasing returns. They support model validation by domain experts who can
compare the learned relationship against domain expectations. There are important limi-
tations. Because PDPs average over the joint distribution of the remaining features, they
do not directly reveal feature interactions and they can be misleading when the feature of
interest is strongly correlated with others. The averaging also masks heterogeneous effects
that may differ across subgroups or individual instances. From a computational perspective,
the cost scales with the number of instances and the number of grid points chosen for the
feature, which can be substantial for high-cardinality categorical variables or finely gridded
continuous variables. Figure 16 shows an example from Mehdiyev and Fettke (2020b). The
PDP depicts the mean prediction score as a function of the variable “Average Duration per
Process Step,” with separate colored lines for different age groups. The plot indicates that
higher average duration per step is associated with lower predicted scores, and the separa-
tion between the age-group curves suggests that age contributes meaningfully to the predic-
tion score as well.

3.3 Evaluation of explainability and interpretability for PPM

Evaluating explainability and interpretability in ML is a multifaceted task that requires a
careful comparison of methodological choices, each with distinct strengths and caveats.
This section contrasts quantitative and qualitative evaluation strategies and situates them
within the complementary paradigms of functional, application, and human-grounded eval-
uations (Doshi-Velez and Kim 2017). Assessing the value of an explanation is inherently
multi-dimensional. Guided by RQ6—RQ8, this subsection examines how the reviewed work
designs, executes, and reports evaluations of explainable and interpretable PPM methods.
First, we summarize the study-level protocols reported in the literature—such as data splits,
baselines, predictive metrics, and explanation-quality measures—addressing the concerns of
RQ6. Next, we contrast the evidence produced by quantitative metrics (fidelity, stability,
robustness to sampling, and computational cost) with insights from qualitative user studies
(expert judgment of usefulness, clarity, and trust), thereby tackling RQ7. Finally, we map
individual evaluations to the three paradigms “functional,” “application-grounded,” and
“human-grounded,” and discuss the decision-support insights each yields for PPM practice,
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Fig. 16 Partial dependence plots as applied by Mehdiyev and Fettke (2020b)

as required by RQ8. Throughout, we highlight recurring methodological choices—such as
the definition of background data, the handling of correlated features, and the selection of
user tasks—and identify gaps that still impede rigorous and practice-relevant assessment of
explanation quality in predictive-process-monitoring contexts.

3.3.1 Evaluation design and reporting

In the analyzed literature, the evaluation of proposed XAI methods varied with characteris-
tics of the underlying method, its users and goals, the model in need of explanations as well
as the application context. This section presents exemplary evaluation approaches of the
analyzed articles (see Tables 13, 14, 15 and 16), illustrating an excerpt from a broad range
of evaluation aspects regarding explainability.

De Koninck et al. (2017) evaluate their implementation of SECPI by comparing the
runtime in seconds, the length of explanations, i.e. the number of created rules that explain
why an instance belongs to a specific cluster, as well as the relative amount of "explainable"
instances, i.e. the relative amount of instances for which the employed SVM was able to find
minimal sets of rules that allow the instance to stay in its allocated cluster.

Folino et al. (2017) evaluate their approach for extracting explanations for trace clus-
tering by providing clustering rules on "explanation complexity", i.e. the number of rules
needed to justify a trace's allocation to a specific cluster, as well as interestingness and com-
pared the results to an explainable M5Rules (Holmes et al. 1999) implementation.
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Galanti et al. (2023a) employ a two-part approach to evaluating their utilized expla-
nation approach: First, explanations are evaluated on their soundness based on statistical
analysis and domain knowledge. Second, a user evaluation with 20 participants was con-
ducted, with the participants solving 18 tasks and reporting their personal estimation of the
difficulty of said tasks. Afterwards, usability and user experience have been captured using
questionnaires.

Hsieh et al. (2021) evaluate the quality of their counterfactual explanations with regard
to diversity, plausibility, proximity, sparsity and whether the explanations can incorporate
categorical features. In this context, diversity refers to the amount of different counterfactual
explanations created, plausibility refers to the soundness of the counterfactual explanations
based on domain knowledge, proximity refers to the proximity of the counterfactual expla-
nations and the instance given as input based on the distance measurement, sparsity refers
to the mean amount of modified features that constitute a counterfactual explanation for the
instance given as an input. The evaluation incorporates a statistical approach as well as the
evaluation of explanations for specific traces.

Mehdiyev and Fettke (2020a) used the coefficient of determination (R2-value) for the
surrogate model for each locality in order to reveal the quality of the surrogate capturing the
behavior of the underlying model. Due to the surrogate models being inherently interpre-
table Decision Trees, the provided explanations were not evaluated individually.

Stevens and De Smedt (2022a) evaluate their employed XAl-methods with regard to
functional complexity, level of disagreement and parsimony: For the authors, in this con-
text, functional complexity refers to a metric, similar to the measurement of permutation
feature importance, that captures how easily a prediction can be manipulated when altering
certain feature values, level of disagreement (Lakkaraju et al. 2017) refers to discrepan-
cies with regard to the prediction score between the underlying model and corresponding
surrogate models, and parsimony refers to the trade-off between the simplicity of provided
explanations and the performance, i.e. accuracy, of the underlying model.

Velmurugan et al. (2021a) differentiate internal and external fidelity, referring to the
definition of fidelity from Messalas et al. (2019): External fidelity measures the similar-
ity between the predictions of the underlying model and corresponding surrogate model,
whereas internal fidelity focuses on the decision-making process of the models, specifically
on the amount of similarities between these models. The authors focused on the internal
fidelity of LIME and SHAP and for its measurement, instances were perturbed ten times
and the mean absolute percentage error between the task model and surrogate model was
documented.

Velmurugan et al. (2021b) evaluated the stability, referring to Visani et al. (2021), aiming
at measuring the consistency of explanations for the same or similar instances. In particular,
the stability of the identified most important features (a subgroup of features residing in the
top quartile with regard to the weight distribution) as well as the stability of corresponding
weights was examined. The authors used this approach to evaluate the employed LIME and
SHAP methods.

3.3.2 Evaluation type: quantitative versus qualitative evaluation

The evaluation of explainability methodologies is a multifaceted task, encompassing the
adoption of both qualitative and quantitative methodologies. The significance of quantita-

@ Springer



Interpretable and explainable machine learning methods for predictive... Page 59 0f 92 378

tive metrics in the evaluation of XAl is emphasized by both Li et al. (2021) and Rosenfeld
(2021). Li’s research reveals that no single method exhibits superiority across all metrics,
underscoring the need for a comprehensive evaluation framework. On the other hand,
Rosenfeld proposes four distinct metrics that can be employed to quantify the explanatory
nature of XAl systems. Nauta et al. (2023) underscore the imperative of conducting a thor-
ough and all-encompassing evaluation, wherein the authors present twelve distinct proper-
ties that warrant careful assessment. Nevertheless, it is worth noting that anecdotal evidence
and user studies are commonly employed in the evaluation of XAlI. This observation implies
that a comprehensive approach that integrates both qualitative and quantitative methodolo-
gies is required (Mohseni et al. 2021). Of the 107 papers reviewed for XAl in predictive
process monitoring, a majority did not engage in any formal evaluation, while only a sixth
(18 articles) employed quantitative or qualitative methods, and only two integrated both.
This indicates a gap in the current research practices, where the nuances and user-centric
aspects crucial for the adoption and trustworthiness of XAI systems might be overlooked.
The hypothesis here is that integrating both quantitative and qualitative methods can pro-
vide a more holistic understanding of an Al system’s explainability, balancing the objectiv-
ity of numerical data with the depth of descriptive analysis.

3.3.3 Evaluation paradigm: application, human and functional-grounded methods

Transitioning from the dichotomy of quantitative and qualitative evaluations, the frame-
work proposed by Doshi-Velez offers a more granular understanding of XAI evaluation
through functional, application and human-grounded methodologies (Doshi-Velez and Kim
2017). Functional-grounded evaluation delves into the theoretical and technical soundness
of explanations. It’s a critical approach for ensuring that the XAI methods align with estab-
lished cognitive and computational frameworks, as highlighted by Mehdiyev et al. (2021).
This approach is vital for the foundational integrity of XAl systems, ensuring that they are
not only effective but also theoretically sound.

Application-grounded evaluation shifts the focus to the practical impact of XAl, exam-
ining how explainers influence specific decision-making tasks. This methodology is cru-
cial for assessing the real-world utility of XA, ensuring that the explanations provided are
not only understandable but also actionable and beneficial in practical scenarios. Mean-
while, human-grounded evaluation, as discussed by Mohseni et al. (2021), centers on the
user’s perspective, measuring how effectively an XAl system’s explanations foster trust
and understanding among its human users. This approach is paramount for the user-centric
development of XAI systems, ensuring that they meet the actual needs and expectations of
the people they are designed to assist.

Within the retrieved literature, predominance of functional and human-grounded
approaches was observed, yet the overall engagement in comprehensive evaluation was
limited. This indicates a recognition of the importance of diverse evaluative lenses but also
hints at the challenges and complexities inherent in implementing such multifaceted meth-
odologies. While the field acknowledges the need for a broad spectrum of evaluation strate-
gies, the practical implementation is still catching up, requiring more robust frameworks
and tools to facilitate these comprehensive assessments.

In conclusion, the evaluation of XAl systems is an intricate task, necessitating a bal-
anced and thorough approach that encompasses both quantitative and qualitative methods,
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as well as functional, application and human-grounded evaluations. The current research
landscape shows a tendency towards quantitative methods and reveals a significant gap
in formal evaluation practices. To advance the field of XAI and ensure the development
of effective, reliable and user-centered systems, a more rigorous and holistic approach to
evaluation is imperative. As the field continues to evolve, embracing this multifaceted eval-
uation paradigm will be crucial for the maturation and widespread adoption of explainable
and trustworthy Al systems (Table 12).

4 Challenges and implications
4.1 Related surveys and contributions

The PPM field has been the subject of numerous studies and SLRs, each contributing valu-
able insights into different aspects of this rapidly evolving domain. This section contrasts
the focus and contributions of prominent related studies, particularly review articles with
the distinctive elements of our study, particularly emphasizing our exploration of interpre-
table and explainable Al within predictive process monitoring (see Table 17)

Di Francescomarino et al. (2018); Maggi et al. (2014); Marquez-Chamorro et al. (2017)
and Teinemaa et al. (2019) have provided comprehensive overviews of predictive process
monitoring tasks, computational methods and evaluation approaches. They discuss various
computational predictive methods, from statistical techniques to ML approaches, and pro-
vide valuable insights into the applications and performance of various models. While these
studies offer a substantial understanding of predictive process monitoring, they do not focus
explicitly on interpretability and explainability. At most, these studies include a discussion
of some interpretable Al methods, but XAl approaches, particularly those going beyond
inherent model transparency, are not addressed at all. Kubrak et al. (2022) delve into pre-
scriptive process monitoring, incorporating elements of XAl and interpretable AI. However,
their focus is predominantly on prescriptive analytics, and while they mention relevant XAI
papers, they do not provide an extensive overview of studies in this area, leaving a gap for
a more focused and detailed exploration.

Stierle et al. (2021) stand out as one of the few studies aiming to provide a systematic
review of XAl approaches specifically for predictive process monitoring. They categorize
literature according to purpose, evaluation method and model complexity, differentiating
between intrinsically interpretable models and opaque models requiring post-hoc explana-
tions. However, being a research-in-progress paper and considering the rapid advancements
and proliferation of research in this field, the scope of their review is somewhat limited.
Our study addresses this by providing a more comprehensive and up-to-date review of XAl
in predictive process monitoring. Furthermore, while Mehdiyev and Fettke (2021) and El-
khawaga et al. (2022) discuss the necessity of XAl for predictive process monitoring and
propose frameworks for building relevant solutions, they do not provide an SLR. Simi-
larly, the article by Mathew et al. (2025) presents an in-depth narrative survey of emerging
XAI methods. While they explicitly evaluate the efficacy of various methods, their narra-
tive review does not follow a formal systematic protocol and omits applications in PPM.
Chou et al. (2022) present a systematic review of counterfactual and causability methods
in explainable Al. Their work focuses squarely on explainability theory, algorithms and
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applications, but does not include interpretable or explainable techniques applied to pre-
dictive process monitoring, nor does it propose evaluation metrics for explanation quality.
Rivera-Lazo et al. (2023) conduct a PRISMA-based systematic literature review on atten-
tion mechanisms in process mining. They highlight attention as a post-hoc explainability
method for sequence prediction, but they do not assess interpretability or explainability
metrics. Hoogendoorn et al. (2023) perform a semi-systematic survey of explainability in
process mining using the BPI Challenge 2020 as a case study. Their analysis covers discov-
ery and compliance models with post-hoc explanations, yet it neither addresses predictive
monitoring nor includes evaluation frameworks for explanation quality. These contributions
are valuable in demonstrating applied examples and discussing frameworks, but they do not
offer a broad overview of the field.

In contrast, our contribution lies in the systematic and focused exploration of interpre-
table and explainable Al in predictive process monitoring. We build on the foundation laid
by previous surveys but go further by explicitly focusing on XAI approaches. Our study
systematically collects and synthesizes the latest research, providing a nuanced understand-
ing of the characteristics, capabilities and limitations of various XAI methods. We aim to
fill the gaps left by previous studies, offering a comprehensive review that not only maps
the current landscape but also critically assesses methodologies, identifies research gaps
and provides clear, evidence-based recommendations for researchers and practitioners. Our
SLR thus contributes to a more organized, centralized understanding of XAl in predictive
process monitoring, supporting informed decision-making and guiding future research in
this vital area.

4.2 Challenges and open issues

The critical exploration of explainable and interpretable Al surfaces a multitude of chal-
lenges and open issues, pivotal among which is the frequent omission of proper evaluation.
A significant proportion of studies in the field prioritize the accuracy of ML algorithms,
often relegating the evaluation of explainability and interpretability to a secondary concern.
This singular focus not only undermines XAI’s core tenet of making complex algorithms
understandable to humans, but also jeopardizes the utility of these systems in practical sce-
narios where understanding the “why” behind decisions is as important as the decisions
themselves.

For those studies that do venture into the evaluation of their XAl approaches, many anchor
themselves firmly in either qualitative or quantitative domains. The resultant analyses are
thereby one-dimensional, offering a sliver of insight into either the measurable effectiveness
or the subjective user experience of the explanations generated. What this dichotomy fails to
capture is the nuanced interplay between these two facets in real-world applications. A more
comprehensive, multifaceted approach is called for: one that synthesizes both quantitative
precision and qualitative depth to yield a richer, more rounded assessment of XAI methods.

The preference for using benchmark datasets, such as the BPIC datasets, tends to amplify
this issue. These datasets allow for rigorous quantitative analysis, yet they simultaneously
constrain the possibility of qualitative assessment due to the lack of access to domain
experts. These experts are crucial for interpreting the results within a meaningful context,
ensuring that the explanations provided by XAI systems align with domain-specific knowl-
edge and practical realities. Further complicating the landscape is the issue of transferabil-
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ity. The tendency of studies to narrow their focus to specific domains, such as healthcare
or finance, begs the question of how well these solutions can be applied across different
fields. This siloed approach to research overlooks the importance of generalization proper-
ties, leaving unaddressed the potential for XAl solutions to adapt to and function within a
variety of domains.

Moreover, the scarcity of real-world studies beyond those involving BPIC data presents
a considerable gap in the literature. The evaluations that do exist often occur in controlled
"laboratory" environments, devoid of the economic and organizational contexts that heavily
influence the feasibility, scalability and economic viability of XAI solutions for predic-
tive process monitoring. Without the consideration of these broader factors, the evaluations
remain theoretical exercises rather than practical analyses.

In this respect, the discussion points to the necessity for XAl research to transcend its cur-
rent confines. To advance, it must embrace evaluations that not only traverse the spectrum
from quantitative to qualitative but also consider the systemic implications of deploying
XALI in diverse, real-world settings. By integrating economic and organizational consid-
erations, future research can aspire to develop XAl solutions that are not only technically
robust and understandable but also practically implementable and economically sustainable.
Such holistic evaluations will provide a crucial bridge between the theoretical promise of
XAI and its real-world applicability, ultimately driving the field towards mature, respon-
sible and widespread use of interpretable and explainable systems.

4.3 Practical implications

The practical implications of explainability and interpretability in the realm of predictive
process monitoring are profound and multifaceted. As organizations increasingly deploy ML
algorithms to predict future process behaviors, the need for these systems to be transparent
and comprehensible becomes paramount. XAl bridges the gap between the complexity of
ML models and the operational necessity for clarity and accountability in decision-making
processes. In industries where process outcomes are critical, such as healthcare, the ability
of stakeholders to understand and trust Al-based predictions is not a luxury but a require-
ment. The practical deployment of XAl in these settings implies that operators and deci-
sion-makers can glean insights into the reasoning behind predictions, facilitating informed
interventions and strategic planning. For instance, in a manufacturing plant, an interpretable
model can illuminate the factors leading to potential equipment failure, enabling preemptive
maintenance and reducing downtime (Mehdiyev et al. 2022).

Furthermore, the practicality of explainability extends to the adaptability and scalability
of interpretability methods. In the ever-changing landscape of process data, Al systems must
provide timely and contextually relevant explanations. The need for explanations to be cus-
tomizable and aligned with users’ varying levels of expertise and objectives. This adaptabil-
ity ensures that Al serves its intended purpose effectively across different contexts and user
groups, a critical consideration in BPM’s diverse and dynamic environments. Moreover,
XAl can play a pivotal role in regulatory compliance and risk management. In sectors like
finance or law, where predictive models are used to make significant decisions, regulators
increasingly demand transparency. XAl methods that can elucidate the logic behind loan
application processes or patient pathway assessments are beneficial and may soon be man-
dated as standard practice.
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However, translating XAI from theory to practice also may entail several complexities.
One of the primary concerns is the integration of XAI systems within existing IT infra-
structures. Many organizations operate on legacy systems and introducing sophisticated
XALI solutions requires careful planning and execution to ensure compatibility and minimal
disruption to ongoing operations. Another practical implication is the need for user training
and adaptation. The effectiveness of an XAl system is contingent on the end-user’s ability
to interpret and act upon the explanations provided. This necessitates training programs to
enhance the Al literacy of the workforce, ensuring that users can leverage the full potential
of XAl in their day-to-day responsibilities. Furthermore, the economic impact of imple-
menting XAI systems must be considered. Organizations need to evaluate the cost-benefit
ratio of adopting such technologies, weighing the potential savings from improved process
efficiencies against the investment in technology and training. The practical implications of
XALI also extend to the continuous monitoring and updating of these systems. As processes
evolve and new data becomes available, XAl models must be maintained and retrained to
ensure their explanations remain accurate and relevant. This ongoing maintenance requires
a commitment to resource allocation and a strategy for long-term management.

In conclusion, the practical implications present a complex array of challenges and
opportunities. For XAl to be successfully integrated into predictive process monitoring,
organizations must navigate the technical, operational and economic landscapes, balancing
the promise of Al-driven insights with the realities of their application in the real world. As
the field of XAI matures, this pragmatic approach will likely dictate the success and prolif-
eration of explainable systems in industry.

4.4 Scientific and theoretical implications

The integration of XAI within predictive process monitoring is not just a practical enhance-
ment; it represents a paradigm shift in how scientific inquiry and theoretical development
are approached in the context of complex systems. This transformation encompasses funda-
mental methodological considerations ranging from data representation strategies to evalu-
ation frameworks, requiring systematic reconsideration of established scientific practices.
From a scientific perspective, the incorporation of XAl opens new avenues for research
in algorithmic transparency and interpretability. It challenges the conventional black-box
approach to ML, calling for novel algorithms and models that are inherently interpreta-
ble or can be paired with explanation mechanisms. This need accelerates advancements
in areas like feature importance analysis, counterfactual explanations and causal inference
models, all of which contribute to a deeper understanding of the underlying mechanics of
complex predictive models. Critical methodological foundations require systematic evalu-
ation rather than arbitrary selection, as studies reveal that encoding selection represents a
pervasive methodological flaw, with most studies deploying default configurations without
rigorous justification, potentially compromising scientific validity (Tavares et al. 2023). The
importance of rigorous methodological choices extends beyond individual techniques to
encompass the entire analytical pipeline, findings demonstrate that sophisticated symbolic
sequence encodings significantly outperform naive approaches, emphasizing how founda-
tional data transformation decisions influence system effectiveness (Leontjeva et al. 2015).
In the theoretical context, XAl stimulates a re-evaluation of existing theories related to
decision-making, cognition and information processing. It brings to light questions about
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the nature of understanding and trust in automated systems. For instance, what constitutes
a "good" explanation in a predictive process monitoring context and how do these explana-
tions impact human decision-making and trust? These fundamental questions require sys-
tematic investigation of how various design decisions influence explanation effectiveness,
including how encoding methodologies shape the relationship between domain knowledge
and computational representations. Studies illustrate how the transition from knowledge-
driven to data-driven encoding approaches introduces fundamental tensions between per-
formance optimization and interpretability requirements (Senderovich et al. 2017), while
research also establishes that encoding complexity directly impacts model interpretabil-
ity, with sophisticated transformations potentially obscuring relationships between process
characteristics and predictions (Stevens and De Smedt 2022a). The pursuit of answers
encourages interdisciplinary collaboration, drawing from fields such as psychology, cogni-
tive science and philosophy to enrich the theoretical underpinnings of XAl

Furthermore, XAI’s focus on interpretability and explainability mandates a rigorous
theoretical understanding of the processes being monitored. This requirement not only rein-
forces the need for domain expertise in model development but also promotes a more sym-
biotic relationship between domain experts and data scientists. The scientific implications
extend to fundamental methodological foundations, as encoding decisions shape assump-
tions about what constitutes meaningful process knowledge and how it can be communi-
cated through explainable Al systems, Adams et al. (2022) demonstrate that object-centric
encoding approaches require specialized consideration of multi-dimensional relationships
that traditional explanation methods cannot adequately address. In this context, predictive
process monitoring becomes a collaborative scientific endeavor, blending empirical data
analysis with domain-specific insights to produce models that are both high-performing and
understandable.

The scientific implications of XAI also extend to the validation and evaluation of Al
models. Traditional performance metrics like accuracy, precision and recall are no longer
sufficient. XAl introduces the need for new metrics and methodologies that can assess the
quality of explanations in terms of relevance, completeness and comprehensibility. This
evolution requires systematic evaluation frameworks that consider how fundamental design
decisions, including encoding methodologies that create cascading effects throughout the
analytical pipeline, influence both predictive accuracy and explanation fidelity. This evolu-
tion reflects a broader shift in the scientific community’s approach to evaluating Al, placing
equal emphasis on the interpretability and operational effectiveness of the models.

From a theoretical standpoint, XAl challenges and refines our understanding of concepts
like causality, uncertainty and prediction (Mehdiyev et al. 2025a). It encourages a more
nuanced exploration of how these elements interplay in complex systems and how they can
be effectively communicated to users. This exploration has profound implications for theo-
retical models across various domains, from supply chain management to healthcare, where
understanding the causal relationships and uncertainties inherent in predictive models is
crucial for effective decision-making.

In summary, the integration of XAI in predictive process monitoring is catalyzing
significant scientific and theoretical advancements. It is driving the development of new
algorithms and models, fostering interdisciplinary research, redefining evaluation method-
ologies and deepening our understanding of complex systems. As the field progresses, the
continued exploration of these scientific and theoretical implications, grounded in rigorous
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methodological considerations including systematic encoding strategies and comprehensive
evaluation frameworks, will be instrumental in realizing the full potential of XAlI, not only
as a tool for enhanced predictive analytics but also as a beacon for responsible and transpar-
ent Al development.

5 Future work

5.1 XAl and other trustworthy Al methods combination for predictive process
monitoring

The integration of XAI with complementary trustworthy Al methodologies represents a
critical frontier for advancing predictive process monitoring systems. Current research
highlights significant gaps in holistic approaches that address the multifaceted nature of
trust in automated decision-making environments.

Uncertainty quantification and XAI integration emerge as a primary research prior-
ity. Research demonstrates substantial gaps in integrating these techniques effectively,
with current approaches representing the first attempts to merge uncertainty quantification
with explainable Al within predictive process monitoring contexts (Mehdiyev et al. 2023;
Weytjens and De Weerdt 2022; Prasidis et al. 2021; Majlatow et al. 2025). The integra-
tion must address bidirectional challenges where uncertainty quantification enhances expla-
nation trustworthiness while explainable methods elucidate sources of model uncertainty
(Mehdiyev et al. 2025a, 2023). Future work should develop frameworks that communicate
confidence bounds for both predictions and their underlying explanations, addressing cur-
rent limitations where traditional explanation methods fail to convey reliability information
to stakeholders.

Privacy-preserving explainable Al represents another critical convergence area, as orga-
nizations increasingly require transparency without compromising sensitive process data
(Mannhardt et al. 2019). Recent advances demonstrate comprehensive frameworks that com-
bine XAl with privacy-preserving machine learning, achieving significant improvements in
both interpretability scores and privacy adherence compared to existing approaches. Future
research should explore federated explanation architectures that enable cross-organizational
transparency while maintaining regulatory compliance, developing differential privacy
techniques that provide meaningful explanations while protecting individual case confiden-
tiality (Fahrenkrog-Petersen et al. 2023).

Fairness-aware explainable process monitoring demands systematic investigation given
the potential for algorithmic bias in resource allocation and case prioritization decisions
(Qafari et al. 2019). Current research reveals capabilities for identifying procedure-based
bias through explanation quality measurement across different demographic groups. The
development of fairness metrics for explanations provides pathways for detecting and miti-
gating bias in process predictions, particularly crucial where socioeconomic factors might
inappropriately influence outcomes. Future work should investigate how explanation sys-
tems can detect and communicate potential fairness issues while maintaining predictive
accuracy.

Human-centered trustworthy Al design requires attention to practical implementation
challenges beyond technical integration (Shneiderman 2022). Research emphasizes that
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trustworthy systems must incorporate fundamental principles into Al development proce-
dures while ensuring systems abide by moral and legal requirements. The framework for
explainable predictive process monitoring demonstrates that stakeholder trust represents a
necessary condition for adoption, with systems lacking explanation capabilities facing sig-
nificant adoption barriers. Future work should investigate adaptive explanation systems that
customize communication strategies based on stakeholder expertise and decision-making
contexts, requiring interdisciplinary collaboration between Al researchers, process manage-
ment experts and human-computer interaction specialists.

Real-time trustworthy Al systems must address the temporal dynamics of trust-building
in operational environments. Human-centric monitoring approaches reveal the need for sys-
tems that enable automatic report generation while preserving human autonomy through
collaborative decision-making frameworks. Future research should develop learning
explanation systems that evolve based on user feedback, creating dynamic trust-building
capabilities aligned with changing organizational needs (Reinkemeyer 2020). Such adap-
tive systems would represent significant advancement beyond current static explanation
approaches, offering temporal trust-building that aligns with evolving business processes.

Multi-modal trustworthy integration requires novel evaluation methodologies that assess
explanation quality alongside privacy preservation, fairness, uncertainty communication and
human usability (Chvirova et al. 2024). Research demonstrates the complexity of evalua-
tion through multiple taxonomies based on both applications and evaluation metrics. Future
work should prioritize developing standardized frameworks that enable systematic com-
parison of integrated trustworthy Al approaches while addressing scalability and real-time
performance requirements essential for operational process monitoring systems. This inte-
gration must consider edge computing architectures that deliver trustworthy explanations
in distributed environments without compromising system responsiveness or data security.

The synthesis of these trustworthy Al dimensions requires novel evaluation methodolo-
gies that assess explanation quality alongside privacy preservation, fairness, uncertainty
communication and human usability. Future work should prioritize developing standardized
frameworks that enable systematic comparison of integrated trustworthy Al approaches,
while also addressing scalability and real-time performance requirements essential for oper-
ational process monitoring systems.

5.2 LLM and XAl integration for predictive process monitoring

The emergence of large language models (LLM) presents transformative opportunities for
advancing explainable predictive process monitoring through natural language interfaces
and enhanced interpretability mechanisms (Sebin et al. 2024; Bilal et al. 2025). Recent
advances demonstrate that LLMs can serve not merely as automation tools but as collabora-
tive partners in process management, fundamentally reshaping how stakeholders interact
with and understand predictive analytics systems (Pfeiffer et al. 2025; Berti and Qafari
2023).

Conversational explanation systems represent the most promising integration pathway,
addressing critical limitations in current static explanation approaches (Zhang et al. 2025).
Research demonstrates that LLM-driven frameworks can transform opaque predictions into
auditable, interactive workflows by enabling natural language dialogues grounded in pro-
cess mining explanations (Fahland et al. 2025; Wang et al. 2024). These systems employ
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multi-agent architectures that decompose user queries into specialized tasks, mirroring
human problem-solving approaches through assumption probing, hypothesis testing and
conclusion refinement (He et al. 2025). Future work should investigate how conversational
interfaces can adapt explanations not just to data characteristics but to stakeholders’ evolv-
ing priorities and domain expertise levels.

Process data abstraction and semantic alignment emerges as a fundamental research
challenge requiring systematic investigation. Current approaches demonstrate that LLMs
exhibit robust understanding of key process mining abstractions with notable proficiency
in interpreting both declarative and procedural process models (Rebmann et al. 2025;
Berti et al. 2023). However, effectively embedding process data within language model
frameworks while preserving semantic integrity remains complex. Future research should
develop standardized methodologies for transforming process mining artifacts into textual
representations that maintain temporal dependencies, causality relationships and domain-
specific constraints essential for accurate predictive monitoring.

Multi-modal explanation generation presents opportunities for enhanced stakeholder
comprehension through diverse communication channels. Research reveals that LLM
architectures can integrate dashboards, conversational widgets and visual analytics to pres-
ent predictions and uncertainty intervals in intuitive format (Mehdiyev et al. 2023; Park
et al. 2018). Future work should investigate how language models can orchestrate multiple
explanation modalities, automatically selecting appropriate visualization and communica-
tion strategies based on user context, query complexity and decision-making requirements.
This integration should address the challenge of maintaining consistency across different
explanation formats while optimizing for stakeholder understanding.

Domain-specific knowledge integration demands attention to specialized vocabularies
and regulatory requirements across different industries. Research indicates that LLMs dem-
onstrate capacity for evaluating fairness concepts in process mining, opening pathways for
rapid assessment of event log bias and compliance issues (Gallegos et al. 2024; Berti et al.
2024). Future work should investigate how domain knowledge graphs and specialized cor-
pora can enhance LLM understanding of industry-specific process constraints, regulatory
requirements and stakeholder priorities (Vogt et al. 2024). This integration should main-
tain generalizability while providing deep domain expertise for sectors such as healthcare,
finance and manufacturing.

Retrieval-augmented explanation systems offer pathways for maintaining consistency
and coherence in generated explanations while incorporating evolving process knowledge.
Current approaches employ vector-based indexing mechanisms to rank and incorporate rel-
evant explanations based on semantic similarity (Ehsan and Riedl 2024). Future research
should develop sophisticated retrieval strategies that consider temporal dynamics, process
evolution and stakeholder feedback to continuously improve explanation quality and rel-
evance. These systems should balance between leveraging historical explanation patterns
and adapting to novel process scenarios.

5.3 Explainable predictive process monitoring on stream event data
The convergence of XAl with stream event processing represents a transformative frontier

for real-time predictive process monitoring, addressing critical gaps in current approaches
that primarily focus on static, batch-oriented explanation generation (Burattin 2022). The
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increasing ubiquity of streaming data in modern business environments demands explana-
tion systems capable of providing transparent insights into predictive decisions as events
unfold in real-time (Mehdiyev et al. 2015).

Real-time explanation generation emerges as the fundamental challenge requiring sys-
tematic investigation. Current research demonstrates that predictive process monitoring sys-
tems must provide explanations that are not only accurate but also timely enough to support
operational decision-making (Mehdiyev and Fettke 2020a). The main goal of predictive
process monitoring involves predicting possible outcomes, execution times and costs using
historical data, but traditional explanation approaches fail to accommodate the temporal
constraints inherent in streaming environments. Future work should develop explanation
frameworks that can generate interpretable insights within milliseconds of receiving new
event data, enabling stakeholders to understand and act upon predictions before process
conditions change (Mozolewski et al. 2024).

Complex event processing integration presents opportunities for enhanced explanation
capabilities through sophisticated pattern recognition and abstraction mechanisms (Kru-
meich et al. 2015). Research indicates that complex event processing technology enables
dynamic processing of multiple events simultaneously, allowing for the expression of
causal, temporal, spatial and other relations between events (Mehdiyev et al. 2015; Cugola
and Margara 2012). These relationships specify patterns that can be leveraged for real-
time event monitoring and explanation generation. Future research should investigate how
complex event processing architectures can be augmented with explanation capabilities,
enabling the identification and communication of meaningful patterns that drive predictive
decisions in streaming environments.

Temporal pattern explanation demands novel approaches for communicating how tem-
poral dependencies influence predictive decisions (Cheikhrouhou et al. 2015). Research
reveals that traditional analytics tools are generally not well-suited for complex event pro-
cessing, particularly when computing temporal or spatial patterns from raw streaming data.
Future research should investigate explanation methods that can effectively communicate
temporal causality, spatio-temporal dependencies and time-based aggregations to stake-
holders who may not possess technical expertise in stream processing concepts (Cheng
et al. 2021). This includes developing visualization techniques that can represent temporal
explanation patterns in intuitive formats suitable for real-time decision support.

Scalability and latency optimization requires careful consideration of computational
trade-offs between explanation quality and system performance (Salama et al. 2019). Cur-
rent implementations demonstrate that explanation systems must retain highly efficient
implementations suitable for data stream processing requirements (Bhat and Raychowd-
hury 2023). Future work should investigate distributed explanation architectures that can
maintain low-latency performance while providing comprehensive interpretability across
high-volume event streams. This includes exploring edge computing approaches that can
provide local explanations for distributed streaming sources without compromising system
responsiveness.

Adaptive explanation strategies should address the dynamic nature of streaming envi-
ronments where process patterns and stakeholder information needs evolve continuously
(Su et al. 2024). Future research should develop explanation systems that can automati-
cally adapt their communication strategies based on changing event patterns, stakeholder
feedback and evolving process contexts (Turchi et al. 2024). Such adaptive systems would
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represent significant advancement beyond current static explanation approaches, offering
dynamic interpretability that aligns with the inherently dynamic nature of streaming busi-
ness processes and operational decision-making requirements.

5.4 XAl and object-centric process mining and predictions

The emergence of object-centric process mining represents a paradigmatic shift that fun-
damentally challenges traditional explanation approaches in predictive process monitoring
(Gianola et al. 2024; Berti et al. 2023). The transition from single-case perspectives to multi-
object analytical frameworks introduce unprecedented complexity for explainable artificial
intelligence systems, requiring novel approaches that can illuminate prediction rationales
across interconnected object relationships and temporal dependencies (van der Aalst 2023).

Multi-object explanation frameworks represent the most critical research frontier,
addressing the fundamental challenge of communicating predictions that span multiple
interconnected objects within unified process models (Basmer et al. 2024). Current research
demonstrates that object-centric process mining allows events to be related to multiple
objects simultaneously, creating complex webs of relationships that traditional explana-
tion methods cannot adequately address (Fioretto and Masciari 2025). Future work should
develop explanation architectures capable of tracing prediction influences across object
boundaries, enabling stakeholders to understand how decisions about one object type influ-
ence predictions for related objects. This requires novel visualization and communication
strategies that can represent multi-dimensional causal relationships without overwhelming
users with excessive complexity.

Cross-object dependency explanation demands systematic investigation of how tempo-
ral and causal relationships between different object types influence predictive decisions
(Galanti et al. 2023b). Research reveals that object-centric approaches enable visualization
and comprehension of interactions across different object types, emphasizing that perfor-
mance and compliance issues cannot be understood when objects are considered in isolation
(Liss et al. 2023). Future research should explore explanation methods that can effectively
communicate cross-object dependencies, particularly in scenarios where predictions for one
object type depend on historical patterns or current states of related objects. This includes
developing techniques for explaining how object lifecycle interactions contribute to predic-
tion confidence and accuracy.

Unified explanation models require attention to the structural complexity inherent in
object-centric process representations (Adams et al. 2023). Current approaches demonstrate
that object-centric process mining provides more realistic representations of enterprise data
by eliminating the need for repeated data extraction whenever perspectives change, but this
structural flexibility introduces significant challenges for maintaining explanation consis-
tency (Adams et al. 2022). Future work should investigate explanation frameworks that can
adapt to different object-centric perspectives while maintaining interpretability coherence
across various analytical viewpoints. This includes developing explanation architectures that
can seamlessly transition between object-specific and cross-object analytical perspectives.

Behavioral pattern explanation presents opportunities for enhanced understanding
through specialized explanation approaches tailored to object-centric behavioral patterns
(Miri and Jalali 2024; Porsil and van der Aalst 2025). Research indicates that object-centric
local process models enable analyzing complex processes by focusing on specific behavioral
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patterns that span multiple object types (Peeva et al. 2024). Future research should develop
explanation methods specifically designed for object-centric behavioral patterns, enabling
stakeholders to understand how localized process behaviors contribute to broader predictive
insights. This includes investigating techniques for explaining pattern significance, tempo-
ral boundaries and cross-pattern interactions that influence predictive accuracy.

Evaluation methodologies must address the unique challenges of assessing explanation
quality in multi-object predictive environments (Aliyeva and Mehdiyev 2024). Traditional
explanation evaluation approaches may prove inadequate for object-centric contexts where
prediction quality and explanation relevance depend on complex inter-object relationships
(Adams and van Der Aalst 2021). Future research should develop specialized evaluation
frameworks that can assess explanation effectiveness across multiple object types while
considering the temporal and causal complexities inherent in object-centric process models.

6 Conclusion

This SLR was motivated by the urgent need to navigate the rapidly expanding yet frag-
mented landscape of XAI for PPM. By systematically synthesizing and structuring over
one hundred studies published up to 2025, we have provided a comprehensive, evidence-
based overview of the field’s current state, key achievements and most significant gaps.
Our analysis reveals a field in dynamic transition. While early efforts focused on intrinsi-
cally interpretable models, the pursuit of higher predictive accuracy has driven a decisive
shift towards complex black-box models. Consequently, the field is now heavily reliant
on post-hoc explanation methods like SHAP and LIME. However, this progress in model
complexity has not been matched by progress in evaluation. The vast majority of studies
still prioritize the evaluation of predictive performance over a rigorous assessment of the
generated explanations themselves, with a notable scarcity of human-grounded studies to
validate their real-world utility. This reveals a critical imbalance: the field is succeeding in
generating explanations, but it is not yet systematically verifying if they are meaningful,
reliable or useful to human stakeholders.

The primary contributions of this review are therefore threefold. We have presented a
comprehensive synthesis of the current research landscape, structured along key dimensions
including application domains, datasets, predictive tasks and Al methodologies. Further-
more, we have identified and detailed critical research frontiers where current approaches
fall short, particularly regarding the foundational impact of data encoding, the paradigmatic
shift to OCPM and the unique challenges of streaming data. Finally, this work establishes
a forward-looking research agenda designed to guide future work toward addressing these
pressing challenges and advancing the maturity of the field. Looking forward, the future of
explainable PPM must be defined by a move from mere generation to meaningful interac-
tion. Our findings call for a concerted research effort in several key areas. Investigators must
tackle the foundational challenge of data encoding, as these choices fundamentally shape
what a model can learn and explain. A new generation of XAl techniques is required to han-
dle the multi-object dependencies inherent in OCPM. Furthermore, as business processes
become increasingly real-time, developing low-latency, adaptive explanation systems for
streaming data is no longer optional, but essential. For practitioners, our findings serve as a
call for critical evaluation. It is not enough to simply adopt a model that produces an expla-
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nation; one must question its fidelity, reliability and relevance to the specific operational
context. For researchers, this review is a call to action: to shift focus toward a more holistic,
human-centric and rigorous evaluation of explainability.

While this review was conducted with methodological rigor, it is subject to the inherent
limitations of any SLR, such as the scope of the queried databases and the specific search
terms used. Nonetheless, we are confident that our work provides a robust and essential
baseline. Ultimately, the goal of XAl in process mining is not just to open the black box, but
to build a durable bridge of trust between human decision-makers and the complex Al that
supports them. By addressing the gaps identified in this review, the research community can
move beyond generating explanations as a technical artifact and toward delivering them as
a truly actionable and trustworthy component of intelligent process management.
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