Please use this identifier to cite or link to this item: doi:10.22028/D291-46353
Title: Virtual Energy Replication Framework for Predicting Residential PV Power, Heat Pump Load, and Thermal Comfort Using Weather Forecast Data
Author(s): Minhas, Daud Mustafa
Usman, Muhammad
Raja, Irtaza Bashir
Wakeel, Aneela
Ali, Muzaffar
Frey, Georg
Language: English
Title: Energies
Volume: 18
Issue: 18
Publisher/Platform: MDPI
Year of Publication: 2025
Free key words: time-ahead weather input
supervised learning
ensemble prediction models
energy behavior modeling
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: It is essential to balance energy supply and demand in residential buildings through accurate forecasting of energy use due to varying daily and seasonal residential building loads. This study demonstrates a data-driven Virtual Energy Replication Framework (VERF) to predict the behavior of residential buildings using weather forecast data. The framework integrates supervised machine learning models and time-ahead weather parameters to estimate photovoltaic (PV) power production, heat pump energy consumption, and indoor thermal comfort. The accuracy of prediction models is validated using TRNSYS simulations of a typical household in Saarbrucken, Germany, a temperate oceanic climate region. The XGBoost model exhibits the highest reliability, achieving a root mean square error (RMSE) of 0.003 kW for PV power generation and 0.025 kW for heat pump energy use, with R2 scores of 0.94 and 0.87, respectively. XGBoost and random forest regression models perform well in predicting PV generation and HP electricity load, with mean prediction errors of 5.27–6% and 0–7.7%, respectively. In addition, the thermal comfort index (PPD) is predicted with an RMSE of 1.84 kW and an R2 score of 0.80 using the XGBoost model. The mean prediction error remains between 2.4% (XGBoost regression) and −11.5% (lasso regression) throughout the forecasted data. Because the framework requires no real-time instrumentation or detailed energy modelling, it is scalable and adaptable for smart building energy systems, and has particular value for Building-Integrated Photovoltaics (BIPV) demonstration projects on account of its predictive load-matching capabilities. The research findings justify the applicability of VERF for efficient and sustainable energy management using weather-informed prediction models in residential buildings.
DOI of the first publication: 10.3390/en18185036
URL of the first publication: https://doi.org/10.3390/en18185036
Link to this record: urn:nbn:de:bsz:291--ds-463536
hdl:20.500.11880/40645
http://dx.doi.org/10.22028/D291-46353
ISSN: 1996-1073
Date of registration: 1-Oct-2025
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Georg Frey
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
energies-18-05036-v2.pdf4,5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons