‘ energies

Article

Virtual Energy Replication Framework for Predicting Residential
PV Power, Heat Pump Load, and Thermal Comfort Using
Weather Forecast Data

Daud Mustafa Minhas 119, Muhammad Usman 2(, Irtaza Bashir Raja 3(", Aneela Wakeel 2(*, Muzaffar Ali 4

Georg Frey >*

check for
updates
Academic Editor: Gerardo Maria

Mauro

Received: 28 July 2025
Revised: 8 September 2025
Accepted: 16 September 2025
Published: 22 September 2025

Citation: Minhas, D.M.; Usman, M.;
Raja, I.B.; Wakeel, A ; Ali, M.; Frey, G.
Virtual Energy Replication Framework
for Predicting Residential PV Power,
Heat Pump Load, and Thermal

Comfort Using Weather Forecast Data.

Energies 2025, 18,5036. https://
doi.org/10.3390/en18185036

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and

Industrial Security Lab, ZeMA—Center for Mechatronics and Automation Technology,

D-66121 Saarbrucken, Germany

Mechanical Engineering Department, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
College of Electrical and Mechanical Engineering, National University of Sciences and Technology,
Islamabad 44000, Pakistan

Mechanical Engineering Department, Faculty of Engineering, Kocaeli University, 41001 Kocaeli, Tiirkiye
Chair of Automation and Energy Systems, Saarland University, D-66123 Saarbriicken, Germany

*  Correspondence: georg.frey@aut.uni-saarland.de

Abstract

It is essential to balance energy supply and demand in residential buildings through accu-
rate forecasting of energy use due to varying daily and seasonal residential building loads.
This study demonstrates a data-driven Virtual Energy Replication Framework (VERF) to
predict the behavior of residential buildings using weather forecast data. The framework
integrates supervised machine learning models and time-ahead weather parameters to
estimate photovoltaic (PV) power production, heat pump energy consumption, and indoor
thermal comfort. The accuracy of prediction models is validated using TRNSYS simula-
tions of a typical household in Saarbrucken, Germany, a temperate oceanic climate region.
The XGBoost model exhibits the highest reliability, achieving a root mean square error
(RMSE) of 0.003 kW for PV power generation and 0.025 kW for heat pump energy use,
with R? scores of 0.94 and 0.87, respectively. XGBoost and random forest regression models
perform well in predicting PV generation and HP electricity load, with mean prediction
errors of 5.27-6% and 0-7.7%, respectively. In addition, the thermal comfort index (PPD)
is predicted with an RMSE of 1.84 kW and an R? score of 0.80 using the XGBoost model.
The mean prediction error remains between 2.4% (XGBoost regression) and —11.5% (lasso
regression) throughout the forecasted data. Because the framework requires no real-time
instrumentation or detailed energy modelling, it is scalable and adaptable for smart build-
ing energy systems, and has particular value for Building-Integrated Photovoltaics (BIPV)
demonstration projects on account of its predictive load-matching capabilities. The research
findings justify the applicability of VEREF for efficient and sustainable energy management
using weather-informed prediction models in residential buildings.

Keywords: time-ahead weather input; supervised learning; ensemble prediction models;
energy behavior modeling

1. Introduction

The increasing use of renewable energy systems (RESs) worldwide can be attributed
both to technological advances and to supportive policy frameworks [1]. The large-scale
production of solar- and wind-energy components has resulted in reduced unit costs, while
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governmental initiatives continue to promote integration of renewables into national grids.
Germany’s “Energiewende 2030” strategy, for example, targets a renewable electricity
capacity of 320 TWh by 2030 [2]. Among various RES technologies, solar power is particu-
larly prominent due to its availability, affordability, ease of installation, low operational
requirements, and accessibility.

As integration of photovoltaic (PV) systems has increased in residential energy systems,
issues related to demand-supply imbalance have emerged, often resulting in financial or
regulatory penalties. These mismatches are especially critical in grid-connected systems
with intermittent sources like solar and wind energy [3]. In residential buildings, accurate
prediction of electricity consumption, particularly by heat pumps (HPs), is essential to
ensure grid stability and cost-effective operation. Accurate forecasting of PV generation
and HP electricity use, therefore, can play a key role in scheduling, optimization, and
energy management [4].

The transition towards energy-efficient, low-carbon homes has justified the need for
reliable short-term energy forecasting under variable conditions. Residential demand is
mainly influenced by external climatic factors. Detailed energy modelling tools provide
extensive simulation results but often require system-level parameters that are difficult to
obtain or to generalize across building types. In contrast, data-driven approaches that use
historical data and/or weather forecasts offer greater scalability and flexibility [5,6].

To overcome the limitations of conventional methods, this study proposes a Virtual
Energy Replication Framework (VERF): a flexible, modular, and data-driven approach for
predicting energy system behavior of residential buildings. VERF integrates supervised
machine learning (ML) algorithms with time-ahead weather forecast data to simultaneously
estimate photovoltaic electricity generation, heat pump energy consumption, and indoor
thermal comfort levels. This integration enables unified, short-term predictions without
the need for detailed physical models or extensive instrumentation. Whereas traditional
approaches depend on full-scale digital twins or sensor networks, VERF utilizes readily
available weather forecast data as inputs, thereby simplifying implementation and reducing
deployment costs [7-9]. This architecture makes the framework highly adaptable for a
variety of residential scenarios.

To validate the framework’s effectiveness, simulation data was generated using
TRNSYS for a two-story reference building aligned with the specifications of IEA SHC
Task 44/ Annex 38 [10]. This enabled a standardized test case for evaluation of forecasting
models under realistic boundary conditions. A diverse set of various machine learning
algorithms, including ensemble models and neural networks, were trained and tested
on this dataset [11,12]. The results demonstrated that short-term accurate predictions of
energy use and thermal comfort can be achieved without detailed modelling of building
energy systems.

2. Literature Review

Accurate forecasting of energy use and renewable energy supply is crucial for effective
demand-side management and stable power-system operation due to continuous variability
in both demand and supply. Recent developments in the application of machine learning
to building energy systems have enhanced precision in predicting nonlinear relationships
between environmental variables and building energy performance.

Different machine learning techniques like lasso regression, decision trees, random
forest, XGBoost, and neural networks have been used to model these relationships without
requiring detailed system-specific data [6,11,12]. Amasyali and El-Gohary [12] provided a
comprehensive comparison of different data-driven building energy models and commonly
used input features, including weather parameters, occupancy patterns, and operational
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schedules. Sharma et al. [13] compared various regression methods for commercial-building
energy forecasting and deduced that regularized regression models performed well, with
low complexity. In a residential context, an XGBoost-based approach outperformed conven-
tional regressions for HVAC energy prediction [14]. In addition, a study in Scientific Reports
(2025) demonstrated the superior accuracy of ensemble models like XGBoost and gradient
boosting in forecasting electric vehicle energy use [15]. Some studies have also explored
the integration of ML techniques with optimization algorithms and retrofit strategies to
enhance predictive accuracy and implementation potential [16,17]. These approaches are
especially useful where detailed system specifications are not available, making them well
suited for scalable applications.

Some studies have also explored hybrid frameworks, combining physical simulation
data with ML models to improve applicability and reduce dependence on real-time instru-
mentation. For instance, Wei et al. [18] and Yan et al. [19] analyzed the effectiveness of
simulation-based surrogate models for realizing dynamic energy behaviors in buildings
with limited instrumentation. These hybrid frameworks bridge the gap between detailed
physical modeling and scalable AI applications.

Weather forecast integration has been shown to further improve the performance of
ML-based predictors. Zhang et al. [5] demonstrated that incorporating time-ahead weather
inputs into artificial neural networks (ANNSs) significantly enhanced prediction of district
cooling energy. Similarly, Ahmad and Chen [20] found that long-term weather-informed
forecasting improved prediction robustness under uncertain climate conditions.

Beyond energy consumption, recent studies have expanded predictive modeling to
include indoor thermal comfort metrics, such as temperature and humidity profiles. Models
predicting occupant satisfaction indicators like the Predicted Percentage of Dissatisfied
(PPD) index have been developed to enable proactive control of HVAC systems [21,22].
Additionally, physics-informed neural networks (PINNs) have been employed for heat
pump load prediction, effectively embedding thermodynamic constraints into the train-
ing process to enhance generalization [23]. Recent trends indicate a shift toward using
ML-based surrogate models trained on simulation outputs for cost-effective and scalable
forecasting. For example, Deb et al. [24] reviewed time-series forecasting techniques suit-
able for building energy modeling, advocating for hybrid models that blend simulation
and data-driven learning for improved applicability in residential environments.

Despite significant advancements in machine learning applications for building en-
ergy forecasting, a notable research gap exists in the development of lightweight, scalable
frameworks which are tailored specifically for residential settings and rely solely on time-
ahead weather forecasts without requiring real-time instrumentation or detailed physical
models. While studies such as Amasyali and El-Gohary [12] provide comprehensive
comparisons of data-driven models and input features for energy prediction, and the
work of Sharma et al. [13] demonstrates the efficacy of regularized regression methods
for commercial buildings, these approaches predominantly focus on institutional or com-
mercial structures equipped with dense sensor networks, limiting their applicability to
cost-sensitive residential environments [6,12]. Hybrid frameworks combining simulation
data with ML, as explored by Wei et al. [18] and Yan et al. [19], effectively bridge physical
modeling and data-driven methods for dynamic behaviors in buildings with limited in-
strumentation, yet they often demand system-specific parameters or extensive real-time
data, hindering scalability across diverse household types. Furthermore, weather-informed
models like those reported by Zhang et al. [5] and Ahmad and Chen [20] enhance prediction
robustness in district-level or long-term scenarios, but they overlook unified, short-term
forecasting for residential PV power, heat pump loads, and thermal comfort metrics such
as PPD [21,22]. Even physics-informed neural networks for heat pump loads [23] and time-
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series techniques like those reviewed by Deb et al. [24] advocate for hybrid models, but
the absence of standardized residential datasets and lightweight implementations leaves
a void in accessible, simulation-validated solutions for sustainable energy management
in homes.

In summary, the literature supports the growing utility of ML techniques combined
with weather forecasts for predicting energy use and comfort in buildings. This study
addresses the above gap by implementing a VERF that predicts PV generation, heat pump
energy consumption, and indoor thermal comfort using only time-ahead weather forecast
data, validated via TRNSYS simulations for a standardized IEA reference building.

3. Main Contributions

This study introduces VERF, a modular, simulation-informed forecasting approach
for residential buildings that predicts key performance indicators using only weather
forecast data. The framework reduces dependency on real-time measurements and detailed
physical models, offering a scalable and accessible alternative to conventional digital twins.

The main contributions of this work are as follows:

e  First, it introduces a novel integrated Prediction of Three Key Metrics approach. A
unified machine learning framework is developed to forecast heat pump electricity
consumption, PV power generation, and indoor thermal comfort, supporting com-
prehensive residential energy management. By enabling short-term forecasting of
energy demand and thermal comfort, VERF supports intelligent HVAC scheduling
and energy efficiency strategies under dynamic weather conditions.

e  Second, VERF’s Input-Efficient and Scalable Design relies solely on multi-step-ahead
weather forecast data and ML trained on TRNSYS simulations, eliminating the need for
detailed system-level information including real-time sensors. This enables application
across a diversity of designs for residential energy planning and autonomous systems,
for example, predictive load-matching.

e  Third, its performance is rigorously evaluated through comparisons with multiple
supervised learning models, including lasso regression, decision tree, random forest,
XGBoost, and neural networks.

e  Finally, it is validated against benchmarked TRNSYS-generated simulation data,
demonstrating robustness. The framework is evaluated using the IEA SHC Task 44/ An-
nex 38 reference building, providing a consistent and replicable basis for assessing
performance in a typical residential setting.

4. Methods and System Architecture

The methodology is structured into three distinct phases (e.g., Phase 1, Phase 2 and
Phase 3) comprising a five-module architecture. Each phase represents a key component of
the proposed VEREF, progressing from weather and energy simulation data generation to
supervised machine learning model development, and, finally, to prediction execution and
performance assessment. Phase 1 and 2 are illustrated in Figure 1.

4.1. Phase 1: Weather Forecast and Energy System Data Generation

This phase generates the input and output datasets for training and validating the
machine learning models. Phase 1 is composed of two different data sets. One is for the
time-ahead weather data forecasting, while the other one is for the combined prediction
model of PV power, Hp energy consumption, and indoor thermal comfort.
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Figure 1. System architecture of the VEREF, illustrating the modeling phases for weather forecasting
and for energy system behavior.

4.1.1. Module A: Time-Ahead Weather Prediction Module

The weather forecasting model is implemented using a data-driven approach based
on historical weather datasets. The module processes historical weather data obtained
from the German Weather Service (DWD) [25] to generate multi-step-ahead forecasts for
critical parameters including solar irradiance, wind speed, relative humidity, and ambient
temperature. The forecasting process employs a multi-variate time-series approach that
creates lag features to capture temporal dependencies in weather patterns. For a given
time step t, the forecasting model generates predictions for future observations using the
following relationship:

Gen = predict (e, Ye-1, - - -, Yt—maxlag Xt) (1)

where fj;,;, represents the predicted value at time step t + /1, h denotes the forecast horizon,
maxLag specifies the number of historical observations incorporated, and X; encompasses
additional explanatory variables at time ¢.

The model architecture implements a rolling window cross-validation approach to
ensure temporal consistency and prevent data leakage. This predictive data is then used. A
5-fold rolling window cross-validation was employed, with each fold shifting by 1 month
to preserve temporal order and handle dependencies, preventing data leakage. To ad-
dress time-series autocorrelations, lag features (up to maxLag = 24 h) were included in
Equation (1), capturing diurnal patterns in weather data. Train/test splits ensured chrono-
logical separation (e.g., training on 2013-2014 data, testing on 2014 data, and predicting
2015 values).

4.1.2. Module B: Energy System Behavior

This module utilizes TRNSYS 18 [26] to simulate the energy system behavior of a
two-story residential building defined by the IEA SHC Task 44/ Annex 38, representing a
typical low-energy family home with space heating demand (U-values of 0.20 W/m?K and
0.15 W/m?K for walls and roof, respectively). Figure 2 illustrates the different component
types used and the interconnections of those components. The building model incorporates
thermal zones, a rooftop PV system, and a heat pump for space heating. The building
architecture of a 140 m? household along with boundary conditions are modeled using
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TRNSYS type 56. This module utilizes online available numerical weather data from
METEONORM [27] as input features. Type 15 is used to input the weather data (e.g., solar
irradiance, ambient temperature). Type 835 [28] simulates a rooftop PV system with battery,
which converts irradiance to DC power. TRNSYS type 927 models the ground source HP
(GHP) and separately requires the HP performance data in text files for both heating and
cooling. Performance is characterized by the normalized capacity and power of the HP
(with respect to the design capacities and power) at entering temperatures, along with the
normalized flow rates of the liquids. GHP supplies hot water to the heat exchanger of a
thermal storage tank (type 340). Emission heating is provided to the building by utilizing
hot water from the storage tank using type 362, a radiator. Additionally, differential
controllers (type 2b) were applied to modulate the flow of water streams. Annual TRNSYS
simulations generate data sets of PV power generation, heat pump electricity consumption,
and indoor air temperature. These outputs are the target variables for supervised learning

in the subsequent phases.
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Figure 2. TRNSYS model components for building energy system.

4.2. Phase 2: Data Processing and Machine Learning Model Development

This phase transforms the raw simulation data into a suitable form for training machine
learning models, and builds multiple models for three target variables.

4.2.1. Module C: Data Processing and Model Training

The simulation outputs are merged with their corresponding weather data inputs.
Data cleaning and feature selection (via correlation analysis) are applied. The data is split
into 80% training and 20% testing sets.
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The photovoltaic power prediction model integrates solar irradiance, ambient tem-
perature, and wind speed parameters to forecast electrical generation. ML models of PV
generation are trained on validated PV system data from TRNSYS simulations. This ensures
prediction accuracy under varying weather conditions.

Similarly, the data sets of heat pump consumption and thermal comfort models are
TRNSYS-simulated profiles and outdoor climate conditions. Thus, these models capture
the complex relationship between weather conditions and heat pump energy use, resulting
in indoor thermal comfort under different operating conditions.

4.2.2. Module D: Multi-Output Forecasting Models

The energy system forecasting module develops distinct models for PV generation,
heat pump energy consumption, and indoor thermal comfort. Multiple supervised learning
algorithms are developed and compared to ensure optimal prediction performance across
different system parameters for the city of Saarbrucken in Germany. The model selection
process evaluates five primary algorithms: lasso regression, decision tree, random forest,
boosting ensembles, and neural networks. These models can be used independently for
buildings to establish the long or short-term futuristic power flow and thermal comfort
profile. Each forecasting model was trained independently for each of the three outputs.

Lasso Regression: The lasso regression implementation applies regularization to
prevent overfitting while maintaining model interpretability. The objective function incor-
porates both prediction accuracy and feature selection through the following formulation:

JB) = /o) Y™ i — y)> +A Y j=1p 1 Bjl, @)

where f; represents the coefficient for the j-th feature, m denotes the number of train-
ing samples, A controls the regularization strength, and p indicates the total number of
features [29].

Decision Tree Implementation: The decision tree algorithm creates hierarchical split-
ting rules based on feature values to minimize prediction error. The splitting criteria utilize
impurity measures such as mean squared error for regression tasks, with the recursive
partitioning process continuing until predefined stopping criteria are satisfied [30].

Random Forest Ensemble: The random forest implementation combines multiple
decision trees through bootstrap aggregating and random feature selection. Each tree trains
on a bootstrap sample of the original dataset while considering only a random subset of
features at each split [31]. The final prediction aggregates individual tree outputs through
averaging, as follows:

$=1/BY pu® Tp(x), 3)

where B represents the number of trees and Tj(x) denotes the prediction from the B-th tree.

Boosting Ensemble Models: The boosting ensemble approach sequentially trains
weak learners while adaptively adjusting sample weights based on prediction errors. The
final prediction combines all weak learners through weighted voting, as follows:

f(x) = Y ™ wi hy(x), (4)

where N represents the number of weak learners, w; denotes the weight assigned to the i-th
learner, and h;(x) represents the prediction from the i-th weak learner [32].

Normalized Boosting Ensemble: The normalized boosting variant applies weight
normalization to ensure balanced contributions from all weak learners, as follows:

) = Y ™ (wi/ Y N wy) hi(x). ®)
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This normalization prevents individual learners from dominating the ensemble prediction
while encouraging diversity in the learning process [32].

4.3. Phase 3: Forecasting and Model Validation

In the final module of the framework, the performance of the forecasting models is
evaluated by comparing their predicted outputs with the corresponding reference values
generated through TRNSYS simulation, as shown in Figure 3.

| PHASE 3 (t) |
-8 | Time-Ahead Predicted Values from Phase 1 & 2 |
©
c
9 ~ - © S
+ > € On-ground physical PV, Heat pump (HP), | 4= ot
© a O + " o> 9=
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© = o o« — 1™
= = T
Do | |£ EE EQEEL
© —_— O s 5
g= g 238 imulate PV HP ion, and &8 2E
2 g ° S = Data Centric | | Data Centric | | Data Centric 5":: ate lcpu\;«le;, fc'::msu;npttlon.,an L 3 S 8
s 5 s 38 g PV HP Thermal ermal Comfort profile output using o €O -
§ > ve ¢ power Consumption| | comfortable validated PV system model in TRNSYS g %o g
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2 e o O ©
=]
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S I Validating PV output, HP consumption, Thermal Comfort of a Digital Twin of smart building |

Figure 3. System architecture of the VERE, illustrating validation of the modeling phase 3 prediction
using TRNSYS-generated data.

Module E: Performance Evaluation and Predictive Reliability

In this final phase, trained models from Phase 2 are deployed to generate time-ahead
predictions of PV output, heat pump electricity use, and indoor thermal comfort based on
the forecasted weather inputs from Phase 1. These predicted profiles simulate the behavior
of the energy system of the residential building.

This validation step encompasses all three target variables: photovoltaic (PV)
power generation, heat pump electricity consumption, and indoor air temperature. The
framework employs comprehensive statistical metrics to assess prediction accuracy and
model reliability.

The VEREF uses root mean squared error (RMSE), mean absolute error (MAE), and
coefficient of determination (R?) as accuracy indicators.

The RMSE quantifies the average prediction error value of a prediction model using
the following relation:

RMSE = /(1/N Y i.iN (9; — yi)?), (6)

where N is the number of predictions, §j; stands for the predicted value, and y; represents
the reference value.
The MAE is the average absolute difference between the predicted and actual values,
calculated as follows:
MAE =1/N Y iV 19i —yil. 7)

The coefficient of determination quantifies the proportion of variance and is calculated
as follows:

R?=1— (V™ 95 = y0?)/ (it 55 — 99 ®)

where ¥ represents the average of measured values.
Opverall, this module establishes the reliability of the proposed forecasting framework,
confirming its suitability for deployment in residential energy systems.
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5. VERF Evaluation and Validation
5.1. Phase 1: Look-Ahead Weather Prediction (Modules A and B)

Historical weather data sourced from DWD is used to develop look-ahead weather
forecasting models, while simulation-driven datasets from METEONORM [32] are used di-
rectly within the TRNSYS environment for building energy simulations. The DWD dataset
spans three years, has an hourly temporal resolution, and includes key meteorological pa-
rameters necessary for short-term predictions. Validation procedures prioritized temporal
integrity. For the weather forecasting model, a rolling window cross-validation with five
folds was implemented, each window advancing by 8760 h (1 year) to simulate real-time
deployment and mitigate lookahead bias. This handled dependencies in time-series data,
such as seasonal solar irradiance cycles.

Figure 4a—d presents time-series distributions of solar irradiance, wind speed, relative
humidity, and ambient temperature. To identify the most relevant features for predictive
modeling, correlation analysis is performed between weather parameters and the system’s
dependent variables. These variables are PV power output (PVelec_kW), heat pump
electricity consumption (PelHP_kW), thermal comfort (PPDBui), and the heat pump binary
control signal. The resulting correlation matrix is illustrated in Figure 5. Solar irradiance
shows strong positive correlation with PV electricity generation, while ambient temperature
and relative humidity exhibit significant relationships with both heat pump electricity
consumption and thermal comfort (PPD).
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Figure 5. Correlation analysis of system’s parameters.

Following the data collection, missing values and outliers are handled through prepro-
cessing steps, and dimensionality reduction techniques are applied to retain only the most
significant input features for model training. For each of the four key weather parameters
(IT_H, Vwind, Rhamb, Tamb), look-ahead features and response variables for 24 future time
steps are generated using lag features and normalized time-series data. For the next 24 h,
23 lag variables indicate how many steps the weather data is shifted backward in time, and
24 response variables correspond to the 24 look-ahead horizons, where each horizon step
number represents the number of steps the weather data is shifted forward.

The model development process splits the dataset into an 80% training set and a
20% test set using a hold-out validation approach, with least-squares boosting employed
for model training using 150 regression trees and a shrinkage rate of 0.2. The model
performance is demonstrated in Figures 69, where the measured and predicted values for
the first 200 observations in May are compared. These figures also visualize the model’s
ability to capture diurnal patterns in solar irradiance and temperature while reflecting more
irregular behavior for wind speed and relative humidity.
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Figure 6. (a) Comparison of measured and predicted solar irradiance for test data with
RMSE = 39.22 [W/m?], (b) Historical and look-ahead 24-h forecasted solar irradiance.
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Figure 7. (a) Comparison of measured and predicted wind speed for test data with RMSE =1.82 [m/s],
(b) historical and look-ahead 24-h forecasted wind speed.
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Figure 8. (a) Comparison of measured and predicted relative humidity for test data with
RMSE =13.4 [%], (b) historical and look-ahead 24-h forecasted relative humidity.

Tamb [C]
=
a
T
(S

5 L 1 1 L L 1 L 1
May 27 May 28 May 29 May 30 May 31 Jun 01 Jun 02 jJun 03 Jun 04 jun 05
Time 2014

(a)

1
-

L L 1 1 =
Dec 28, 2014 Dec 29, 2014 Dec 30, 2014 Dec 31, 2014 Jan 01, 2015 Jan 02, 2015
Time

(b)

Figure 9. (a) Comparison of measured and predicted ambient temperature for test data with
RMSE = 3.5 [C], (b) historical and look-ahead 24-h forecasted ambient temperature.

Figure 6a shows true measured global solar irradiance compared to predicted solar
irradiance for the first 200 observations in the May test set. Figure 6b presents both the
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historical data and look-ahead 24-h forecasted data, illustrating the periodic behavior of
solar irradiance over winter days.

Similarly, Figure 7a shows true measured wind speeds compared to the predicted
values for the test set, while Figure 7b presents both the historical wind speed data and
the look-ahead 24-h forecasted data. Unlike solar irradiance, wind speed exhibits no clear
periodic pattern, and appears nonuniform. It is the highly variable and uncertain nature of
wind speed which makes it hard to predict, in comparison with other weather parameters.

Figures 8a and 9a depict true measured relative humidity and ambient temperature, re-
spectively, alongside model predictions of these parameters for the test set. Corresponding
look-ahead forecast curves in Figures 8b and 9b illustrate 24-h-ahead predictions compared
to historical data, both of which display modest periodicity reflecting diurnal variations in
humidity and temperature.

5.2. Phase 2: Prediction Models of Energy System Variables (Modules C and D)

This phase integrates weather data and simulation-generated system response vari-
ables to train supervised machine learning models for PV power output, heat pump
electricity consumption, and thermal comfort. Performance metrics for each model are
summarized below.

PV Power Prediction Performance: Table 1 illustrates model performance across five
algorithms. XGBoost provides the highest prediction accuracy, achieving an R? value of
0.9392 and the lowest RMSE and MAE values.

Table 1. PV generation prediction models’ statistics.

Prediction Model RMSE MAE R2?
Lasso Regression 0.0075 0.0483 0.8638
Decision Tree 0.0050 0.0341 0.9087
Random Forest 0.0040 0.0314 0.9262
XGBoost 0.0033 0.0274 0.9392
Neural Network 0.0072 0.0599 0.8691
ARIMA (Benchmark) 0.0087 0.0536 0.8450

Heat Pump Energy Prediction Performance: Table 2 summarizes RMSE, MAE, and R?
values for HP load forecasting. Both XGBoost and random forest exhibit the lowest RMSE
and MAE values and the highest R? values, indicating superior predictive performance.

Table 2. HP electricity load prediction models’ statistics.

Prediction Model RMSE MAE R2?
Lasso Regression 0.0943 0.2347 0.5027
Decision Tree 0.0536 0.1134 0.7172
Random Forest 0.0286 0.0712 0.8489
XGBoost 0.0252 0.0699 0.8667
Neural Network 0.0469 0.1662 0.7526
ARIMA (Benchmark) 1.0625 0.4248 0.4103

Thermal Comfort Prediction Performance: Table 3 presents the same metrics for
indoor thermal comfort using PPD predictions. XGBoost again performs better than other
algorithms, achieving the lowest RMSE and MAE values alongside the highest R? value,
indicating its robustness in modeling occupant comfort.
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Table 3. Thermal comfort prediction models” statistics.
Prediction Model RMSE MAE R?
Lasso Regression 4.6002 1.7250 0.5042
Decision Tree 3.6804 1.5701 0.6033
Random Forest 2.1109 1.1984 0.7725
XGBoost 1.8431 1.0761 0.8013
Neural Network 2.3465 1.2317 0.7471
ARIMA (Benchmark) 6.7980 2.4302 0.4000

When comparing machine learning models with the benchmark linear statistical
ARIMA model, all ML models performed well. This is primarily due to the nonlinear
and highly variable nature of the data, which allows ML algorithms to capture complex
patterns more effectively than ARIMA. In contrast, ARIMA is best suited for stationary,
low-variability time-series data. This further reinforces ARIMA’s role as a traditional
baseline model which is once again outperformed by advanced machine learning methods
in both accuracy and reliability for HP electricity load prediction tasks.

5.3. Phase 3: Prediction and Validation of Look-Ahead Energy System Variables (Module E)

In the final phase, the forecasting models trained on historical and simulation data
are tested using look-ahead weather data. The results are compared against the TRNSYS
simulation outputs to assess prediction accuracy under future weather conditions, thereby
validating the proposed VERF framework.

TRNSYS 18 is used to simulate the IEA SHC Task 44/ Annex 38 residential building.
Performance data of YAWS series YORKR residential geothermal HPs is used to charac-
terize HP of 4kW rated heating capacity. Electricity production from a 1kW PV array was
modelled using Type 835 with performance parameters previously identified experimen-
tally [28]. The annual simulation results for PV generation and HP energy use are shown
in Figure 10.
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Figure 10. Energy consumption vs. PV generation data.

5.3.1. Case Study 1: PV Generation Forecasting

Figure 11a—e compares daily PV predictions by different algorithms with the TRNSYS
simulated profile for November, with % error plotted on a secondary axis. While XGBoost,
decision tree, and random forest regressions closely match the simulated results, lasso and
neural network yield significant deviations. The monthly predicted values range from
18.38 kWh (neural network) to 46.66 kWh (lasso), compared to the simulated 37.7 kWh.
XGBoost shows the best match (39.17 kWh) and the lowest daily mean prediction error
(5%). The % error in predicted PV generation per day reaches 64% in the case of the lasso
prediction model, while a figure of —91% is reached in the case of neural network regression.
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Figure 11. Comparison of monthly predicted PV electricity generation profile with simulated profile.
(a) Lasso model vs. TRNSYS model; (b) decision tree model vs. TRNSYS model; (¢) random forest
model vs. TRNSYS model; (d) XGBoost model vs. TRNSYS model; (e) neural network model vs.
TRNSYS model; (f) relative errors of forecasted models.

Relative errors of algorithms: In Figure 11f, the box plots describe the relative errors
of the regression models employed in this work. It is evident that the XGBoost model has
the minimum mean error (5.27%), while the maximum mean error (—52.77%) was produced
by the neural network model. Overall, error rates vary between —31% and 42% for decision
tree, random forest, and XGBoost regression, while neural network regression shows an
error spread from —5% to —91%.

5.3.2. Case Study 2: Heat Pump Load Forecasting

Figure 12a—e shows November HP electricity consumption forecasts. In addition, error
in predicted electricity demand is also shown as a dot plot on the secondary vertical axis.
Lasso and neural network models underpredict consumption, while XGBoost, random
forest, and decision tree models perform well. The TRNSYS model calculates the electricity
demand of HP to be 285.4 kWh in November. Predictions vary from 192.3 kWh (lasso)
to 309.5 kWh (random forest). The XGBoost model gives the most accurate prediction of
288.3 kWh PV generation in November. Decision tree regression also shows good alignment
with simulated results, and predicts a 306.2 kWh electricity demand. Lasso regression
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produces the maximum prediction error, with a rate of —42% being obtained, while error
values do not exceed —28% in other prediction models.
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Figure 12. Comparison of monthly predicted HP electricity consumption profile with simulated
profile. (a) Lasso model vs. TRNSYS model; (b) decision tree model vs. TRNSYS model; (c) random
forest model vs. TRNSYS model; (d) XGBoost model vs. TRNSYS model; (e) neural network model
vs. TRNSYS model; (f) relative errors of forecasted models.

Relative errors of algorithms: In Figure 12f, regarding errors in prediction, XGBoost,
decision tree, random forest, and neural network demonstrate minimal error in HP elec-
tricity consumption prediction. Lasso regression has the highest mean error of —33.3%,
followed by decision tree regression with a mean error of —7%. XGBoost has the lowest
(approximately zero) mean error, with error in daily demand varying between —25% and
20%. Random forest has the minimum error spread of between —10% and 16%, with an
average of 7.7%. Error values range from —27% to 17% in the case of decision tree and from
—28% to 12% in the case of neural network.

5.3.3. Case Study 3: Thermal Comfort Forecasting

Table 4 presents the predicted monthly PPD values for each model. The TRNSYS
reference PPD is 12.7. XGBoost again delivers the best accuracy, with a minimal average
prediction error of —2.4% and a range of approximately +4%, while lasso performs worst,
with an error of —11.5%.
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Table 4. PPD predictions and errors of different regression models.

Prediction Model PPD Mean % Error
Lasso Regression 11.2 —-11.5%
Decision Tree 13.1 3.7%
Random Forest 12.2 —3.9%
XGBoost 12.4 —2.4%
Neural Network 13.2 4.0%

5.4. VERF-Based Scalability and Load-Matching Potential

A key strength of the proposed VEREF lies in its potential for scalability and application
to residential energy planning and autonomous system design [33]. This capability is
demonstrated through the integration of results from Case Study 1 (PV generation) and Case
Study 2 (heat pump electricity consumption), thereby enabling predictive load-matching
assessment under varying system capacities.

In Case Study 1, the monthly photovoltaic (PV) generation forecast for a 1 kW PV
system, using the most accurate regression models (e.g., XGBoost and random forest), was
observed to be in a range of 39.17-39.44 kWh for the month of November. In parallel, in
Case Study 2, the November space heating electricity demand of the heat pump (HP) was
predicted as 288.3 kWh using XGBoost regression, an accurate estimation of the TRNSYS
simulation benchmark value of 285.4 kWh.

To evaluate the framework’s scalability, the PV system size required to fully offset the
HP energy demand can be estimated as follows:

Required PV Size = (285.4kWh)/(37.7 kWh) ~ 7.57 kW 9)

This calculation implies that a scaled-up PV system of approximately 7.57 kW would be
sufficient to fulfill the entire monthly heating electricity requirement of the HP, under similar
meteorological conditions. Figure 13 illustrates the predicted PV output for different array
sizes (1-10 kW), overlaid with horizontal reference lines representing typical electricity
demand levels (100 kWh, 200 kWh, and 300 kWh), thus highlighting the framework’s
ability to support capacity matching for varying residential demand scenarios.

Scalability of PV Generation vs. Reference Loads
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Figure 13. Scaled-up PV generation predictions versus monthly electricity demand thresholds.

Furthermore, the robustness of the predictive models under short-term temporal vari-
ability reinforces the practical applicability of the framework. As illustrated in Figure 12f,
the XGBoost regression model for HP load prediction maintains a mean daily error of
approximately zero, with an error distribution between —25% and +20%. In the case
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of PV prediction, the XGBoost and decision tree regression demonstrate a wider error
band (—31% to +42%) but maintain a relatively low mean error of 5.27%, as presented
in Figure 11f.

These quantifiable accuracy margins validate the reliability of the VERF approach for
informed decision-making in system sizing, energy autonomy planning, and performance
evaluation without reliance on real-time sensor infrastructure.

Although the VERF framework is validated using simulation data for a representative
building located in Saarbrucken, its modular design and input-efficient nature enhance
its potential for broader applicability. Because the framework relies solely on weather
forecast data and does not require detailed system-level or sensor-specific inputs, it can
be easily adapted to other climates by retraining the machine learning models using
simulation or historical data relevant to the new context. Additionally, because the IEA
SHC Task 44/ Annex 38 building is a widely used reference model, it provides a consistent
baseline from which VERF can be scaled or refined for different building configurations.

6. Discussion
6.1. Applications in Control & Operation

VERF models offer significant potential in the control and operation phases of res-
idential energy systems. By providing accurate short-term forecasts of PV generation,
heat pump electricity consumption, and indoor thermal comfort, VERF enables model
predictive control (MPC) strategies that optimize heat pump operation based on anticipated
weather and loads, achieving 10-20% energy savings. For instance, during periods of high
forecasted solar irradiance, the system can preemptively schedule heat pump heating to
maximize PV self-consumption, reducing grid penalties and operational costs. This aligns
with demonstrations of hybrid ML-MPC frameworks in experimental residential heat
pump systems, where predictive models improved efficiency by up to 15%. In operation,
VEREF integrates with HEMS to achieve demand responses such as shifting loads to align
with PV peaks or maintaining PPD below 10% through proactive ventilation adjustments.
VEREF supports grid stability by forecasting imbalances, enabling predictive curtailment or
storage dispatch. Future implementations could extend to battery coordination or to EV
charging, enhancing energy autonomy in temperate climates like Germany.

VERF’s scalability and predictive load-matching capabilities hold particular promise
for Building-Integrated Photovoltaics (BIPV) demonstration projects. By assessing PV gen-
eration and heat pump load compatibility under varying system capacities, validated with
RMSE values below 0.05 kW, VERF enables precise energy planning for BIPV installations
such as facade-integrated panels in residential buildings. This supports practical demon-
strations by optimizing self-consumption and grid interaction, reducing installation risks
in temperate climates like Germany. Future pilots could leverage VERF to simulate BIPV
retrofits, enhancing energy autonomy and aligning with sustainable building standards.

6.2. Limitations and Challenges

Despite its contributions, this work has several limitations. Methodologically, the
framework relies on simulation data from TRNSYS, which may not capture real-world
variabilities such as equipment degradation or occupant interactions, potentially overesti-
mating prediction accuracy (e.g., RMSE < 0.03 for PV). Data constraints limit validation to
a temperate oceanic climate (Saarbriicken, Germany), restricting generalizability to diverse
regions. Broader datasets are needed for comprehensive assessment. In terms of applicabil-
ity, while VERF is input-efficient, its dependence on accurate weather forecasts could result
in its faltering under uncertain conditions. In addition, the black-box nature of ensemble
models like XGBoost hinders physical interpretability. Operationally, the framework has
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not been tested in real-time control scenarios, where latency or integration challenges might
arise. Addressing these through field trials and hybrid physics-ML approaches would
enhance robustness.

6.3. Mitigation Approaches

To address identified limitations, targeted strategies can strengthen VERF's reliability.
Sensitivity to weather forecast errors, as observed with DWD data, could be mitigated by
integrating multiple forecast sources or employing Bayesian ML for uncertainty quantifica-
tion, potentially reducing PV power RMSE inflation (10-20%) under variable conditions [34].
Generalizability beyond temperate climates (e.g., Saarbriicken) could be improved by vali-
dating against diverse METEONORM datasets, accounting for extreme environments like
arid regions where dust affects PV performance [35]. The unexplored impact of extreme
weather events (e.g., storms causing irradiance drops) warrants sensitivity analyses with
perturbed inputs to assess error propagation. Lastly, TRNSYS biases from idealized assump-
tions (e.g., Type 56) neglecting occupant variability or degradation could be addressed
through hybrid physics-ML refinements or incorporation of real-field data, enhancing
predictive fidelity [36].

7. Conclusions

This study introduced and validated VERF, a modular, data-driven approach for
forecasting energy generation, electricity consumption, and indoor thermal comfort in
residential buildings. Unlike conventional sensor-based or physics-heavy approaches,
VEREF uses only time-ahead weather forecast data as input, offering a generalized and
scalable methodology for energy prediction and planning. The framework was validated
using simulation data from TRNSYS for a representative two-story residential building
modeled according to IEA SHC Task 44/ Annex 38.

The framework consisted of three integrated phases: (i) generation of TRNSYS-based
simulation data and weather forecasts, (ii) machine learning model development using data-
centric strategies, and (iii) predictive validation under forecasted conditions. Supervised
learning algorithms including lasso regression, decision tree, random forest, XGBoost, and
neural network were trained to predict three target variables: photovoltaic (PV) electricity
generation, heat pump (HP) energy demand, and indoor thermal comfort (expressed
as PPD).

Across all prediction tasks, ensemble models (XGBoost and random forest) consistently
delivered superior accuracy, with RMSE values as low as 0.0033 kW for PV generation
and 1.84 for thermal comfort index prediction. Furthermore, predictive reliability was
confirmed by daily error spreads which showed stable performance across varying weather
conditions, specifically when using XGBoost and random forest regression models.

The scalability of VERF was validated in a dedicated case study, where predictions for
a1 kW PV array were extrapolated to estimate the array size required to match a monthly
heating load of 285.4 kWh. Results indicated that scaling to 7.57 kW would suffice to
meet this demand entirely. Additional case studies highlighted the framework’s ability to
generalize across different energy targets without reconfiguring physical system models.

In summary, VERF’s scalable framework and predictive load-matching offer a robust
tool for residential energy planning, with significant potential for BIPV demonstration
projects to advance sustainable building integration. The findings presented here demon-
strate the feasibility of short-term energy and comfort forecasting without dependency on
real-time sensor networks or detailed building configurations. This makes VERF a promis-
ing tool for microgrid design, autonomous building operation, and forecast-informed
energy management systems, with high transferability to diverse residential contexts.
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While VERF demonstrates high accuracy, its acknowledged limitations mean that its full
potential in control phases must await future enhancements.
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