Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-46353
Titel: | Virtual Energy Replication Framework for Predicting Residential PV Power, Heat Pump Load, and Thermal Comfort Using Weather Forecast Data |
VerfasserIn: | Minhas, Daud Mustafa Usman, Muhammad Raja, Irtaza Bashir Wakeel, Aneela Ali, Muzaffar Frey, Georg |
Sprache: | Englisch |
Titel: | Energies |
Bandnummer: | 18 |
Heft: | 18 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2025 |
Freie Schlagwörter: | time-ahead weather input supervised learning ensemble prediction models energy behavior modeling |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | It is essential to balance energy supply and demand in residential buildings through accurate forecasting of energy use due to varying daily and seasonal residential building loads. This study demonstrates a data-driven Virtual Energy Replication Framework (VERF) to predict the behavior of residential buildings using weather forecast data. The framework integrates supervised machine learning models and time-ahead weather parameters to estimate photovoltaic (PV) power production, heat pump energy consumption, and indoor thermal comfort. The accuracy of prediction models is validated using TRNSYS simulations of a typical household in Saarbrucken, Germany, a temperate oceanic climate region. The XGBoost model exhibits the highest reliability, achieving a root mean square error (RMSE) of 0.003 kW for PV power generation and 0.025 kW for heat pump energy use, with R2 scores of 0.94 and 0.87, respectively. XGBoost and random forest regression models perform well in predicting PV generation and HP electricity load, with mean prediction errors of 5.27–6% and 0–7.7%, respectively. In addition, the thermal comfort index (PPD) is predicted with an RMSE of 1.84 kW and an R2 score of 0.80 using the XGBoost model. The mean prediction error remains between 2.4% (XGBoost regression) and −11.5% (lasso regression) throughout the forecasted data. Because the framework requires no real-time instrumentation or detailed energy modelling, it is scalable and adaptable for smart building energy systems, and has particular value for Building-Integrated Photovoltaics (BIPV) demonstration projects on account of its predictive load-matching capabilities. The research findings justify the applicability of VERF for efficient and sustainable energy management using weather-informed prediction models in residential buildings. |
DOI der Erstveröffentlichung: | 10.3390/en18185036 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/en18185036 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-463536 hdl:20.500.11880/40645 http://dx.doi.org/10.22028/D291-46353 |
ISSN: | 1996-1073 |
Datum des Eintrags: | 1-Okt-2025 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Georg Frey |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
energies-18-05036-v2.pdf | 4,5 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons