Please use this identifier to cite or link to this item: doi:10.22028/D291-46333
Title: Superhedging supermartingales
Author(s): Bender, C.
Ferrando, S.E.
Gajewski, K.
González, A.L.
Language: English
Title: International Journal of Approximate Reasoning
Volume: 187
Publisher/Platform: Elsevier
Year of Publication: 2025
Free key words: Superhedging
Non-additive outer integral
Game theoretic supermartingales
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Supermartingales are here defined in a non-probabilistic setting and can be interpreted solely in terms of superhedging operations. The classical expectation operator is replaced by a pair of subadditive operators: one defines a class of null sets, and the other acts as an outer integral. These operators are motivated by a financial theory of no-arbitrage pricing. Such a setting extends the classical stochastic framework by replacing the path space of the process by a trajectory set, while also providing a financial/gambling interpretation based on the notion of superhedging. The paper proves analogues of the following classical results: Doob’s supermartingale decomposition and Doob’s pointwise convergence theorem for non-negative supermartingales. The approach shows how linearity of the expectation operator can be circumvented and how integrability properties in the proposed setting lead to the special case of (hedging) martingales while no integrability conditions are required for the general supermartingale case.
DOI of the first publication: 10.1016/j.ijar.2025.109567
URL of the first publication: https://doi.org/10.1016/j.ijar.2025.109567
Link to this record: urn:nbn:de:bsz:291--ds-463332
hdl:20.500.11880/40605
http://dx.doi.org/10.22028/D291-46333
ISSN: 0888-613X
Date of registration: 26-Sep-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Christian Bender
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S0888613X25002087-main.pdf2,19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons