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Supermartingales are here defined in a non-probabilistic setting and can be interpreted solely 
in terms of superhedging operations. The classical expectation operator is replaced by a pair of 
subadditive operators: one defines a class of null sets, and the other acts as an outer integral. These 
operators are motivated by a financial theory of no-arbitrage pricing. Such a setting extends the 
classical stochastic framework by replacing the path space of the process by a trajectory set, while 
also providing a financial/gambling interpretation based on the notion of superhedging. The paper 
proves analogues of the following classical results: Doob’s supermartingale decomposition and 
Doob’s pointwise convergence theorem for non-negative supermartingales. The approach shows 
how linearity of the expectation operator can be circumvented and how integrability properties 
in the proposed setting lead to the special case of (hedging) martingales while no integrability 
conditions are required for the general supermartingale case.

1. Introduction

The paper introduces a class of non-probabilistic supermartingales in a setting where a set of price scenarios (also called trajec

tories) is given along with the possibility to trade as price trajectories unfold over time. Trajectories are sequences 𝑆 = (𝑆𝑖)𝑖≥0 ∈ S

in infinite discrete time with a common origin 𝑆0 = 𝑠0, where the set S substitutes the abstract sample space Ω of the probabilistic 
setting. Following ideas of the theory of non-lattice integration developed by Leinert [16] and König [14], one can construct an outer 
integral operator, denoted by 𝜎, which corresponds to the superhedging price when trading takes place by means of some idealized 
class of linear combinations of buy-and-hold strategies, see [10]. The idealization facilitates to establish an analogue of Daniell’s 
continuity-from-below-condition for this outer superhedging integral operator, which is a standing assumption for the main results 
of this paper. Considering an investor, who enters the market at any later time, we can naturally introduce a conditional version of 
this superhedging outer integral operator, denoted by 𝜎𝑗 , which gives rise to the notion of a superhedging supermartingale via the 
relation 𝜎𝑗𝑓𝑗+1 ≤ 𝑓𝑗 where (𝑓𝑗 )𝑗≥0 is a sequence of real valued functions with domain S . More precisely, the latter relation is only 
required to hold outside a null set -- and it is an important subtlety of Leinert’s integration theory, that the null sets are determined 
by a countably sub-additive operator, 𝐼 say, which is closely related but, in general, different from the outer integral 𝜎.

While the definitions of the operators 𝜎 and 𝐼 are motivated by Leinert’s [16] theory of non-lattice integration, they closely connect 
to other theories that employ subadditive operators. If the continuity-from-below condition holds, then 𝜎 and 𝐼 can be shown to satisfy 
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the conditions of a sublinear expectation in the sense of Peng [20]. The operator 𝐼 is defined on the cone of non-negative functions 
and is always countably subadditive. Therefore, its restriction to the set of indicator functions of subsets of S defines an outer 
probability measure and constitutes a discrete-time analogue to Vovk’s [28] outer measure in the theory of continuous-time robust 
finance. We only rely on 𝐼 for defining null sets -- and we frequently exploit the countable sub-additivity of 𝐼 in our infinite discrete

time framework to aggregate a countable family of null sets into a null set. In contrast, 𝜎 has an unrestricted domain, but fails to be 
countably sub-additive in general (and, thus, is less suitable for defining null sets). Both operators 𝜎 and 𝐼 can also be interpreted 
as upper previsions in the sense of Walley [29]; cp. also the monograph [26]. The corresponding offer sets consists of all payoffs 
of financial derivatives (or, gambles) which can be superhedged with zero initial endowment, where different trading idealizations 
are used in the definitions of 𝜎 and 𝐼 , respectively. While 𝜎 can always be shown to be a coherent upper prevision, if continuity 
from below holds, 𝐼 may fail to satisfy the coherence axiom. Therefore, superhedging prices in terms of 𝐼 may violate the rationality 
requirement encoded in Walley’s notion of coherence, explaining the need to work with two different subadditive operators in our 
framework; see Remark 3.4 for more details on these relations.

Proofs of classical results (i.e., in a stochastic setting) that involve supermartingales rely, at one point or another, on properties of 
conditional expectation operators as well as on some measure theory. In our non-probabilistic setting, also referred to as trajectorial 
setting, it turns out that the space of integrable functions (restricted on which the superhedging outer integral operator acts linearly) 
could be inconveniently small, see [2] for details. This fact obstructs the naive strategy of emulating classical proofs by replacing the 
expectation operator with the non-classical superhedging integral, but suggests to work with the superhedging outer integral instead. 
This is a subadditive operator with unrestricted domain but its definition allows to bypass the need for the linearity of the expectation 
as well as the non availability of some classical limit theorems.

In this paper, we prove analogues of several classical results (see for example [17] and [12]) for supermartingales in the trajectorial 
setting. In particular, we derive a representation theorem for superhedging supermartingales. Our representation is of a similar type 
as the uniform Doob decomposition in discrete time (Theorem 7.5 in [12]) or the optional decomposition in continuous time, see 
[9,15] in the classical setting or [19,18] for non-dominated versions. As illustrated by an example, our Doob decomposition can 
also be applied to trajectory sets which do not have any martingale measure and, thus, cannot be recovered by classical robust 
supermartingale decompositions.

Combining the supermartingale representation theorem with a convergence result for martingale transforms in the trajectorial 
setting (derived in [10]), we can, moreover, prove an analogue of Doob’s a.e. pointwise convergence theorem for non-negative 
supermartingales.

As another application of the supermartingale representation theorem, we clarify the role of the two superhedging operators 𝜎
and 𝐼 . Theorem 8.1 shows that the superhedging outer integral 𝜎 indeed provides the ‘correct’ superhedging price in the sense that 
for payoffs of finite maturity it coincides with the infimal superhedging cost within the class of linear combinations of buy-and-hold 
strategies up to the null sets induced by the 𝐼 operator.

Our work in the Leinert-König setting provides an independent meaning, purely financially motivated, to the results listed above. 
An inspection of our proof techniques shows also the need to rely on new and independent proof arguments.

1.1. Relation to the literature

The paper could be loosely considered as being part of the literature on robust financial mathematics that weakens a-priori prob

abilistic modeling hypothesis, or dispenses with them altogether. This literature ranges from discrete-time model-free superhedging 
dualities (e.g., [3--5]) to extending stochastic calculus beyond its original settings (e.g., [28,21,1]).

Our setting is, however, more closely related to the game theoretic approach to probability initiated by Shafer, Vovk and coauthors 
(see e.g. [23,24] and the references therein), which has been related to Walley’s [29] notion of coherent (lower and upper) previsions 
by de Cooman and coauthors [6,25]. On a technical level, a key difference between the Shafer/Vovk approach and our setting is that 
their conditional global upper expectation operator 𝔼𝑠 satisfies the axiomatic properties of an outer expectation in every situation 
(Proposition 8.3 in [24]), while our conditional outer integral operator 𝜎𝑗 may assign value −∞ to any bounded function on a null 
set, on which the conditional version of the continuity from below property fails. In view of Corollary 3.14 below such a failure 
of the conditional continuity from below property can have two origins: a) The trajectory set may run in a situation (or, node, as 
we call it), in which the stock price will move upwards for sure (or will move downwards for sure) leading to an obvious arbitrage 
opportunity; b) A sure arbitrage situation arises at some node by trading up to an unbounded investment horizon, when the trajectory 
set turns out to be trajectorially incomplete (in the sense of Section 3 below). To the best of our knowledge, the aforementioned 
types of arbitrage situations are not presently accommodated into the abstract game-theoretic setting (as presented in Chapter 7 
of [24]), but they are detected as null sets by our 𝐼 -operator (as should be); see also Section 4 for a detailed comparison to the 
game-theoretic approach. Dealing with these additional null sets does not only lead to significant technical difficulties, but, in view 
of Theorem 8.4, we are required to work with the two different families of conditional superhedging operators 𝜎𝑗 and 𝐼𝑗 (as opposed 
to the single family of global conditional upper expectations 𝔼𝑠 in the game-theoretic approach). Our developments, originally 
based on Leinert’s and König’s work on non-lattice integration, were developed independently of the game theoretic approach to 
probability, in particular, our proof techniques are new as well as the main results we provide. In this sense, our paper builds a 
bridge between the game-theoretic approach of Shafer and Vovk and the theory of non-lattice integration developed by Leinert 
and König.
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1.2. Structure of the paper

The paper is organized as follows; Section 2 introduces the trajectorial setting, provides the definitions of the basic superhedging 
operators, and clarifies the relation of our constructions to classical integration. The crucial continuity-from-below property of the 
superhedging outer integral as well as easy-to-check sufficient conditions for continuity from below at almost every node are discussed 
in Section 3. A detailed comparison of our setting to the game-theoretic approach is carried out in Section 4. Section 5 defines 
supermartingales and stopping times and provides some examples. Section 6 proves our supermartingale representation theorem. 
Doob’s pointwise convergence result for non-negative supermartingales is derived in Section 7. The relation of the two families 
of superhedging operators 𝜎𝑗 and 𝐼𝑗 is discussed in Section 8. In particular, we show that these operators actually differ, if the 
conditional continuity from below property is only asked to hold almost everywhere (Theorem 8.4) and that 𝜎𝑗 provides the ‘correct’ 
superhedging prices for derivatives with finite maturity (see Theorem 8.1 for a precise statement). A concluding discussion can be 
found in Section 9. Some technical ramifications and the proofs of the results of Sections 3 and 4 are provided in the Appendices.

2. Basic setting and fundamental operators

2.1. Trajectorial setting

Definition 2.1 (Trajectory set). [10, Definition 1] Given a real number 𝑠0, a trajectory set, denoted by S = S (𝑠0), is a subset of

S∞(𝑠0) = {𝑆 = (𝑆𝑖)𝑖∈ℕ∪{0} ∶ 𝑆𝑖 ∈ℝ,  𝑆0 = 𝑠0}.

We make fundamental use of the following conditional spaces; for 𝑆 ∈ S and 𝑗 ≥ 0 set:

S(𝑆,𝑗) ≡ {𝑆̃ ∈ S ∶ 𝑆̃𝑖 = 𝑆𝑖,  0 ≤ 𝑖 ≤ 𝑗},

the notation (𝑆, 𝑗), henceforth referred as a node, will be used as a shorthand for S(𝑆,𝑗).

We interpret S as a fixed market price model and 𝑆 ∈ S as a possible stock price scenario unfolding in infinite discrete time. The 
units of the variables 𝑆𝑗 are in terms of a bank account units i.e., the latter acts as a numeraire. From a mathematical point of view 
S is given and fixed. Then, the conditional space S(𝑆,𝑗) models the set of stock price evolutions, if the investor enters the market at 
time 𝑗 ∈ℕ and the stock prices (𝑆0,… , 𝑆𝑗 ) have been realized at times 0,… , 𝑗.

Notice S(𝑆,0) = S and, if 𝑆̃ ∈ S(𝑆,𝑗), then S(𝑆̃,𝑗) = S(𝑆,𝑗). Moreover for 𝑗 ≤ 𝑘 it follows that S(𝑆,𝑘) ⊆ S(𝑆,𝑗). On the other hand, 
for any fixed pair 𝑗 < 𝑘, one can write S(𝑆,𝑗) as a disjoint union of sets S(𝑆̃,𝑘) with 𝑆̃ ∈𝐴, for some 𝐴⊆S(𝑆,𝑗).

Local properties are relative to a given node. The classification of distinct nodes is presented in the following definition:

Definition 2.2 (Types of nodes). Given a trajectory space S and a node (𝑆, 𝑗):

• (𝑆, 𝑗) is called an up-down node if

sup 
𝑆̃∈S(𝑆,𝑗)

(𝑆̃𝑗+1 −𝑆𝑗 ) > 0 and inf 
𝑆̃∈S(𝑆,𝑗)

(𝑆̃𝑗+1 − 𝑆𝑗 ) < 0. (1)

• (𝑆, 𝑗) is called a flat node if

sup 
𝑆̃∈S(𝑆,𝑗)

(𝑆̃𝑗+1 −𝑆𝑗 ) = 0 = inf 
𝑆̃∈S(𝑆,𝑗)

(𝑆̃𝑗+1 − 𝑆𝑗 ). (2)

(𝑆, 𝑗) is called an arbitrage-free node if (1) or (2) hold, otherwise it is called an arbitrage node. An arbitrage node (𝑆, 𝑗) is said to be 
of type I, if there exists 𝑆̂ ∈ S(𝑆,𝑗) such that 𝑆̂𝑗+1 = 𝑆𝑗 ; otherwise it is said to be of type II.

In practice, the coordinates 𝑆𝑖 are multidimensional in order to allow for multiple sources of uncertainty. For simplicity we 
restrict to 𝑆𝑖 ∈ℝ, but one can also extend the framework to allow for several coordinates 𝑆𝑘

𝑖
(see [7], [8], and [11]). In particular, 

[7] presents a method to build trajectory sets from historical stock price data, which can lead to arbitrage nodes due to a pruning 
mechanism.

Besides the set S , the other basic component are the portfolios defined as follows.

Definition 2.3 (Conditional portfolio set). For any fixed 𝑆 ∈ S and 𝑗 ≥ 0, H(𝑆,𝑗) will be the set of all sequences of functions 𝐻 =
(𝐻𝑖)𝑖≥𝑗 , where 𝐻𝑖 ∶ S(𝑆,𝑗) →ℝ are non-anticipative in the sense: for all 𝑆̃, 𝑆̂ ∈ S(𝑆,𝑗) such that 𝑆̃𝑘 = 𝑆̂𝑘 for 𝑗 ≤ 𝑘 ≤ 𝑖, then 𝐻𝑖(𝑆̃) =
𝐻𝑖(𝑆̂) (i.e., 𝐻𝑖(𝑆̃) =𝐻𝑖(𝑆̃0,… , 𝑆̃𝑖)). Again, we introduce the shorthand notation H = H(𝑆,0).

Given a conditional portfolio (𝐻𝑖)𝑖≥𝑗 ∈ H(𝑆,𝑗), the function 𝐻𝑖 represents the number of shares of stock 𝑆 held by an investor at 
time 𝑖 and who entered the market at time 𝑖 ≥ 𝑗. Notice that by assuming 𝐻𝑖(𝑆) ∈ ℝ we allow for 𝐻𝑖(𝑆) < 0, an operation that is 
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called short selling in finance. The notion of non-anticipativeness ensures that the portfolio position only depends on the past stock 
prices and does not make use of future information. Otherwise we do not impose any trading restrictions, but refer to [2] for the 
modeling of trading restrictions in the trajectorial framework.

Remark 2.4. Note that we do not impose any measurability condition on the functions 𝐻𝑖 ∶ℝ𝑖+1 →ℝ in the representation 𝐻𝑖(𝑆̃) =
𝐻𝑖(𝑆̃0,… 𝑆̃𝑖) of a portfolio position. The main reason is that we will work with a subadditive outer integral operator instead of a 
linear integral operator. On the one hand, this can be viewed in analogy to the use of the outer expectation operator in probability 
and statistics (see, e.g., [27]), which does not require any measurability properties of the integrands. On the other hand, this is in line 
with the protocols used in the discrete time game-theoretic approach of Shafer and Vovk [23], where no measurability conditions 
are imposed on the functions announced by the Skeptic.

For a node (𝑆, 𝑗), 𝐻 ∈ H(𝑆,𝑗), 𝑉 ∈ℝ and 𝑛 ≥ 𝑗 we define Π𝑉 ,𝐻
𝑗,𝑛

∶ S(𝑆,𝑗) →ℝ, as:

Π𝑉 ,𝐻
𝑗,𝑛

(𝑆̃) ≡ 𝑉 +
𝑛−1 ∑
𝑖=𝑗 

𝐻𝑖(𝑆̃)  Δ𝑖𝑆̃, where Δ𝑖𝑆̃ = 𝑆̃𝑖+1 − 𝑆̃𝑖,  𝑖 ≥ 𝑗,  𝑆̃ ∈ S(𝑆,𝑗).

This expression equals the wealth at time 𝑛 of the selffinancing portfolio with initial endowment 𝑉 at time 𝑗, when 𝐻𝑖 represents 
the number of shares of the stocks held by the investor at time 𝑖. We recall that ‘selffinancing’ means that the remaining capital 
Π𝑉 ,𝐻
𝑗,𝑖

(𝑆)−𝐻𝑖(𝑆)𝑆𝑖, which is not invested in the stock, is put into the bank account at time 𝑖. Notice that 𝑉 is assumed to be constant 
on S(𝑆,𝑗) and so its value could change with 𝑆 , i.e., 𝑉 = 𝑉 (𝑆) (depending on the past stock price evolution up to time 𝑗).

In the sequel, being A a set of real valued functions, A + will denote the set of its non-negative elements.

Definition 2.5 (Elementary vector spaces). For a fixed node (𝑆, 𝑗) set

E(𝑆,𝑗) = {𝑓 =Π𝑉 ,𝐻
𝑗,𝑛𝑓

∶𝐻 ∈ H(𝑆,𝑗),  𝑉 ∈ℝ  and 𝑛𝑓 ∈ ℕ}.

Observe that E(𝑆,𝑗) is a real vector space. Its elements are called elementary functions.

Thus, elementary functions are nothing but the payoff functions of financial derivatives that can be perfectly hedged in the 
conditional stock price model by finite linear combinations of buy-and-hold strategies.

Let also define

E𝑗 = {𝑓 ∶ S →ℝ ∶ 𝑓 |S(𝑆,𝑗)
∈ E(𝑆,𝑗) ∀𝑆 ∈ S },

where the notation 𝑓 |S(𝑆,𝑗)
means that the global domain of 𝑓 , namely S , is being restricted to the subset S(𝑆,𝑗) . We note in passing 

some abuse of notation as the same symbol Π𝑉 ,𝐻
𝑗,𝑛𝑓

is used to denote elements from E(𝑆,𝑗) and E𝑗 (in particular the implicit dependence 

on 𝑆 is not made explicit in the case when Π𝑉 ,𝐻
𝑗,𝑛𝑓

∈ E(𝑆,𝑗)). More details on global versus local portfolios are provided in [2].

2.2. Fundamental operators and almost everywhere notions

Let 𝑄 denote the set of all functions from S to [−∞,∞] and 𝑃 ⊆ 𝑄 denote the set of non-negative functions. The following 
conventions are in effect: 0 ∞= 0, ∞+ (−∞) =∞, 𝑢− 𝑣 ≡ 𝑢+ (−𝑣) ∀ 𝑢, 𝑣 ∈ [−∞,∞], and inf ∅ =∞ (unless indicated otherwise). An 
inequality 𝑎 ≤ 𝑏 in [−∞,∞] is read to be as 𝑏− 𝑎 ≥ 0 (i.e., 𝑏− 𝑎 is non-negative) and is, thus, valid, if 𝑎 = 𝑏 = +∞ or 𝑎= 𝑏 = −∞.

We say that 𝑓 ∈𝑄 has maturity 𝑛𝑓 ∈ ℕ, if 𝑓 (𝑆) = 𝑓 (𝑆̃) for every 𝑆 ∈ S and 𝑆̃ ∈ S(𝑆,𝑛𝑓 ), i.e., if 𝑓 depends on 𝑆 only through the 
first 𝑛𝑓 + 1 coordinates 𝑆0,… , 𝑆𝑛𝑓 . In this case, we sometimes write 𝑓 (𝑆0,… , 𝑆𝑛𝑓 ) in place of 𝑓 (𝑆). If 𝑓 has maturity 𝑛𝑓 for some 
𝑛𝑓 ∈ℕ, we will speak of a function 𝑓 with finite maturity.

We define next the operator 𝐼𝑗 ∶ 𝑃 → E +
𝑗

, which is a conditional extension of the operator 𝐼 defined in [10] and it is used to 
define null sets.

Definition 2.6. For a given node (𝑆, 𝑗) and a general 𝑓 ∈ 𝑃 define

𝐼𝑗𝑓 (𝑆) ≡ inf
{∑

𝑚≥1
𝑉 𝑚 ∶  𝑓 ≤∑

𝑚≥1
lim inf
𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
on S(𝑆,𝑗), Π

𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) ∀  𝑛 ≥ 𝑗

}
.

We will use the notation 𝐼𝑓 ≡ 𝐼0𝑓 . We also set, for a general 𝑓 ∈𝑄:

||𝑓 ||𝑗 (𝑆) ≡ 𝐼𝑗 |𝑓 |(𝑆)  and ||𝑓 || ≡ ||𝑓 ||0(𝑆).
Notice that 𝐼𝑗𝑓 (𝑆) = 𝐼𝑗𝑓 (𝑆0,… , 𝑆𝑗 ), i.e., 𝐼𝑗𝑓 (⋅) is constant on S(𝑆,𝑗). Moreover 

∑
𝑚≥1 𝑉 𝑚 ≥ 0 hence, 𝐼𝑗𝑓 ≥ 0, so ||0||𝑗 = 0. || ⋅ ||𝑗 (𝑆) will be called a conditional norm.
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The operator 𝐼𝑗 is defined as the infimal superhedging cost with the following two idealizations: On the one hand, a superposition 
of wealth processes of countably many portfolios is utilized. On the other hand (and in contrast to the portfolios applied in the 
definition of elementary functions), each portfolio can be re-balanced infinitely many times. Note, however, that the portfolio wealth 
Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
of each of the individual portfolios must be non-negative at any time. This restriction on the portfolio wealth is crucial to 

ensure the countable sub-additivity of 𝐼𝑗 , see Proposition 2.8. The key role of the operators 𝐼𝑗 is to detect subsets of trajectories, 
on which arbitrage opportunities exist, as (conditional) null sets. While the countable superposition is required to detect, e.g., the 
obvious arbitrage opportunities at arbitrage nodes of type II as null sets, the idealization of re-balancing a portfolio infinitely often is 
used to find further null sets that appear ‘at infinite time’.

Our notions of conditional null set and the conditional 𝑎.𝑒. property are introduced next.

Definition 2.7 (Conditional a.e. notions). Given a node (𝑆, 𝑗), a function 𝑔 ∈𝑄 is a conditionally null function at (𝑆, 𝑗) if:

‖𝑔‖𝑗 (𝑆) = 0.

A subset 𝐸 ⊆S is a conditionally null set at (𝑆, 𝑗) if ‖𝟏𝐸‖𝑗 (𝑆) = 0. A property is said to hold conditionally a.e. at (𝑆, 𝑗) (or equivalently: 
the property holds ``a.e. on S(𝑆,𝑗)'') if the subset of S(𝑆,𝑗) where it does not hold is a conditionally null set at (𝑆, 𝑗). In particular, the 
latter definition applies to 𝑔 = 𝑓 a.e. on S(𝑆,𝑗), which also will be noted with 𝑔 ≐ 𝑓 when 𝑗 = 0.

Notice that when 𝑗 = 0, the previous notions do not depend on 𝑆 and we apply the abbreviation ``a.e.'' for ``a.e. at (𝑆,0)''. Moreover, 
𝐸 ⊆S is called a null set and 𝑔 is called a null function, if ‖𝟏𝐸‖ = 0 and ‖𝑔‖ = 0, respectively.

The next results, from [10], give properties of null functions and null sets that are widely used.

Proposition 2.8. [10, Proposition 1] 𝐼 is isotone, positive homogeneous, countable subadditive and 𝐼(1S ) ≤ 1.

Proposition 2.9. [10, Proposition 2] Consider 𝑓, 𝑔 ∶ S → [−∞,∞], then

1. ‖𝑔‖ = 0 iff 𝑔 = 0 a.e.

2. The countable union of null sets is a null set.

All appearing equalities and inequalities are valid for all points in the spaces where the functions are defined unless qualified by 
an explicit a.e.

We introduce next the operator 𝜎𝑗 ∶ 𝑄 → E𝑗 , which we will call a conditional superhedging outer integral (or conditional outer 
integral); it is the key tool to define the notion of trajectorial supermartingales, the main object of study in our paper. The only 
difference compared to the superhedging operator 𝐼𝑗 is that we relax the non-negativity assumption on the portfolio wealth and, in 
this way, enlarge the set of hedging strategies. While this relaxation may look harmless, it can, in general, destroy the countable sub

additivity of the operator. Moreover, it turns out to be crucial for computing reasonable superhedging prices which are compatible 
with the null sets determined by 𝐼 , see Theorem 8.1 and Example 1 in Section 4.

Definition 2.10 (Conditional Outer Integral). For a node (𝑆, 𝑗) and a general 𝑓 ∈𝑄,

𝜎𝑗𝑓 (𝑆) ≡ inf

{∑
𝑚≥0

𝑉 𝑚 ∶ 𝑓 ≤∑
𝑚≥0

𝑓𝑚 on S(𝑆,𝑗)

}
,

where 𝑓0 = Π𝑉 0 ,𝐻0

𝑗,𝑛0
∈ E(𝑆,𝑗) and for 𝑚 ≥ 1,

𝑓𝑚 = lim inf
𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
,  and Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) ∀  𝑛 ≥ 𝑗.

Define also 𝜎
𝑗
𝑓 (𝑆) ≡ −𝜎𝑗 (−𝑓 )(𝑆). We will also set 𝜎𝑓 ≡ 𝜎0𝑓 .

In some cases we may use the notation 𝜎(𝑆,𝑗)𝑓 to make clear that the quantity 𝜎(𝑆,𝑗)𝑓 keeps (𝑆, 𝑗) fixed. More common and useful 
is our reliance on the defining notation 𝜎𝑗𝑓 (𝑆) treating 𝜎𝑗𝑓 as a function on S . Note that the initial endowments 𝑉 𝑚 at node (𝑆, 𝑗)
may depend on 𝑆 through (𝑆0,… , 𝑆𝑗 ) in all appearances.

Remark 2.11. Note that 𝜎𝑗𝑓 (𝑆) = 𝜎𝑗𝑓 (𝑆0,… , 𝑆𝑗 ). Also 𝜎𝑗 ≤ 𝐼𝑗 on the set of non-negative functions (Example 1 provides a case 
where the inequality is strict). Also, and as a side remark, 𝑓0 can also be written in a similar form as the 𝑓𝑚 , 𝑚 ≥ 1, for notational 
convenience, by means of 𝑓0 = lim inf𝑛→∞ Π𝑉 0 ,𝐻0

𝑗,𝑛
with 𝐻0

𝑖
≡ 0 for 𝑖 ≥ 𝑛0.
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2.3. Relation to classical integration

In this subsection, we briefly explain that the construction of the conditional outer integral in Definition 2.10 is analogous to 
Daniells’ approach to classical integration with respect to a measure, see Chapter 16 in Royden’s textbook [22] for a detailed account 
on Daniell integration. To this end, let Ω ≠ ∅ be a set, R be an algebra of subsets of Ω and 𝜇0 ∶ R → [0,∞) be a measure on the 
algebra R, and write

E (R) = {
𝑛 ∑
𝑖=1 

𝛼𝑖𝟏𝐴𝑖
∶ 𝛼𝑖 ∈ℝ, 𝐴𝑖 ∈ R}

for the set of step functions over R. Then, define the elementary integral via

𝐼 (𝜇0) ∶ E (R)→ℝ, 
𝑛 ∑
𝑖=1 

𝛼𝑖𝟏𝐴𝑖
↦

𝑛 ∑
𝑖=1 

𝛼𝑖𝜇0(𝐴𝑖).

It is well-known that E (R) is a vector lattice, i.e., a vector space which is closed under the operation of taking the positive part, that 
the elementary integral is well-defined, and that the following continuity-from-below property is satisfied: If (𝑓𝑚)𝑚∈ℕ is a sequence in 
E +(R) and 𝑓 ∈ E (R), then

𝑓 ≤
∞ ∑
𝑚=1

𝑓𝑚 ⇒ 𝐼 (𝜇0)(𝑓 ) ≤
∞ ∑
𝑚=1

𝐼 (𝜇0)(𝑓𝑚); (3)

see, e.g., [22, p. 420]. For a function 𝑓 ∶ Ω→ [0,∞), resp. 𝑓 ∶ Ω→ℝ, write

𝐼 (𝜇0)(𝑓 ) = inf

{ ∞ ∑
𝑚=1

𝐼 (𝜇0)(𝑓𝑚) ∶ 𝑓𝑚 ∈ E +(R), 𝑓 ≤
∞ ∑
𝑚=1

𝑓𝑚

}
, resp.

𝜎
(𝜇0)(𝑓 ) = inf

{ ∞ ∑
𝑚=0

𝐼 (𝜇0)(𝑓𝑚) ∶ 𝑓0 ∈ E (R), 𝑓𝑚 ∈ E +(R) (𝑚 ≥ 1), 𝑓 ≤
∞ ∑
𝑚=0

𝑓𝑚

}
.

Then, a function 𝑓 ∶ Ω→ℝ is called Daniell integrable ([22, p. 425]), if 𝜎(𝜇)𝑓 +𝜎
(𝜇)(−𝑓 ) = 0. Denoting the space of Daniell integrable 

functions by L1, a function 𝑓 ∶ Ω→ℝ is said to be Daniell measurable ([22, p. 429]), if min{𝑓, 𝑔} ∈ L1 for every 𝑔 ∈ L1. Then, the 
system A = {𝐴⊆Ω ∶ 𝟏𝐴 is Daniell measurable} of subsets of Ω is a 𝜎field ([22, Lemma 16.19]) and

𝜇(𝐴) ≡ 𝜎
(𝜇0)(𝟏𝐴), 𝐴 ∈ A

is a measure ([22, Lemma 16.21]), which extends the original measure 𝜇0 (which was defined on the algebra R). As usual, we write 
𝐿1(Ω,A , 𝜇) for the space of A -measurable functions 𝑓 ∶ Ω→ℝ, which are integrable with respect to the measure 𝜇. Then:

Proposition 2.12. Let 𝑓 ∶ Ω→ℝ. Then, the following assertions are equivalent:

(i) 𝑓 ∈𝐿1(Ω,A , 𝜇).
(ii) There is a sequence (𝑓𝑛)𝑛∈ℕ in E (R) such that lim𝑛→∞ 𝐼 (𝜇)(|𝑓 − 𝑓𝑛|) = 0.

(iii) 𝜎
(𝜇)(𝑓 ) + 𝜎

(𝜇)(−𝑓 ) = 0, i.e., 𝑓 is Daniell integrable.

If one (and, then, all of these equivalent) conditions are satisfied, then

∫ 𝑓𝑑𝜇 = 𝜎
(𝜇)(𝑓 ) = lim 

𝑛→∞
𝐼 (𝜇0)(𝑓𝑛).

Proof. The equivalence of (i) and (ii) and the identity ∫ 𝑓𝑑𝜇 = 𝜎
(𝜇)(𝑓 ) for 𝑓 ∈𝐿1(Ω,A , 𝜇) are justified by the formulation and the 

proof of Stone’s theorem in [22, Theorem 16.22]. Continuity from below implies that 𝐼 (𝜇0)(𝑓 ) = 𝐼 (𝜇0)(𝑓 ) for every 𝑓 ∈ E +(R). By the 
lattice property of E (R) and the linearity of the elementary integral we observe that, for every 𝑓 ∈ E (R),

𝐼 (𝜇0)(𝑓+) = 𝐼 (𝜇0)(𝑓+) = 𝐼 (𝜇0)(𝑓 ) + 𝐼 (𝜇0)(𝑓−) = 𝐼 (𝜇0)(𝑓 ) + 𝐼 (𝜇0)(𝑓−).

Here, 𝑓+ and 𝑓− denote the positive and the negative part of 𝑓 , respectively. Hence, the continuity property (*) imposed in [14, p. 
449], is satisfied. The equivalence of (ii) and (iii) and the identity 𝜎(𝜇)(𝑓 ) = lim𝑛→∞ 𝐼 (𝜇0)(𝑓𝑛) for Daniell integrable 𝑓 now follows 
from [14, pp. 453--454]. □

Roughly speaking (i.e., ignoring the limit inferior in time for the moment), in our construction of the conditional superhedging 
outer integral 𝜎𝑗 (⋅)(𝑆), the step functions are replaced by the vector space E(𝑆,𝑗) of elementary functions, see Definition 2.5, which 
model the terminal portfolio wealth Π𝑉 ,𝐻

𝑗,𝑛𝑓
of finite linear combinations of buy-and-hold strategies. Moreover, in the definition of 

𝐼𝑗 (⋅)(𝑆) and 𝜎𝑗 (⋅)(𝑆), the elementary integral is replaced by the initial endowment 𝑉 required to set up the portfolio.
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Note, however, that the vector space E(𝑆,𝑗) , in general, fails to be a vector lattice except in simple special cases such as binomial 
tree models. Therefore, we are outside the classical Daniell integration theory, but closely follow the constructions of the general 
theory of non-lattice integration developed by Leinert [16] and König [14]. In contrast to [14,16], our framework incorporates the 
notion of conditioning, which is not present in their theory. Otherwise, the only way, in which we deviate from their constructions, 
is that we have added the limit inferior of the portfolio wealth of the individual portfolios (as time goes to infinity) in the definitions 
of 𝐼𝑗 (⋅)(𝑆) and 𝜎𝑗 (⋅)(𝑆). This modification is required to obtain a sufficiently rich class of null sets ‘at infinity’ and plays an important 
role in deriving an analogue of the supermartingale convergence theorem in Section 7 below; compare also the discussion in [10].

Remark 2.13. a) Analogously to condition (iii) in Proposition 2.12, we say that 𝑓 ∈𝑄 is integrable in our framework, if 𝜎0𝑓 = 𝜎0𝑓 . 
Moreover, 𝑓 ∈𝑄 is called a conditionally integrable function at 𝑗 if it satisfies: 𝜎

𝑗
𝑓 = 𝜎𝑗𝑓 , 𝐼 − 𝑎.𝑒. As emphasized in [2], this notion 

of integrability is rather restrictive and, therefore, it will play a side role in our work.

b) In the classical integration theory, the identity 𝜎(𝜇)(𝑓 ) = 𝐼 (𝜇)(𝑓 ) holds for every 𝑓 ∈ 𝐿+
1 (Ω,A , 𝜇), see [13, p. 98]. In contrast, 

Example 1 below illustrates that the identity 𝜎 = 𝐼 may fail, in general, on the set of non-negative integrable functions in our non

lattice framework.

While the theory of Leinert [16] and König [14] shows how to dispense with the lattice property of the space of elementary func

tions in the integral construction, the continuity-from-below property is still crucial for deriving an (outer) integral with reasonable 
properties. Therefore, we will discuss continuity-from-below in our framework in the next section.

Remark 2.14. In some of the examples below, we will contrast our trajectorial approach to the classical approach to mathematical 
finance, in which pricing is linked to the concept of martingale measures by the fundamental theorem of asset pricing and the 
superhedging duality theorem, see [12] in a model-based context or [5] for a model-free (or, more precisely, a pointwise) theory in 
finite discrete time. Whenever comparing to the classical probabilistic literature, in order to avoid subtle measurability issues, cp. [5], 
we will only consider illustrative examples with a countable trajectory set S . Writing 𝑇 = (𝑇𝑗 )𝑗≥0 for the coordinate process, defined 
via 𝑇𝑗 (𝑆) = 𝑆𝑗 for every 𝑆 ∈ S and 𝑗 ≥ 0, we denote by T = (T𝑗 )𝑗≥0 the filtration generated by 𝑇 , i.e., T𝑗 = 𝜎(𝑇1… , 𝑇𝑗 ). Then, a 
sequence (𝑓𝑗 )𝑗≥0 of functions from S to ℝ is non-anticipative, if and only if it is T -adapted. Indeed, if it is non-anticipative, then for 
every 𝑗 ≥ 1, there is a function 𝐹𝑗 ∶ℝ𝑗 →ℝ such that 𝑓𝑗 = 𝐹𝑗 (𝑇1,… , 𝑇𝑗 ) and 𝐹𝑗 can be chosen Borel-measurable, because (𝑇1,… , 𝑇𝑗 )
takes at most countably many values. The converse is implied by the factorization lemma of Doob and Dynkin [13, Corollary 1.97]. 
Given a probability measure 𝐐 on the power set 2S of S , we, thus, say (following the standard definition [13, Definition 9.24]) 
that a non-anticipative sequence (𝑓𝑗 )𝑗≥0 of functions from S to [−∞,∞] is a classical probabilistic martingale (with respect to 𝐐), if 
for every 𝑗 ≥ 0 and 𝐵 ∈ T𝑗 ,

∫ |𝑓𝑗 |𝑑𝐐 <∞ and ∫ (𝑓𝑗+1 − 𝑓𝑗 )𝟏𝐵 𝑑𝐐 = 0. (4)

The probability measure 𝐐 is said to be a martingale measure for the trajectory set S , if the coordinate process (𝑇𝑗 )𝑗≥0 is a classical 
probabilistic martingale with respect to 𝐐.

3. Continuity from below

We now explain, how to phrase and check the crucial continuity-from-below condition in our framework. In view of the recap of 
classical integration in the previous subsection, the following property is completely analogous to the formulation of continuity from 
below in (3).

Definition 3.1 (Property (𝐿(𝑆,𝑗))). For a fixed node (𝑆, 𝑗), 𝑓 = Π𝑉 ,𝐻
𝑗,𝑛𝑓

∈ E(𝑆,𝑗) and 𝑓𝑚 = lim inf𝑛→∞Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
with Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈

E +
(𝑆,𝑗) for all 𝑛 ≥ 𝑗 and 𝑚 ≥ 1, define property (𝐿(𝑆,𝑗)) by

(𝐿(𝑆,𝑗)) ∶ 𝑓 ≤∑
𝑚≥1

𝑓𝑚 on S(𝑆,𝑗) ⟹ 𝑉 ≤∑
𝑚≥1

𝑉 𝑚.

If (𝐿(𝑆,𝑗)) holds for 𝑆 ∈ S 𝐼 − 𝑎.𝑒., it will be written (𝐿𝑗 ) holds 𝑎.𝑒. Since (𝐿(𝑆,0)) does not depend on 𝑆 , it will be denoted by (𝐿).

We apply the letter ‘𝐿’ for this property, as (up to our use of the limit inferior in the definitions of 𝐼 and 𝜎) this is the continuity 
condition imposed in theory of non-lattice integration by Leinert in [16].

Remark 3.2. If S(𝑆,𝑗) contains a trajectory 𝑆0, which remains constant after time 𝑗, i.e., 𝑆0
𝑖
= 𝑆𝑗 for every 𝑖 ≥ 𝑗, then 𝑓𝑚(𝑆0) = 𝑉 𝑚

for every 𝑚 ≥ 0 and 𝑓 (𝑆0) = 𝑉 , and, thus, (𝐿(𝑆,𝑗)) holds.

The following proposition contains some equivalent formulations of property (𝐿(𝑆,𝑗)). Its proof is based on standard arguments in 
the theory of non-lattice integration and is postponed to Appendix A.3.
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Proposition 3.3. For a fixed node (𝑆, 𝑗), the following items are equivalent:

1. 𝜎𝑗0(𝑆) = 0.

2. 𝜎
𝑗
𝑓 (𝑆) ≤ 𝜎𝑗𝑓 (𝑆) for any 𝑓 ∈𝑄.

3. Property (𝐿(𝑆,𝑗)).
4. 𝜎

𝑗
𝑓 (𝑆) = 𝑉 (𝑆) = 𝜎𝑗𝑓 (𝑆) for every 𝑓 =Π𝑉 ,𝐻

𝑗,𝑛𝑓
∈ E𝑗 .

Remark 3.4. Suppose (𝐿(𝑆,𝑗)) holds at a (fixed) node (𝑆, 𝑗).
a) Then 𝜎𝑗 (⋅)(𝑆) satisfies the following properties:

(S1) Isotone: If 𝑓, 𝑔 ∈𝑄 and 𝑓 ≤ 𝑔, then 𝜎𝑗𝑓 (𝑆) ≤ 𝜎𝑗𝑓 (𝑆).
(S2) Constant preserving: 𝜎𝑗𝑐(𝑆) = 𝑐 for every constant 𝑐 ∈ℝ.

(S3) Subadditive: For every 𝑓, 𝑔 ∈𝑄, 𝜎𝑗 (𝑓 + 𝑔)(𝑆) ≤ 𝜎𝑗𝑓 (𝑆) + 𝜎𝑗𝑔(𝑆).
(S4) Positive homogeneous: For every 𝑓 ∈𝑄 and every non-negative constant 𝜆, 𝜎𝑗 (𝜆𝑓 )(𝑆) = 𝜆𝜎𝑗 (𝑓 )(𝑆).

Here, (S1) and (S3) are implied by item b) and c) in Proposition A.2.1, (S2) is a consequence of Proposition 3.3--4., and (S4) holds 
by Proposition 3.3--1. for 𝜆 = 0 and by Proposition A.2.1--d) for 𝜆 > 0. Hence, 𝜎𝑗 (⋅)(𝑆) is a sublinear expectation in the sense of Peng 
[20, Definition 1.1.1]. Moreover, (S1) and (S2) imply that 𝜎𝑗𝑓 (𝑆) ≤ sup𝑆′∈S 𝑓 (𝑆′) for every 𝑓 ∈𝑄. Thus, by Theorem 4.15 in [26], 
the restriction of 𝜎𝑗 (⋅)(𝑆) to the vector space of bounded functions from S to ℝ is a coherent upper prevision.

b) Moreover, one can easily check that 𝐼𝑗 (⋅)(𝑆) satisfies (S1)--(S4) on the cone 𝑃 of non-negative functions (i.e., 𝑄 must be replaced 
by 𝑃 in (S1)--(S4) and (S2) is only supposed to hold for constants 𝑐 ≥ 0). These properties follow from the conditional version of 
Proposition 2.8 and noting that, for every constant 𝑐 ≥ 0, 𝑐 = 𝜎𝑗𝑐(𝑆) ≤ 𝐼𝑗𝑐(𝑆) ≤ 𝑐 by property (S2) for 𝜎𝑗 (⋅)(𝑆), Remark 2.11, and 
the definition of 𝐼𝑗 . Since the bounded functions in 𝑃 do not form a vector space, Theorem 4.15 in [26] cannot be applied to check 
whether 𝐼𝑗 (⋅)(𝑆) is a coherent upper prevision. We will show in Example 4 below, that 𝐼𝑗 (⋅)(𝑆) may fail to satisfy, in general, the 
coherence property (D) in [26, Definition 4.10]. The operator 𝐼𝑗 (⋅)(𝑆) is, however, always countably subadditive (Proposition 2.8), 
while 𝜎𝑗 (⋅)(𝑆) may fail to satisfy the latter property. Again, Example 4 serves as a counterexample, as detailed in [2].

Remark 3.5. Suppose the function 𝑓 describes the payoff of a financial product. If 𝑓 ∈ E(𝑆,𝑗), then 𝑓 has the form Π𝑉 ,𝐻
𝑗,𝑛

and, thus, 
the payoff can be perfectly replicated by the portfolio value of a finite linear combination of buy-and-hold strategies with initial 
endowment 𝑉 (𝑆) at time 𝑗. Hence, no investor entering the market at time 𝑗 would be willing to buy the financial product for a 
higher price than 𝑉 (𝑆) or to sell it for a lower price than 𝑉 (𝑆), which makes 𝑉 (𝑆) the only candidate for a rational price of 𝑓 . Thus, 
the equivalent condition 4. for (𝐿(𝑆,𝑗)) in Proposition 3.3 is a minimal condition for 𝜎𝑗 to be a reasonable pricing operator.

Remark 3.6. Note that the conditional outer integral 𝜎𝑗𝑓 (𝑆) is defined at any node (𝑆, 𝑗) and for any function 𝑓 ∈ 𝑄. However, 
if (𝐿(𝑆,𝑗)) fails, then, 𝜎𝑗𝑓 (𝑆) ∈ {−∞,+∞} for every 𝑓 ∈ 𝑄. Indeed, in this case, by Proposition 3.3, 𝜎𝑗0(𝑆) < 0. Consequently, by 
Proposition A.2.1--d),

𝜎𝑗0(𝑆) = lim 
𝑁→∞

𝜎𝑗 (𝑁 ⋅ 0)(𝑆) ≤ lim 
𝑁→∞

𝑁 𝜎𝑗0(𝑆) = −∞,

which in turn implies, by the subadditivity of 𝜎𝑗 in Proposition A.2.1--c),

𝜎𝑗𝑓 (𝑆) ≤ 𝜎𝑗𝑓 (𝑆) + 𝜎𝑗0(𝑆) = 𝜎𝑗𝑓 (𝑆) + (−∞)

for every 𝑓 ∈𝑄. Hence, 𝜎𝑗𝑓 (𝑆) ∈ {−∞,+∞}.

By the previous two remarks, the failure of the continuity-from-below property (𝐿(𝑆,𝑗)) at a node (𝑆, 𝑗) should be exceptional in 
order to come up with a reasonable theory of robust pricing by trajectorial superhedging. Therefore, we will assume, for most of the 
upcoming results, that property (𝐿(𝑆,𝑗)) holds outside an 𝐼 -null set in the sense of the following definition.

Definition 3.7 (Assumption (𝐿) − 𝑎.𝑒.). The following two properties will be referred as the assumption (𝐿)-a.e.:

i) (𝐿) (i.e., (𝐿(𝑆,0))) holds,

ii)

N (𝐿) ≡ {𝑆 ∈ S ∶ ∃𝑗 ≥ 0 𝑠.𝑡. (𝐿(𝑆,𝑗)) fails} (5)

is a null set (in particular, (𝐿𝑗 ) holds a.e. for every 𝑗).
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Remark 3.8. a) If (L) fails, then the set N (𝐿) in display (5) equals the whole trajectory set S . Therefore, in order to avoid trivialities, 
we include property (L) in the definition of the assumption (𝐿)-a.e.

b) The continuity property (𝐿) implies that 𝐼(𝟏S ) = 1 by Proposition 3.3--4), and, thus,

1 = 𝐼(𝟏S ) ≤ 𝐼(𝟏S ⧵M ) + 𝐼(𝟏M ) ≤ 𝐼(𝟏S ⧵M ) ≤ 1,

where M is any arbitrary null set. In particular, 𝐼(𝟏S ⧵N (𝐿) ) = 1 whenever (𝐿)-a.e. holds.

Example 5 below provides a counterexample in which N (𝐿) is not an 𝐼 -null set and, hence, property (𝐿)-a.e. fails. For the 
remainder of this section, we will, therefore, discuss, how to check this crucial property in our framework.

The strategy is to find an as large as possible subset of N (𝐿), which can be shown to be a null set, and, then, to identify sufficient 
conditions under which this null set actually coincides with N (𝐿). This strategy leads to the following notion of a ‘bad’ node.

Definition 3.9 (Bad nodes). For a fixed node (𝑆, 𝑗), let

𝑁(𝑆, 𝑗) = {𝑆̃ ∈ S(𝑆,𝑗) ∶ (𝑆̃, 𝑘) is arbitrage node and 𝑆̃𝑘+1 ≠ 𝑆̃𝑘 for some 𝑘 ≥ 𝑗}. (6)

A node (𝑆, 𝑗) is called bad, if S(𝑆,𝑗) =𝑁(𝑆, 𝑗). Otherwise, (𝑆, 𝑗) is said to be good.

Proposition 3.10. For every node (𝑆, 𝑗) the following chain of implications holds:

(𝑆, 𝑗) is an arbitrage node of type II ⇒ (𝑆, 𝑗) is bad ⇒ (𝐿(𝑆,𝑗)) fails.

Moreover, the set

N bad = {𝑆 ∈ S ∶ (𝑆, 𝑗) is bad for some 𝑗 ≥ 0}

is an 𝐼 -null set.

The proof is provided in Appendix A.3.

We will next identify sufficient conditions for the converse implications in Proposition 3.10. These sufficient conditions will be 
based on two types of hypotheses. The first one is concerned with the possibility to construct trajectories iteratively (and relaxes the 
notion of trajectorial completeness from [10]), while the second one imposes some restrictions on the successors of up-down nodes.

Definition 3.11 (Trajectorial completeness). Suppose (𝑆𝑛)𝑛≥0 is a sequence in S satisfying

𝑆𝑛
𝑖 = 𝑆𝑛+1

𝑖
, 0 ≤ 𝑖 ≤ 𝑛, (7)

for all 𝑛 ∈ℕ0. Then, its limit is defined as

lim 
𝑛→∞

𝑆𝑛 ≡ 𝑆 ≡ (𝑆𝑖)𝑖≥0,  wherein 𝑆𝑖 ≡ 𝑆𝑖
𝑖 .

Denote by S the set of all such limits 𝑆 . Then, S is called the trajectorial completion of S and the trajectory set S is said to be 
trajectorially complete, (TC) for short, if S = S .

Clearly, S ⊆ S given that for 𝑆̃ ∈ S we can take 𝑆̃𝑛 = 𝑆̃ for all 𝑛 ≥ 0. As argued in Proposition 13 of [10], S is always 
trajectorially complete. Moreover, the completion process, i.e., passing from S to S does not alter the type of the nodes (being 
up-down, no arbitrage, etc.), but, importantly, it can change a null node (i.e., a node which constitutes an 𝐼 -null set) into a non-null 
node, see Example 6 below.

We now list the hypotheses which will be applied in the upcoming results:

(TCbad) If (𝑆𝑛)𝑛≥0 is a sequence in S satisfying (7) and if there is an 𝑛0 ≥ 0 such that (𝑆𝑛, 𝑛) is a good node for every 𝑛 ≥ 𝑛0, then 
lim𝑛→∞ 𝑆𝑛 ∈ S .

(TC𝐼𝐼 ) If (𝑆𝑛)𝑛≥0 is a sequence in S satisfying (7) and if there is an 𝑛0 ≥ 0 such that (𝑆𝑛, 𝑛) is not an arbitrage node of type II for 
every 𝑛 ≥ 𝑛0, then lim𝑛→∞ 𝑆𝑛 ∈ S .

(Hbad) If (𝑆, 𝑗) is a good up-down node, then for every 𝜀 > 0 there are 𝑆𝜀,1, 𝑆𝜀,2 ∈ S(𝑆,𝑗) such that (𝑆𝜀,1, 𝑗 +1) and (𝑆𝜀,2, 𝑗 +1) are 
good nodes satisfying

𝑆𝜀,1
𝑗+1 −𝑆𝑗 ≥ −𝜀, 𝑆𝜀,2

𝑗+1 − 𝑆𝑗 ≤ 𝜀.

(H𝐼𝐼 ) If (𝑆, 𝑗) is an arbitrage node of type II, then 𝑗 ≥ 1 and (𝑆, 𝑗−1) is an up-down node and for every 𝜀 > 0 there are 𝑆𝜀,1, 𝑆𝜀,2 ∈
S(𝑆,𝑗−1) such that
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𝑆𝜀,1
𝑗

−𝑆𝑗−1 ≥ −𝜀, 𝑆𝜀,2
𝑗

−𝑆𝑗−1 ≤ 𝜀

and such that (𝑆𝜀,1, 𝑗), (𝑆𝜀,2, 𝑗) are not type II arbitrage nodes.

(H𝐼𝐼 ’) If (𝑆, 𝑗) is an up-down node, then for every 𝜀 > 0 there are 𝑆𝜀,1, 𝑆𝜀,2 ∈ S(𝑆,𝑗) such that

𝑆𝜀,1
𝑗+1 −𝑆𝑗 ≥ −𝜀, 𝑆𝜀,2

𝑗+1 − 𝑆𝑗 ≤ 𝜀

and (𝑆𝜀,1, 𝑗 + 1) and (𝑆𝜀,2, 𝑗 + 1) are not arbitrage nodes of type II.

The interplay between these conditions and their relation to the converse implications in Proposition 3.10 are clarified in the 
following theorem, which we prove in Appendix A.3.

Theorem 3.12. 

1. (TC) ⇒ (TC𝐼𝐼 ) ⇒ (TCbad)

2. (H𝐼𝐼 ) ⇒ (H𝐼𝐼 ’)

3. [(TC𝐼𝐼 ) and (H𝐼𝐼 )] ⇒ [(𝑆, 𝑗) is an arbitrage node of type II ⇔ (𝑆, 𝑗) is bad]

4. [(TCbad) and (Hbad)] ⇒ [(𝑆, 𝑗) is bad ⇔ (𝐿(𝑆,𝑗)) fails]

As corollaries we obtain the following sufficient conditions for (𝐿)-a.e. The first one, formulated in terms of bad nodes, is more 
general; the second one, formulated in terms of arbitrage nodes of type II, is easier to check.

Corollary 3.13. Assume (TCbad), (Hbad), and that (𝑆,0) is good. Then, (𝐿(𝑆,𝑗)) fails exactly at the bad nodes and (𝐿)-a.e. holds.

Proof. Since (𝑆,0) is good, Theorem 3.12--4) implies that (𝐿) holds. Moreover, N (𝐿) = N bad by Theorem 3.12--4), again. Since, 
N bad is an 𝐼 -null set by Proposition 3.10, the proof is complete. □

Corollary 3.14. Assume (TC𝐼𝐼 ) and (H𝐼𝐼 ). Then, (𝐿(𝑆,𝑗)) fails exactly at the arbitrage nodes of type II and (𝐿)-a.e. holds.

Proof. By Theorem 3.12--3), the bad nodes are, then, exactly the arbitrage nodes of type II. Therefore,

(Hbad) ⇔ (H𝐼𝐼 ’).

Thus, in view Theorem 3.12--2) the assumptions imply that (Hbad) holds. Moreover (TCbad) is satisfied by Theorem 3.12--1) and 
(𝑆,0) is not an arbitrage node of type II by assumption (H𝐼𝐼 ) (and, thus, good by Theorem 3.12--3), again). Therefore, Corollary 3.13

applies. □

4. Comparison to the game-theoretic framework

In this section, we provide a detailed comparison to the game-theoretic setting as described in the recent monograph of Shafer 
and Vovk [23]. We also refer to de Cooman and coauthors [6,25], who clarify the relation of the game-theoretic approach to Walley’s 
behavioral notion of coherence, which can equivalently be formulated in terms of lower previsions or in terms of acceptance sets.

For the comparison, we consider the game-theoretic setting of Protocol 7.10 in [23]. Its starting point is a situation space 𝕊, 
which is a set of finite sequences of elements of a nonempty set Y . To accommodate the setting of Section 2, we let Y =ℝ and call 
𝑠 = (𝑠0,… , 𝑠𝑛) a situation, if 𝑠= (𝑆0,… , 𝑆𝑛) for some 𝑆 ∈ S , i.e., if 𝑠 is the initial segment of some trajectory. We call (𝑠0) the initial 
situation and note that the initial situation is denoted by □ in [23]. Then, the set of all situations

𝕊 =
{
(𝑆0, 𝑆1,…𝑆𝑛) ∶ 𝑆 ∈ S , 𝑛 ∈ℕ

}
∪ {(𝑠0)}

is called the situation space.

Note that the function, which maps the situation 𝑠 = (𝑠0,… , 𝑠𝑛) ∈ 𝕊 to the node {𝑆 ∈ S ∶ (𝑆0,… , 𝑆𝑛) = 𝑠}, provides a one-to-one 
correspondence between the game-theoretic situations and our nodes. For each 𝑠 = (𝑠0,… , 𝑠𝑛) ∈ 𝕊 and 𝑦 ∈ ℝ, the game-theoretic 
framework applies the notation 𝑠𝑦 = (𝑠0,… , 𝑠𝑛, 𝑦) and

Y𝑠 ≡ {𝑦 ∈ℝ ∶ 𝑠𝑦∈ 𝕊} .

The assumption that Y𝑠 is non-empty for every situation 𝑠 ensures that one can continue from any situation of a given length 𝑛 to 
a new one of length 𝑛 + 1 and so on. It is trivially satisfied in our specification: if 𝑠 = (𝑆0,… , 𝑆𝑛) for some 𝑆 ∈ S and 𝑛 ∈ ℕ0, then 
𝑆𝑛+1 ∈ Y𝑠. Given a situation space 𝕊, Shafer and Vovk introduce the sample space

Ω= {𝜔 ∈ℝℕ ∶ ∀𝑛 ∈ℕ (𝑠0,𝜔1,… ,𝜔𝑛) ∈ 𝕊}.

The next lemma shows that the sample space of Shafer and Vovk coincides with the trajectorial completion of the trajectory set, 
see Definition 3.11.
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Lemma 4.1. S = {(𝑠0,𝜔1,𝜔2,…) ∶ 𝜔 ∈Ω}.

The proof of Lemma 4.1 as well as the proofs of the other results of this section will be given in Appendix A.4.

Remark 4.2. By the previous lemma, the sample space of the game-theoretic framework always corresponds to a complete trajectory 
set, while no assumption on trajectorial completeness is made in the general setting of our trajectorial framework. Working with 
incomplete trajectory spaces provides more flexibility in the modeling. For example, let us consider

S = {(1, 𝑠1, 𝑠2,…) ∶ 𝑠𝑗 ∈ {0,1}, 𝑠𝑗 = 1infinitely often and 𝑠𝑗 = 0 infinitely often}.

This trajectory space models a sequence of coin tosses, but rules out that heads (‘0’) or tails (‘1’) only come up finitely often. The 
corresponding sample space Ω = {0,1}ℕ cannot incorporate the a-priori belief on neither heads nor tails coming up only finitely 
often.

However, the lack of trajectorial completeness will lead to substantial differences in the theory to be developed in this paper 
compared to the game-theoretic framework.

To each situation 𝑠 = (𝑠0,… , 𝑠𝑗 ), one can associate a one-period financial model with initial stock price 𝑠𝑗 , where Y𝑠 denotes 
the set of possible stock prices one time step later. We may think of a financial derivative in this one-period model as a function 
𝔣𝑠 ∶ Y𝑠 → [−∞,∞], where 𝔣𝑠(𝑦) describes the payoff of the derivative, if the stock price 𝑦 realizes at the end of the one-period model. 
The set of payoffs offered to the investor in situation 𝑠 = (𝑠0,… , 𝑠𝑗 ) is denoted by G𝑠. In the superhedging context, one may choose

G𝑠 = {𝔣𝑠 ∶ Y𝑠 → [−∞,∞] ∶ ∃ℎ ∈ [−∞,∞] ∀𝑦 ∈ Y𝑠 ∶ ℎ ⋅ (𝑦− 𝑠𝑗 ) − 𝔣𝑠(𝑦) ≥ 0 and ℎ ⋅ (𝑦− 𝑠𝑗 ) > −∞} (8)

as offer sets, for 𝑠 = (𝑠0,… , 𝑠𝑗 ) ∈ 𝕊. In the terminology of [23], the investor is also called ‘Skeptic’ and chooses the portfolio position 
ℎ in the one-period model. The investor can be considered to play a game against an opponent called ‘Reality’ or ‘World’ who picks 
the stock price 𝑦 at the end of the one-period model.

By (8), a payoff 𝔣𝑠 is offered at situation 𝑠, if and only if it can be superhedged with zero initial endowment in the one-period 
sub-model starting at situation 𝑠. Note that infinite portfolio positions are possible, provided the portfolio wealth cannot become 
−∞, compare also Example 6.3 in [23] for a related definition. However, the infinite portfolio positions are only required to fully 
exploit the arbitrage opportunities that arise at arbitrage nodes. E.g., applying an infinite portfolio position at an arbitrage node of 
type II, leads to an infinite gain and, thus, all payoffs are offered at arbitrage nodes of type II. On the contrary, at up-down nodes 
finite portfolio positions can be applied only. These aspects are clarified by the following lemma.

Lemma 4.3. Suppose 𝑠 = (𝑠1,… , 𝑠𝑗 ) ∈ 𝕊. Then,

G𝑠 = {𝔣𝑠 ∶ Y𝑠 → [−∞,∞] ∶ ∃ℎ∈ (−∞,∞) ∀𝑦 ∈ Y𝑠 ∶ ℎ ⋅ (𝑦− 𝑠𝑗 ) ≥ 𝔣𝑠(𝑦)},

if the associated node {𝑆 ∈ S ∶ (𝑆0,… , 𝑆𝑗 ) = 𝑠} is an up-down node;

G𝑠 = {𝔣𝑠 ∶ Y𝑠 → [−∞,∞] ∶ 𝔣𝑠(𝑠𝑗 ) ≤ 0},

if the associated node is an arbitrage-node of type I or a flat node;

G𝑠 = {𝔣𝑠 ∶ Y𝑠 → [−∞,∞]},

if the associated node is an arbitrage-node of type II.

The game-theoretic approach largely relies on the assumption that the acceptance sets A𝑠 = {−𝔣𝑠 ∶ 𝔣𝑠 ∈ G𝑠} constructed from the 
offer sets satisfy certain rationality assumptions related to Walley’s behavioral notion of coherence. The latter include, see [6]:

(D.1) If (−𝔣𝑠)(𝑦) ≤ 0 for every 𝑦 ∈ Y𝑠 and (−𝔣𝑠)(𝑦′) < 0 for some 𝑦′ ∈ Y𝑠, then (−𝔣𝑠) ∉ A𝑠.

(D.2) If (−𝔣𝑠)(𝑦) ≥ 0 for every 𝑦 ∈ Y𝑠, then (−𝔣𝑠) ∈ A𝑠.

(D.3) If (−𝔣𝑠), (−𝔤𝑠) ∈ A𝑠, then so is (−𝔣𝑠) + (−𝔤𝑠).
(D.4) If (−𝔣𝑠) ∈ A𝑠 and 𝜆 ≥ 0 is constant, then 𝜆(−𝔣𝑠) ∈ A𝑠.

Axioms (D.2)--(D.4) are easily verified for the offer sets G𝑠 introduced above. However, (D.1), which can be considered as a model-free 
no-arbitrage condition for the one-period models, fails, if for 𝑠 = (𝑠0,… , 𝑠𝑗 ) ∈ 𝕊 the associated node {𝑆 ∈ S ∶ (𝑆0,… , 𝑆𝑗 ) = 𝑠} is 
an arbitrage node (as can be seen from Lemma 4.3). (D.1), at first glance, may look both natural and compelling as a starting axiom 
as one is not accepting a gamble, in which one cannot win, but one may lose. Nonetheless, this reasoning fails at arbitrage nodes: 
suffering a loss becomes irrelevant, if the loss can be compensated by exploiting the arbitrage that is available at an arbitrage node.

The setting of Shafer and Vovk [23], p. 121, weakens the rationality axiom (D.1) to

(D.1’) If (−𝔣𝑠)(𝑦) < 0 for every 𝑦 ∈ Y𝑠, then (−𝔣𝑠) ∉ A𝑠.
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(D.1’) can accommodate arbitrage nodes of type I, but is still in conflict with arbitrage nodes of type II (see Lemma 4.3, again).

Therefore, by considering arbitrage nodes of type II, our setting neither satisfies (D.1) nor the weaker assumption (D.1’), which 
crucially changes the analysis compared to the standard game-theoretic approach.

We next relate sequences (𝑔𝑗 )𝑗≥0 of non-anticipative functions (see Definition 2.3) with values in [−∞,∞] to the notion of a process 
in the game-theoretic framework, which is (by definition) a mapping 𝔤 ∶ 𝕊→ [−∞,+∞]. Given a sequence (𝑔𝑗 ) of non-anticipative 
functions and a situation 𝑠 = (𝑠0,… , 𝑠𝑗 ), we choose some 𝑆 ∈ S such that (𝑆0,… , 𝑆𝑗 ) = 𝑠 and define

𝔤(𝑠) ≡ 𝑔𝑗 (𝑆), (9)

which does not depend on the choice of 𝑆 , because the sequence (𝑔𝑗 ) is non-anticipative. Clearly, this construction provides a one

to-one correspondence between the set of sequences of non-anticipative functions and the set of mappings from 𝕊 to [−∞,∞].
The game-theoretic approach applies the offer sets to define a notion of supermartingale. In view of Propositions 6.10 and 7.2 in 

[23], we say that a process 𝔤 ∶ 𝕊→ [−∞,+∞] is a supermartingale with respect to the offer sets (G𝑠)𝑠∈𝕊 (G -supermartingale, for short), 
if for every 𝑠 ∈ 𝕊

inf{𝛼 ∈ℝ ∶ (Y𝑠 → [−∞,+∞], 𝑦↦ 𝔤(𝑠𝑦) − 𝛼) ∈ G𝑠} ≤ 𝔤(𝑠). (10)

Accordingly, a sequence (𝑔𝑗 )𝑗≥0 of non-anticipative functions will be said to be a G -supermartingale sequence, if the associated process 
via (9) is a G -supermartingale. Note that this notion of a G -supermartingale is ‘local’ in the sense that it only relies on superhedging 
in the one-period submodels that start at each node (or, equivalently, at each situation).

Based on the notion of G -supermartingales, the game-theoretic approach defines a ‘global’ outer expectation operator, see p. 142 
in [23]. In our notation it can be written as

𝔼𝑓 = inf{𝑔0 ∶ (𝑔𝑗 )𝑗≥0 is a G -supermartingale sequence, inf 
𝑗≥0, 𝑆∈S

𝑔𝑗 (𝑆) > −∞, and lim inf
𝑗→∞ 𝑔𝑗 (𝑆) ≥ 𝑓 (𝑆) for every 𝑆 ∈ S }.

The following example shows that this global outer expectation operator 𝔼 does, in general, neither coincide with the superhedging 
outer integral 𝜎 nor with the operator 𝐼 , which determines the null sets in the trajectorial approach.

Example 1. We consider the trajectory set

S = {𝑆0, 𝑆−,−, 𝑆−,0, 𝑆−,+, 𝑆+,𝑛|𝑛 ∈ℕ},

wherein 𝑆0
𝑗
= 4 for every 𝑗 ≥ 0,

𝑆−,0
𝑗

=

{
4, 𝑗 = 0
2, 𝑗 ≥ 1

, 𝑆−,−
𝑗

=
⎧⎪⎨⎪⎩
4, 𝑗 = 0
2, 𝑗 = 1
1, 𝑗 ≥ 2

, 𝑆−,+
𝑗

=

⎧⎪⎪⎨⎪⎪⎩
4, 𝑗 = 0
2, 𝑗 = 1
3, 𝑗 = 2
2, 𝑗 ≥ 3

, 𝑆+,𝑛
𝑗

=
⎧⎪⎨⎪⎩
4, 𝑗 = 0,
𝑛+ 4, 𝑗 = 1
𝑛+ 7∕2, 𝑗 ≥ 2

, 𝑛 ∈ℕ.

As illustrated in Fig. 1, this trajectory set features arbitrage nodes of type II. For this trajectory set, (𝐿)-a.e. holds by virtue of 
Corollary 3.14. Moreover, the following will be shown in Appendix A.4:

a) 𝜎(𝑓 ) = 𝑓 (𝑆0) = ∫ 𝑓𝑑𝐐 for every 𝑓 ∶ S → (−∞,∞), where 𝐐 denotes the Dirac measure on 𝑆0;

b) 𝐐 is the unique martingale measure for S , cp. Remark 2.14;

c) 𝔼𝑓 =max{𝑓 (𝑆0), 𝑓 (𝑆−,0)} for every 𝑓 ∶ S → (−∞,∞);
d) 𝐼𝑓 =max{𝑓 (𝑆0), 𝑓 (𝑆−,0), 12𝑓 (𝑆

−,−)} for every 𝑓 ∶ S → [0,∞).

Items a), c) and d) show that 𝜎(𝑓 ) < 𝔼𝑓 < 𝐼𝑓 , if 12𝑓 (𝑆
−,−) > 𝑓 (𝑆−,0) > 𝑓 (𝑆0) ≥ 0. Thus, both operators 𝜎 and 𝐼 , which are constructed 

along the lines of the König-Leinert theory of non-lattice integration [14,16], are different from the global outer expectation operator 
of the game-theoretic approach of Shafer and Vovk [23]. Moreover, by item b), only the superhedging operator 𝜎 computes prices 
which are compatible with the paradigm of martingale pricing in mathematical finance. Theorem 8.1 below provides more evidence 
that the (conditional) superhedging outer integral 𝜎𝑗 has a proper interpretation as superhedging price operator, where superhedging 
takes place by trading with linear combinations of buy-and-hold strategies and the superhedge must hold up to an 𝐼 -null set. Note 
that, by item d), neither {𝑆−,0} nor {𝑆−,−} are 𝐼 -null sets, while both are null sets with respect to the unique martingale measure 
𝐐. Hence, in this example, superhedges in our setting must hold on a larger set than superhedges constructed in the probabilistic 
framework.

Following the lines of Example 6 below, one can easily modify the trajectory set in such a way that it does not have arbitrage nodes 
of type II, but fails to be trajectorially complete, and properties a)--d) still hold. Summarizing, the example (as well as Theorem 8.1

below) illustrates that in our framework which encompasses trajectorially incomplete models and models with arbitrage nodes of 
type II, the outer integral operator 𝔼 of the game-theoretic approach might better be replaced by the superhedging outer integral 𝜎
for the computation of meaningful superhedging prices.
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Fig. 1. Illustration of the trajectory set in Example 1. 

The main object studied in this paper are supermartingales defined via the conditional superhedging outer integral 𝜎𝑗 by the 
property

𝜎𝑗𝑓𝑗+1 ≤ 𝑓𝑗 𝐼 − 𝑎.𝑒. 0 ≤ 𝑗 <∞.

Here, (𝑓𝑗 )𝑗≥0 is, of course, a sequence of non-anticipative functions. By the following proposition every G -supermartingale sequence 
is also a supermartingale in our sense (defined via 𝜎𝑗 ).

Proposition 4.4. If a sequence of non-anticipative [−∞,+∞]-valued functions (𝑔𝑗)𝑗≥0 is a G -supermartingale sequence, then, for every 
𝑗 ≥ 0 and 𝑆 ∈ S ,

𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑔𝑗 (𝑆).

It turns out, however, that there are supermartingales (based on 𝜎𝑗 ), which fail to be G -supermartingale sequences. The intuitive 
reason is that 𝜎𝑗 is based on superhedging in infinite time, and so failure to superhedge in the one-period submodel can be compensated 
by exploiting arbitrage opportunities that may arise at later times. These arbitrage opportunities at later times and, thus, the new 
types of supermartingales appear because of trajectorial incompleteness or the presence of arbitrage nodes of type II, and, for these 
reasons, do not show up in the game-theoretic framework (compare Lemma 7.6 in [23]). Here is a simple example.

Example 2. In the framework of Example 1, consider the sequence (𝑓𝑗 )𝑗≥0 defined via 𝑓0 = 0 and 𝑓𝑗 = 𝟏𝑇1≠4 for 𝑗 ≥ 1 -- recalling 
𝑇1(𝑆) = 𝑆1 for every 𝑆 ∈ S . Then, by Proposition A.2.1--a), 𝜎𝑗𝑓𝑗+1(𝑆) = 𝜎𝑗 (𝟏𝑇1≠4)(𝑆) ≤ 𝟏𝑇1≠4(𝑆) = 𝑓𝑗 (𝑆) for every 𝑗 ≥ 1 and 𝑆 ∈ S . 
Moreover, by item a) in Example 1, 𝜎0𝑓1 = 𝑓1(𝑆0) = 0 = 𝑓0. Hence, (𝑓𝑗 )𝑗≥0 satisfies 𝜎𝑗𝑓𝑗+1(𝑆) ≤ 𝑓𝑗 (𝑆) for every 𝑗 ≥ 0 and 𝑆 ∈ S . 
However, (𝑓𝑗 )𝑗≥0 is not a G -supermartingale sequence for the offer sets introduced in (8). Otherwise, by Lemma 4.3 and the definition 
of a G -supermartingale sequence in (10), for every 𝜀 > 0 we would find an ℎ ∈ ℝ such that 𝜀 + ℎ(𝑆1 − 𝑆0) ≥ 𝑓1(𝑆) = 1 for every 
𝑆 ∈ S ⧵ {𝑆0}. This clearly leads to a contradiction, since, e.g., 𝑆−,0

1 −𝑆−,0
0 < 0 and 𝑆+,1

1 −𝑆+,1
0 > 0.

Summarizing, in the context of financial models in infinite discrete time, the game-theoretic framework can only be applied, if 
the trajectory set is trajectorially complete and has no arbitrage nodes of type II. In this case, the continuity condition (𝐿(𝑆,𝑗)) holds 
at every node (𝑆, 𝑗) by Corollary 3.14 and the two families of superhedging operators (𝜎𝑗 )𝑗≥0 and (𝐼𝑗 )𝑗≥0 coincide on the cone of 
non-negative functions by Theorem 8.4. More generally, our setting allows for the case where (𝐿(𝑆,𝑗)) fails on a null set; in this case 
the two families of superhedging operators (𝜎𝑗 )𝑗≥0 and (𝐼𝑗 )𝑗≥0 differ. Moreover, 𝜎 has a proper interpretation as superhedging price 
by Theorem 8.1 and the role of 𝐼 is to detect the arbitrage opportunities as null sets. In our more general financial setting, new types 
of supermartingales (defined via 𝜎𝑗 ) arise compared to the notion of supermartingales in the game-theoretic framework.

Remark 4.5. The game-theoretic approach to mathematical finance can also be applied in continuous time, as initiated by Vovk [28]. 
In this approach, the null sets of the model are determined by the outer measure introduced in [28] or variations thereof [1]. This 
outer measure, thus, plays a similar role as the superhedging functional 𝐼 in our trajectorial approach, but we emphasize again that 
proper superhedging prices are computed by the outer superhedging integral 𝜎 in our approach; cp. also Section 2.5.2 in [2] for a 
more detailed comparison to the continuous-time game theoretic approach.
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5. Supermartingales: definition and examples

Next is our definition of trajectorial supermartingales, submartingales, and martingales and of stopping times.

Definition 5.1. Consider a sequence (𝑓𝑗 )𝑗≥0 of non-anticipative functions 𝑓𝑗 ∶ S → [−∞,∞], 𝑗 ≥ 0. We say,

(𝑓𝑗 ) is a supermartingale if

𝜎𝑗𝑓𝑗+1 ≤ 𝑓𝑗 𝑎.𝑒. 0 ≤ 𝑗 <∞,

(𝑓𝑗 ) is a submartingale if

𝑓𝑗 ≤ 𝜎
𝑗
𝑓𝑗+1 𝑎.𝑒. 0 ≤ 𝑗 <∞,

(𝑓𝑗 ) is a martingale if

𝜎
𝑗
𝑓𝑗+1 = 𝜎𝑗𝑓𝑗+1 = 𝑓𝑗 𝑎.𝑒. 0 ≤ 𝑗 <∞.

Remark 5.2. Notice that if (𝑓𝑗 )𝑗≥0 is a martingale, then according to Remark 2.13, 𝑓𝑗+1 is conditionally integrable at 𝑗 for any 𝑗 ≥ 0. 
Moreover, if (𝑓𝑗 )𝑗≥0 is a sub- and a supermartingale, then, under Assumption (𝐿)-a.e., (𝑓𝑗 )𝑗≥0 is a martingale, since by Proposition 3.3

𝜎
𝑗
𝑓 ≤ 𝜎𝑗𝑓 holds 𝑎.𝑒. for any 𝑓 ∈𝑄.

Definition 5.3 (Stopping time, as per Definition 8 in [10]). Given a trajectory space S , a trajectory based stopping time (or stopping time 
for short) is a function 𝜏 ∶ S →ℕ ∪ {∞} such that:

for any 𝑆,  𝑆′ ∈ S if 𝑆𝑘 = 𝑆′
𝑘

for 0 ≤ 𝑘 ≤ 𝜏(𝑆),  then 𝜏(𝑆) = 𝜏(𝑆′).

We next provide examples for the above definitions.

Example 3. a) Suppose that (𝐿)-a.e. holds. If 𝑉 ∈ℝ and (𝐻𝑗 )𝑗≥0 is a non-anticipative sequence, then

𝑀𝑗 (𝑆) ≡ 𝑉 +
𝑗−1 ∑
𝑖=0 

𝐻𝑖(𝑆)Δ𝑖𝑆, 𝑆 ∈ S , 𝑗 ≥ 0,

satisfies the martingale property 𝜎
𝑗
𝑀𝑗+1(𝑆) = 𝜎𝑗𝑀𝑗+1(𝑆) =𝑀𝑗 (𝑆) whenever (𝐿(𝑆,𝑗)) holds (this is so by Proposition 3.3 item (4)). 

In particular, the coordinate process (𝑇𝑗 )𝑗≥0, 𝑇𝑗 (𝑆) ≡ 𝑆𝑗 , forms a martingale sequence (with 𝐻𝑖 ≡ 1 and 𝑉 = 𝑆0).

b) For any 𝑓 ∈𝑄, the sequence (𝑓𝑗 )𝑗≥0 defined by

𝑓𝑗 (𝑆) ≡ 𝜎𝑗𝑓 (𝑆), 𝑆 ∈ S , 𝑗 ≥ 0,

forms a supermartingale and the sequence (𝑓𝑗 )𝑗≥0 defined by

𝑓𝑗 (𝑆) ≡ 𝜎
𝑗
𝑓 (𝑆), 𝑆 ∈ S , 𝑗 ≥ 0,

forms a submartingale by the tower property in Proposition 5.5 below.

c) If (𝑓𝑗 )𝑗≥0 is a supermartingale and (𝐷𝑗 )𝑗≥0 is a non-anticipative sequence of non-negative functions, then the supermartingale 
transform (𝑔𝑗 )𝑗≥0

𝑔𝑗 (𝑆) ≡ 𝑓0 +
𝑗−1 ∑
𝑖=0 

𝐷𝑖(𝑓𝑖+1 − 𝑓𝑖), 𝑆 ∈ S , 𝑗 ≥ 0,

is again a supermartingale. This follows from subadditivity of 𝜎𝑗 and the remark that: 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝜎𝑗𝑔𝑗 (𝑆) + 𝜎𝑗 (𝐷𝑗 (𝑓𝑗+1 − 𝑓𝑗 ))(𝑆) ≤
𝑔𝑗 (𝑆) +𝐷𝑗 (𝑆) 𝜎𝑗 (𝑓𝑗+1 − 𝑓𝑗 )(𝑆) ≤ 𝑔𝑗 (𝑆) +𝐷𝑗 (𝑆)[𝜎𝑗𝑓𝑗+1(𝑆) − 𝑓𝑗 (𝑆)] ≤ 𝑔𝑗 (𝑆) (where we relied on Proposition A.2.1 for the second 
inequality and to conclude that 𝜎𝑗 (𝑓𝑗+1 − 𝑓𝑗 )(𝑆) ≤ 𝜎𝑗 (𝑓𝑗+1)(𝑆) + 𝜎𝑗 (−𝑓𝑗 )(𝑆) ≤ 𝜎𝑗 (𝑓𝑗+1)(𝑆) − 𝑓𝑗 (𝑆)).

If (𝑓𝑗 )𝑗≥0 is a submartingale, then we call (𝑔𝑗 )𝑗≥0 (defined as above) a submartingale transform, which by the duality 𝑓𝑗 → −𝑓𝑗 , 
𝜎𝑗 → 𝜎

𝑗
, is a submartingale.

d) If (𝑓𝑗 )𝑗≥0 is a supermartingale and 𝜏 is a stopping time, then the stopped sequence (𝑓𝜏
𝑗
)𝑗≥0 defined by

𝑓𝜏
𝑗 (𝑆) ≡ 𝑓𝜏(𝑆)∧𝑗 (𝑆),

is a supermartingale. This is a consequence of the previous item with the choice
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𝐷𝑖(𝑆) =

{
1, 𝜏(𝑆) > 𝑖

0, 𝜏(𝑆) ≤ 𝑖
, 𝑆 ∈ S , 𝑗 ≥ 0,

which is non-anticipative by Lemma 5.4 below.

Lemma 5.4. Let 𝜏 a stopping time and 𝐻𝑘 = (𝐻𝑘
𝑖
)𝑖≥0, 𝑘 = 1,2 sequences of non-anticipative functions. For 𝑆 ∈ S , 𝑗 ≥ 0 define the following 

functions on S(𝑆,𝑗):

𝐻𝜏
𝑖 (𝑆̃) =

{
𝐻1

𝑖
(𝑆̃) if 𝑗 ≤ 𝑖 < 𝜏(𝑆̃)

𝐻2
𝑖
(𝑆̃) if 𝜏(𝑆̃) ≤ 𝑖,

𝑖 ≥ 𝑗, 𝑆̃ ∈ S(𝑆,𝑗).

Then 𝐻𝜏 = (𝐻𝜏
𝑖
)𝑖≥𝑗 is a sequence of non-anticipative functions on S(𝑆,𝑗).

Proof. Let 𝑆̃, 𝑆̂ ∈ S(𝑆,𝑗) such that 𝑆̃𝑘 = 𝑆̂𝑘, 𝑗 ≤ 𝑘 ≤ 𝑖. If 𝑗 ≤ 𝜏(𝑆̂) ≤ 𝑖⇒ 𝜏(𝑆̃) = 𝜏(𝑆̂) ≤ 𝑖 & 𝐻𝜏
𝑖
(𝑆̃) =𝐻2

𝑖
(𝑆̃) =𝐻2

𝑖
(𝑆̂) =𝐻𝜏

𝑖
(𝑆̂). While, 

by symmetry in previous reasoning, 𝑖 < 𝜏(𝑆̂)⇒ 𝑖 < 𝜏(𝑆̃) & 𝐻𝜏
𝑖
(𝑆̂) =𝐻1

𝑖
(𝑆̂) =𝐻1

𝑖
(𝑆̃) =𝐻𝜏

𝑖
(𝑆̃). □

Proposition 5.5 (Tower Inequality). Let 𝑆 be an arbitrary element of S and 𝑗 ≤ 𝑘 non-negative integers; also let 𝑓 ∈𝑄. Then,

𝜎𝑗 (𝜎𝑘 𝑓 )(𝑆) ≤ 𝜎𝑗𝑓 (𝑆).

Proof. In order to establish the desired result, it is enough to consider the case when the following inequality holds on S(𝑆,𝑗) (oth

erwise 𝜎𝑗𝑓 (𝑆) =∞): 
𝑓 ≤Π𝑉 0 ,𝐻0

𝑗,𝑛0
+
∑

𝑚≥1 lim inf𝑛→∞Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
for some (𝑉 𝑚,𝐻𝑚)𝑚≥0 such that Π𝑉 0 ,𝐻0

𝑗,𝑛0
∈ E(𝑆,𝑗) and Π𝑉 𝑀 ,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) for every 𝑛 ≥ 𝑗. This in

equality implies that 𝜎𝑘𝑓 (𝑆̃) ≤∑𝑚≥0 Π𝑉 𝑚,𝐻𝑚

𝑗,𝑘
(𝑆̃) holds for all 𝑆̃ ∈ S(𝑆,𝑗), which in turn implies 𝜎𝑗 (𝜎𝑘𝑓 )(𝑆) ≤∑𝑚≥0 𝑉 𝑚(𝑆). Therefore 

the result follows by the definition of 𝜎𝑗 as an infimum. □

We next present sufficient conditions for the tower inequality to turn into an equality (and so obtaining an analogous result to the 
classical tower property), which in turn implies that (𝜎𝑗𝑓 )𝑗≥0 is a martingale sequence.

Corollary 5.6. Assume (𝐿)-a.e. and, for a fixed 𝑓 ∈𝑄, assume that either 𝑎) or 𝑏) below hold:

a) 𝑓 is conditionally integrable for every 𝑗 ≥ 0;

b) 𝑓 is integrable and 𝐼 = 𝜎 on non-negative functions with finite maturity.

Then, 𝜎𝑗 (𝜎𝑘 𝑓 )(𝑆) = 𝜎𝑗𝑓 (𝑆) holds for every 𝑗 ≤ 𝑘 and for a.e. 𝑆 and (𝜎𝑗𝑓 )𝑗≥0 is a martingale sequence.

Proof. We start with the following preliminary considerations: since (𝐿)-a.e. holds, we conclude from Proposition 3.3 that 𝜎
𝑗
𝑔 ≤ 𝜎𝑗𝑔

a.e. holds for every 𝑔 ∈ 𝑄 and 𝑗 ≥ 0. Applying this twice with 𝑔 = 𝑓 and with 𝑔 = 𝜎𝑘𝑓 , for 𝑗 ≤ 𝑘, in view of Corollary A.2.2, the 
following chain of inequalities holds a.e.

𝜎
𝑗
[𝜎

𝑘
𝑓 ] ≤ 𝜎

𝑗
[𝜎𝑘𝑓 ] ≤ 𝜎𝑗 [𝜎𝑘𝑓 ].

Applying Proposition 5.5, we obtain,

𝜎
𝑗
𝑓 ≤ 𝜎

𝑗
[𝜎

𝑘
𝑓 ] ≤ 𝜎

𝑗
[𝜎𝑘𝑓 ] ≤ 𝜎𝑗 [𝜎𝑘𝑓 ] ≤ 𝜎𝑗𝑓 , 𝑎.𝑒. (11)

a) The conditional integrability assumption now turns all a.e.-inequalities in (11) into equalities valid a.e. In particular, taking 
𝑘 = 𝑗 + 1, it follows that (𝜎𝑗𝑓 )𝑗≥0 is a martingale.

b) Let 𝑗 = 0. Then, the integrability assumption turns all inequalities in (11) into identities. In particular, we obtain 𝜎[𝜎𝑘𝑓 ] =
𝜎[𝜎

𝑘
𝑓 ], 𝜎[𝜎𝑘𝑓 ] = 𝜎[𝜎𝑘𝑓 ] and also 𝜎[𝜎

𝑘
𝑓 ] = 𝜎[𝜎

𝑘
𝑓 ] (with −𝑓 in place of 𝑓 ). We then have access to Corollary A.2.4 (applied to the 

functions 𝜎𝑘𝑓 and −𝜎
𝑘
𝑓 and 𝑗 = 0) to compute

𝜎[𝜎𝑘𝑓 − 𝜎
𝑘
𝑓 ] = 𝜎[𝜎𝑘𝑓 ] + 𝜎[−𝜎

𝑘
𝑓 ] = 𝜎[𝜎𝑘𝑓 ] − 𝜎[𝜎

𝑘
𝑓 ] = 0.

Therefore, given that 𝜎𝑘𝑓 − 𝜎
𝑘
𝑓 ≥ 0 a.e. (as per Proposition 3.3) we have

𝐼[(𝜎𝑘𝑓 − 𝜎
𝑘
𝑓 )+] = 𝜎[(𝜎𝑘𝑓 − 𝜎

𝑘
𝑓 )+] = 𝜎[𝜎𝑘𝑓 − 𝜎

𝑘
𝑓 ] = 0,

which, by Proposition 2.9 item (1), implies 𝜎𝑘𝑓 − 𝜎
𝑘
𝑓 ≤ 0 a.e. The two inequalities together yield 𝜎𝑘𝑓 = 𝜎

𝑘
𝑓 a.e., hence the condi

tional integrability of 𝑓 at 𝑘. Since 𝑘 is arbitrary, b) is reduced to a). □
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6. Supermartingale decomposition

In this section we prove a supermartingale representation theorem. It can be considered as an analogue of the uniform Doob 
decomposition in discrete time (see, e.g., Theorem 7.5 in [12]) or the optional decomposition theorem in continuous time [15], 
which apply to stochastic processes that are supermartingales simultaneously under a family of probability measures.

Theorem 6.1 (Supermartingale decomposition). Under Assumption (𝐿)-a.e., let (𝑓𝑗)𝑗≥0 be a sequence of non-anticipative real-valued func

tions. Then, the following assertions are equivalent:

(i) (𝑓𝑗 )𝑗≥0 is a supermartingale. 
(ii) For every sequence (𝛿𝑗)𝑗≥0 of positive real numbers there are sequences (𝐻𝑗)𝑗≥0 and (𝐴𝑗 )𝑗≥0, of non-anticipative real-valued functions 

defined on S , such that (𝐴𝑗)𝑗≥0 is nondecreasing, 𝐴0 = 0, and

𝑓𝑖(𝑆) = 𝑓0 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 −𝐴𝑖(𝑆) +
𝑖−1 ∑
𝑗=0 

𝛿𝑗 ,

for every 𝑆 ∈ S ⧵𝑁𝑓 and 𝑖≥ 0. Here 𝑁𝑓 is an 𝐼 -null set independent of (𝛿𝑗 )𝑗≥0.

Remark 6.2. Theorem 6.1 shows that up to the small 𝛿-errors and null sets, supermartingales can be decomposed into a difference 
of a martingale (of the special form as in Example 3-(a)) and a non-anticipative, nondecreasing sequence. We will illustrate the 
supermartingale decomposition theorem, its assumptions, and its applicability beyond the classical probabilistic setting in a series of 
examples at the end of this section.

The proof of Theorem 6.1 relies on two lemmas, which we call Finite Maturity Lemma and Aggregation Lemma.

Lemma 6.3 (Finite Maturity). Suppose 𝑓 ∶ S → ℝ has maturity 𝑛𝑓 for some 𝑛𝑓 ∈ ℕ. Let 𝑗 ≤ 𝑛𝑓 and 𝑆∗ ∈ S be such that the property 
(𝐿(𝑆∗ ,𝑛𝑓 )) holds.

If 𝑓𝑚 = lim inf𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
, Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆∗ ,𝑗), where 𝑚 ≥ 1, and 𝑓0 = Π𝑉 0 ,𝐻0

𝑗,𝑛0
∈ E(𝑆∗ ,𝑗) satisfy

𝑓 ≤
∞ ∑
𝑚=0

𝑓𝑚, on S(𝑆∗ ,𝑗),  (12)

then,

𝑓 ≤
∞ ∑
𝑚=0

Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛𝑓
on S(𝑆∗ ,𝑛𝑓 ) (each side is constant on S(𝑆∗ ,𝑛𝑓 )). (13)

Proof. Define for each 𝑆̃ ∈ S(𝑆∗ ,𝑛𝑓 ),

𝑈0(𝑆∗) ≡ −𝑓 (𝑆∗) + Π𝑉 0 ,𝐻0

𝑗,𝑛𝑓∧𝑛0
(𝑆∗) = −𝑓 (𝑆∗) + Π𝑉 0 ,𝐻0

𝑗,𝑛𝑓
(𝑆∗),  

𝑔0(𝑆̃) ≡𝑈0(𝑆∗) +
𝑛0−1 ∑

𝑖=𝑛𝑓∧𝑛0

𝐻0
𝑖 (𝑆̃)Δ𝑖𝑆̃ =𝑈0(𝑆∗) +

𝑛0−1∑
𝑖=𝑛𝑓

𝐻0
𝑖 (𝑆̃)Δ𝑖𝑆̃,

where we have used the fact that 𝐻0
𝑖
= 0 for 𝑖 ≥ 𝑛0, and for 𝑚 ≥ 1

𝑈𝑚(𝑆∗) ≡Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛𝑓
(𝑆∗), 𝑔𝑚(𝑆̃) ≡𝑈𝑚(𝑆∗) + lim inf

𝑛→∞ 

𝑛−1 ∑
𝑖=𝑛𝑓

𝐻𝑚
𝑖 (𝑆̃)Δ𝑖𝑆̃.

It follows that

Π𝑈0(𝑆∗),𝐻0
𝑛𝑓 ,𝑛

= −𝑓 (𝑆∗) + Π𝑉 0 ,𝐻0

𝑗,𝑛
∈ E(𝑆∗ ,𝑛𝑓 ) for any 𝑛 ≥ 𝑛𝑓 ,

and for 𝑚 ≥ 1

Π𝑈𝑚(𝑆∗),𝐻𝑚

𝑛𝑓 ,𝑛
=Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆∗ ,𝑛𝑓 )
for any 𝑛 ≥ 𝑛𝑓 .

Notice that (12) implies 0 ≤ ∑
𝑚≥0

𝑔𝑚 holds on S(𝑆∗ ,𝑛𝑓 ) and since property (𝐿(𝑆∗ ,𝑛𝑓 )) holds, Proposition 3.3 yields
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0 = (𝜎𝑛𝑓 0)(𝑆
∗) ≤

∞ ∑
𝑚=0

𝑈𝑚(𝑆∗) = −𝑓 (𝑆∗) +
∞ ∑
𝑚=0

Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛𝑓
(𝑆∗),

from where (13) holds. □

The following aggregation lemma is proved in [10] (Lemma 3) under the assumption that all nodes are up-down nodes. The proof 
there can easily be adapted to our more general setting (which allows for any type of node).

Lemma 6.4 (Aggregation Lemma). For 𝑗 ≥ 0 fixed let, for 𝑚 ≥ 1 𝐻𝑚 = (𝐻𝑚
𝑖
)𝑖≥𝑗 , be sequences of non-anticipative functions on S , and 𝑉 𝑚

functions defined on S , depending for each 𝑆 only on 𝑆0, ..., 𝑆𝑗 .
Fix a node (𝑆, 𝑗) and assume for any 𝑚≥ 1, 𝑛≥ 𝑗, and 𝑆̃ ∈ S(𝑆,𝑗) that:

Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
(𝑆̃) = 𝑉 𝑚(𝑆) +

𝑛−1 ∑
𝑖=𝑗 

𝐻𝑚
𝑖 (𝑆̃)Δ𝑖𝑆̃ ≥ 0,  and

∑
𝑚≥1

𝑉 𝑚(𝑆) <∞.

Then, for every 𝑆̂ ∈ S(𝑆,𝑗) and 𝑘 ≥ 𝑗 the following holds: if (𝑆̂, 𝑘) is an up-down node and, for every 𝑗 ≤ 𝑝 < 𝑘, (𝑆̂, 𝑝) is an up-down node 
or 𝑆̂𝑝+1 = 𝑆̂𝑝, then,∑

𝑚≥1
𝐻𝑚

𝑘
(𝑆̂)  converges in ℝ.

Proof of Theorem 6.1. Let

N (𝐼) = {𝑆 ∈ S ∶ ∃𝑗 ≥ 0 𝑠.𝑡. (𝑆, 𝑗) is a type I arbitrage node and 𝑆𝑗+1 ≠ 𝑆𝑗},

N (𝐼𝐼) = {𝑆 ∈ S ∶ ∃𝑗 ≥ 0 𝑠.𝑡. (𝑆, 𝑗) is a type II arbitrage node},

and recall that N (𝐿), defined in (5), is a null set by assumption. Note that N (𝐼) and N (𝐼𝐼) are null sets by Lemma A.1.3 and that 
N (𝐼𝐼) ⊆N (𝐿) by Proposition 3.10.

(i) ⇒ (ii): By the supermartingale property of (𝑓𝑗 )𝑗≥0 we may fix an 𝐼 -null set N𝑓 such that 𝜎𝑗𝑓𝑗+1(𝑆) ≤ 𝑓𝑗 (𝑆) for every 𝑆 ∈ S ⧵N𝑓

and 𝑗 ≥ 0. Let 𝑁𝑓 ≡ N (𝐼) ∪N (𝐿) ∪N𝑓 . We first introduce the stopping time

𝜏#(𝑆) = inf{𝑘 ≥ 0 ∶ (𝐿(𝑆,𝑘)) fails, or 𝜎𝑘𝑓𝑘+1(𝑆) > 𝑓𝑘(𝑆), or [(𝑆,𝑘− 1) is a type I arbitrage node and 𝑆𝑘 ≠ 𝑆𝑘−1]}, (14)

and we recall the convention inf ∅ = +∞. Note that 𝜏#(𝑆) =∞, if 𝑆 ∉𝑁𝑓 .

Now we fix some 𝑗 ≥ 0 and choose a family {𝑆𝜆}𝜆∈Λ𝑗
for some index set Λ𝑗 so that {S(𝑆𝜆,𝑗) ∶ 𝜆 ∈ Λ𝑗} is a partition of S (see 

Definition A.1.2 in Appendix A.1).

Step 1: Construction of 𝐻𝑗 :

We now construct the function 𝐻𝑗 ∶ S → ℝ in such a way that it is constant on the nodes of the partition (and, thus, non

anticipative). To this end, we consider an arbitrary but fixed node (𝑆𝜆, 𝑗) of the partition and proceed as follows:

If 𝜏#(𝑆𝜆) ≤ 𝑗, then S(𝑆𝜆,𝑗) ⊂𝑁𝑓 and we simply let 𝐻𝑗 (𝑆) = 0 for any 𝑆 ∈ S(𝑆𝜆,𝑗).

If 𝜏#(𝑆𝜆) ≥ 𝑗 + 1 note that, in particular, (𝐿(𝑆𝜆,𝑗)) holds and 𝜎𝑗𝑓𝑗+1(𝑆𝜆) ≤ 𝑓𝑗 (𝑆𝜆) ∈ℝ. Applying the definition of 𝜎𝑗 , we find 𝑔𝑚 ’s 
such that

𝑓𝑗+1 ≤
∞ ∑
𝑚=0

𝑔𝑚 on S(𝑆𝜆,𝑗),

where 𝑔𝑚 = lim inf𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
, Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆𝜆,𝑗)
for 𝑚 ≥ 1, 𝑔0 = Π𝑉 0 ,𝐻0

𝑗,𝑛0
∈ E(𝑆𝜆,𝑗) and

∞ ∑
𝑚=0

𝑉𝑚 ≤ 𝑓𝑗 (𝑆𝜆) + 𝛿𝑗 . (15)

Notice that 𝐻𝑚
𝑗

is constant on S(𝑆𝜆,𝑗), and we write ℎ𝑚 for this constant value. If (𝑆𝜆, 𝑗) is an up-down node, then 
∑∞

𝑚=0 ℎ𝑚 converges 
in ℝ by the Aggregation Lemma 6.4. We now define 𝐻𝑗 (𝑆) ≡𝐻𝑗 (𝑆𝜆) for 𝑆 ∈ S(𝑆𝜆,𝑗) in the following way:

• If (𝑆𝜆, 𝑗) is an up-down node, then 𝐻𝑗(𝑆𝜆) ≡∑∞
𝑚=0 ℎ𝑚, 

• Otherwise 𝐻𝑗 (𝑆𝜆) ≡ 0.

This completes the construction of 𝐻𝑗 . For later use, we make the following observation: If 𝑆 ∈ (𝑆𝜆, 𝑗) satisfies (𝐿(𝑆,𝑗+1)), then, by 
the Finite Maturity Lemma 6.3 with 𝑛𝑓𝑗+1 = 𝑗 + 1,
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𝑓𝑗+1(𝑆) ≤
∞ ∑
𝑚=0

(𝑉𝑚 + ℎ𝑚Δ𝑗𝑆). (16)

Step 2: Construction of 𝐴𝑗+1 −𝐴𝑗 :

We next construct the increment 𝛼𝑗 ≡𝐴𝑗+1 −𝐴𝑗 . As in Step 1, we let 𝛼𝑗 (𝑆) ≡ 0, if 𝑆 ∈ S(𝑆𝜆,𝑗) and 𝜏#(𝑆𝜆) ≤ 𝑗. Assuming now that 
𝑆 ∈ S(𝑆𝜆,𝑗) for some 𝑆𝜆 satisfying 𝜏#(𝑆𝜆) ≥ 𝑗 + 1, we distinguish two cases. We say 𝑆 belongs to Case A, if 𝑆 satisfies (𝐿(𝑆,𝑗+1)) and 
[(𝑆𝜆, 𝑗) is an up-down or 𝑆𝑗+1 = 𝑆𝑗]. Otherwise, we say 𝑆 belongs to Case B.

We first continue the construction of 𝛼𝑗+1, if 𝑆 belongs to Case A. Then, by (15) and (16),

𝑓𝑗 (𝑆) + 𝛿𝑗 = 𝑓𝑗 (𝑆𝜆) + 𝛿𝑗 ≥
∞ ∑
𝑚=0

𝑉𝑚 ≥ 𝑓𝑗+1(𝑆) −
∞ ∑
𝑚=0

ℎ𝑚Δ𝑗𝑆 = 𝑓𝑗+1(𝑆) −𝐻𝑗 (𝑆)Δ𝑗𝑆.

Therefore,

𝛼𝑗 (𝑆) ≡ 𝛿𝑗 +𝐻𝑗 (𝑆)Δ𝑗𝑆 − (𝑓𝑗+1(𝑆) − 𝑓𝑗 (𝑆)) ≥ 0. (17)

In order to complete the construction of 𝛼𝑗 , we let

𝛼𝑗 (𝑆) ≡ 0,

if 𝑆 belongs to Case B. Belonging to Case B means that (𝐿(𝑆,𝑗+1)) fails or [(𝑆𝜆, 𝑗) is not an up-down and 𝑆𝑗+1 ≠ 𝑆𝑗]. If (𝐿(𝑆,𝑗+1))
fails, then 𝜏#(𝑆) = 𝑗 + 1 by definition. If the other condition for case B holds, then (𝑆𝜆, 𝑗) can neither be an up-down node nor a 
flat node and, thus, must be an arbitrage node. However, by Proposition 3.10, (𝑆𝜆, 𝑗) can neither be an arbitrage node of type II, 
because (𝐿(𝑆𝜆,𝑗)) holds by the assumption that 𝜏#(𝑆𝜆) ≥ 𝑗 +1. Therefore, the condition [(𝑆𝜆, 𝑗) is not an up-down and 𝑆𝑗+1 ≠ 𝑆𝑗] can 
be rephrased as [(𝑆, 𝑗) is an arbitrage node of type I and 𝑆𝑗+1 ≠ 𝑆𝑗]. Consequently, 𝜏#(𝑆) = 𝑗 + 1.

Summarizing, if 𝛼𝑗 is not defined via (17), then 𝜏#(𝑆) ≤ 𝑗 + 1, which implies 𝑆 ∈𝑁𝑓 .

Step 3: Finalizing the proof of (i) ⇒ (ii):

We define (𝐴𝑗 )𝑗≥0 via 𝐴𝑖 ≡∑𝑖−1
𝑗=0 𝛼𝑗 (𝑆). Then, by Steps 1--2, the sequences (𝐴𝑗 )𝑗≥0 and (𝐻𝑗 )𝑗≥0 are non-anticipative, (𝐴𝑗 )𝑗≥0 is 

nondecreasing and 𝐴0 = 0. Now let 𝑆 ∈ S ⧵𝑁𝑓 . Then, as emphasized at the end of Step 2, 𝛼𝑗 (𝑆) is defined by (17) for every 𝑗 ≥ 0. 
Hence, for 𝑆 ∈ S ⧵𝑁𝑓 and every 𝑖 ≥ 0,

𝐴𝑖(𝑆) =
𝑖−1 ∑
𝑗=0 

[𝛿𝑗 +𝐻𝑗 (𝑆)Δ𝑗𝑆 − (𝑓𝑗+1(𝑆) − 𝑓𝑗 (𝑆))] = 𝑓0 − 𝑓𝑖(𝑆) +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 +
𝑖−1 ∑
𝑗=0 

𝛿𝑗 ,

which provides the representation of (𝑓𝑗 )𝑗≥0 as asserted in (ii).

(𝑖𝑖)⇒ (𝑖): We first fix some 𝑗 ≥ 0 and some positive integer 𝐾 and let 𝛿𝑖 = 1∕𝐾 . Condition (ii) implies

𝑓𝑗+1(𝑆) ≤ 𝑓𝑗 (𝑆) + 1∕𝐾 +𝐻𝑗 (𝑆)(𝑆𝑗+1 − 𝑆𝑗 )

for every 𝑆 ∈ S ⧵𝑁𝑓 . We define

𝑔𝑗+1(𝑆) ≡ 𝑓𝑗 (𝑆) + 1∕𝐾 +𝐻𝑗 (𝑆)(𝑆𝑗+1 − 𝑆𝑗 )

for every 𝑆 ∈ S . Then, 𝑔𝑗+1 ∈ E𝑗 and 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑓𝑗 (𝑆) + 1∕𝐾 for every 𝑆 ∈ S . Consequently, by monotonicity and sub-additivity 
of 𝜎𝑗 (as per Proposition A.2.1),

𝜎𝑗𝑓𝑗+1(𝑆) ≤ 𝜎𝑗 (𝑔𝑗+1 + (𝑓𝑗+1 − 𝑔𝑗+1)+)(𝑆) ≤ 𝜎𝑗𝑔𝑗+1(𝑆) + 𝜎𝑗 ((𝑓𝑗+1 − 𝑔𝑗+1)+)(𝑆)

≤ 𝑓𝑗 (𝑆) + 1∕𝐾 + 𝜎𝑗 ((𝑓𝑗+1 − 𝑔𝑗+1)+)(𝑆). (18)

Noting that (𝑓𝑗+1 −𝑔𝑗+1)+ can only be positive on the 𝐼 -null set 𝑁𝑓 , we may deduce from Proposition A.2.1--e), that 𝐼𝑗 (𝑓𝑗+1 −𝑔𝑗+1)+ =
0 𝐼 -a.e. for every 𝑗 ≥ 0. Hence, there is an 𝐼 -null set N𝑓 such that 𝐼𝑗 (𝑓𝑗+1 − 𝑔𝑗+1)+(𝑆) = 0 for every 𝑆 ∈ S ⧵N𝑓 and 𝑗 ≥ 0. In view 
of Remark 2.11, we conclude that 𝜎𝑗 ((𝑓𝑗+1 − 𝑔𝑗+1)+)(𝑆) ≤ 0 for every 𝑆 ∈ S ⧵ N𝑓 and 𝑗 ≥ 0. Inserting this identity into (18) and 
passing to the limit 𝐾 →∞, yields (i). □

We close this section with some illustrative examples. The first example shows that condition (𝐿)-a.e. may hold in a situation 
when the model does not have a martingale measure, cp. Remark 2.14. Moreover, the example also shows that the 𝛿-sequence in the 
supermartingale decomposition (Theorem 6.1) cannot be dispensed with.

Example 4. Let S = S + ∪S −, where S ± = {𝑆±,𝑛 ∶ 𝑛 ∈ ℕ} and

𝑆+,𝑛
𝑖

=
⎧⎪⎨⎪⎩
1, 𝑖 = 0
2, 𝑖 = 1
2 + 1

𝑛 , 𝑖 ≥ 2
, 𝑆−,𝑛

𝑖
=

{
1, 𝑖 = 0
1 − 1 

𝑛2
, 𝑖 ≥ 1

.
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Then, the node (𝑆+,1,1) = (𝑆+,𝑛,1), 𝑛 ≥ 2, is an arbitrage node of type II, the initial node (𝑆,0) is up-down, and all other nodes are 
flat. For an illustration of this trajectory set, we refer to [2], where different aspects of this example are discussed.

a) We first show that (𝐿)-a.e. holds, but there is no martingale measure for this trajectory set.

Since 𝑆−,𝑛
1 − 𝑆−,𝑛

0 = −1∕𝑛2 is arbitrarily close to zero for sufficiently large 𝑛, we observe that (H𝐼𝐼 ) in Corollary 3.14 is satisfied. 
Trajectorial completeness is obvious, because all trajectories stay constant after time 𝑗 = 2. Hence, by Corollary 3.14, this trajectory 
set satisfies (𝐿)-a.e. Since all trajectories 𝑆+,𝑛 pass through the arbitrage node (𝑆+,1,1) of type II, S + is a null set by Lemma A.1.3

and, hence, 𝐼(𝟏S− ) = 1 by Remark 3.8.

It is also clear that there is no probability measure 𝐐 on the power set of S , which turns the coordinate process 𝑇𝑗 ∶ S →ℝ, 𝑆 ↦
𝑆𝑗 into a martingale in the classical probabilistic sense. Otherwise 𝐐(S +) = 0 (because any martingale measure assigns probability 
zero to type II arbitrage nodes) and then 𝑇1 < 𝑇0 𝐐-almost surely -- a contradiction.

Consequently, by Example 3--a), the coordinate process (𝑇𝑗 )𝑗≥0 is an example of a trajectorial martingale, which fails to be a 
martingale in the classical probabilistic setup.

b) We next construct a supermartingale, for which a decomposition as in Theorem 6.1--(ii) is not possible, if we let 𝛿𝑗 ≡ 0 (and, hence, 
the small 𝛿-errors cannot be avoided in the formulation of the supermartingale decomposition theorem).

To this end, we define 𝑓𝑗 ∶ S →ℝ via

𝑓𝑗 (𝑆) =

{
0, 𝑆 ∈ S + or 𝑗 = 0
1
𝑛 , 𝑆 = 𝑆−,𝑛 and 𝑗 ≥ 1

,

and consider the sequence (𝑓𝑗 )𝑗≥0. Since all of its ‘paths’ 𝑗 ↦ 𝑓𝑗 (𝑆) are nondecreasing, (𝑓𝑗 )𝑗≥0 obviously is a submartingale. We claim 
that (𝑓𝑗 )𝑗≥0 is also a supermartingale (despite of the nondecreasing paths) and apply Theorem 6.1 to verify this. Given a sequence 
(𝛿𝑗 )𝑗≥0 of positive reals, let

𝐻0 ≡ −⌈𝛿0−1⌉, 𝐻𝑗 ≡ 0, 𝑗 ≥ 0,

and note that, for every 𝑛 ∈ℕ,

𝛿0 +𝐻0(𝑆
−,𝑛
1 −𝑆−,𝑛

0 ) = 𝛿0 + ⌈𝛿0−1⌉ 1 
𝑛2

≥ 1
𝑛 
= 𝑓1(𝑆−,𝑛), (19)

by considering the cases 𝑛 ≤ ⌈𝛿0−1⌉ and 𝑛 > ⌈𝛿0−1⌉ separately. Hence, we may define a nondecreasing, non-anticipative sequence 
(𝐴𝑗 ) via 𝐴0 ≡ 0 and

𝐴𝑗 (𝑆) −𝐴𝑗−1(𝑆) =

{
𝛿0 + ⌈𝛿0−1⌉ ⋅ 1 

𝑛2
− 1

𝑛 , 𝑗 = 1 and 𝑆 = 𝑆−,𝑛

𝛿𝑗−1, 𝑗 ≥ 2 or 𝑆 ∈ S +.

It is then straightforward to check that, for every 𝑖 ≥ 0 and 𝑆 ∈ S −,

𝑓𝑖(𝑆) = 𝑓0 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 −𝐴𝑖(𝑆) +
𝑖−1 ∑
𝑗=0 

𝛿𝑗 .

Indeed, for 𝑖 = 1, this is a consequence of (19) and the definition of 𝐴1, while, for 𝑖 ≥ 2, 𝑓𝑖 = 𝑓1, and the increments of 𝐴 compensate 
the 𝛿’s. Hence, (𝑓𝑗 ) is a supermartingale by Theorem 6.1. Note that, in view of Remark 5.2, (𝑓𝑗 )𝑗≥0 is a martingale.

It remains to prove that a decomposition as in Theorem 6.1--(ii) is not possible for this (super-)martingale (𝑓𝑗 )𝑗≥0, if 𝛿𝑗 = 0 for 
every 𝑗 ≥ 0. Precisely, we will argue that such a decomposition requires 𝛿0 > 0. We first show that for every 𝐻0 ∈ℝ there is an 𝑛0 ∈ℕ
such that for every 𝑛 ≥ 𝑛0

𝑓1(𝑆−,𝑛) > 𝑓0 +𝐻0(𝑆
−,𝑛
1 − 𝑆−,𝑛

0 ).

By inserting the definition of 𝑓1 and 𝑓0, this inequality is equivalent to

1
𝑛 

(
1 +

𝐻0
𝑛 

)
> 0,

which trivially holds for sufficiently large 𝑛. Hence, no matter of the choice of (𝐻𝑗 ) and (𝐴𝑗 ), a decomposition as in Theorem 6.1--(ii) 
with 𝛿0 = 0 will necessarily fail at 𝑖 = 1 on the set S −,≥𝑛0 = {𝑆−,𝑛|𝑛 ≥ 𝑛0} for some 𝑛0 ∈ℕ. It, thus, remains to show that 𝐼(𝟏S−,≥𝑛0 ) > 0
for every 𝑛0 ∈ ℕ. To this end, assume that for every 𝑆 ∈ S ,

𝟏S−,≥𝑛0 (𝑆) ≤∑
𝑚≥1

lim inf
𝑘→∞ Π𝑉 𝑚,𝐻𝑚

0,𝑘 (𝑆),

where Π𝑉 𝑚,𝐻𝑚

0,𝑘 ∈ E +
0 for all 𝑘 ≥ 0 and 

∑
𝑚≥1 𝑉𝑚 <∞. Since the trajectories in S − are constant after time 𝑘 = 1, the previous inequality 

and the Aggregation Lemma 6.4 imply
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1 ≤∑
𝑚≥1

Π𝑉 𝑚,𝐻𝑚

0,1 (𝑆−,𝑛) =
∑
𝑚≥1

(𝑉 𝑚 −𝐻𝑚
0

1 
𝑛2

) =
∑
𝑚≥1

𝑉𝑚 − 1 
𝑛2

∑
𝑚≥1

𝐻𝑚
0

for every 𝑛 ≥ 𝑛0. Passing with 𝑛 to infinity, we observe that 
∑

𝑚≥1 𝑉𝑚 ≥ 1 and, hence, 𝐼(𝟏S−,≥𝑛0 ) = 1 for every 𝑛0 ∈ ℕ.

The foregoing also shows that (𝑓𝑗 )𝑗≥0 is an example of a martingale, which is not a.e. equal to a ‘simple’ martingale of the form 
discussed in Example 3--a).

c) We finally show, as asserted in Remark 3.4--b), that the restriction of 𝐼 to the set of bounded functions in 𝑃 fails to be a coherent 
upper prevision. Recall that coherence of 𝐼 means that for every 𝑚,𝑛 ∈ℕ and for every bounded 𝑔0,…𝑔𝑛 in 𝑃 ,

sup 
𝑆∈S

((
𝑛 ∑

𝑘=1
𝐼(𝑔𝑘) − 𝑔𝑘(𝑆)

)
−𝑚(𝐼(𝑔0) − 𝑔0(𝑆))

)
≥ 0;

see condition (D) in [26, Definition 4.10]. To see that this property is violated, we choose 𝑚 = 𝑛 = 1 and 𝑔1 = 1 + 𝑔0 for

𝑔0(𝑆) =

{
0, 𝑆 ∈ S +

1 
𝑛2
, 𝑆 = 𝑆−,𝑛 for some 𝑛 ∈ℕ

, 𝑆 ∈ S .

Then,

sup 
𝑆∈S

((
𝑛 ∑

𝑘=1
𝐼(𝑔𝑘) − 𝑔𝑘(𝑆)

)
−𝑚(𝐼(𝑔0) − 𝑔0(𝑆))

)
= −1 + 𝐼(𝑔1) − 𝐼(𝑔0);

and it suffices to show that 𝐼(𝑔1) ≤ 1 and 𝐼(𝑔0) > 0. Suppose, to the contrary, that 𝐼(𝑔0) = 0. Noting that 𝟏S− ≤ lim𝑘→∞ 𝑘𝑔0 =
∑∞

𝑖=1 𝑔0, 
we conclude that 𝐼(𝟏S− ) ≤∑∞

𝑖=1 𝐼(𝑔0) = 0 by isotonicity and countable sub-additivity of 𝐼 (see Proposition 2.8). Hence, 𝟏S − is a 
null function, contradicting the property that 𝐼(𝟏S− ) = 1, which has been derived in part a) of this example. To verify that 𝐼(𝑔1) ≤ 1, 
consider the non-negative elementary function 𝑔̃1(𝑆) ≡ 1 − (𝑆1 − 𝑆0) = 𝑔0(𝑆) + 𝟏S− (𝑆) = 𝑔1(𝑆) − 𝟏S+ (𝑆), which clearly satisfies 
𝐼(𝑔̃1) ≤ 1. Then, 𝐼(𝑔1) = 𝐼(𝑔̃1 + 𝟏S+ ) ≤ 𝐼(𝑔̃1) + 𝐼(𝟏S+ ) ≤ 1, because 𝟏S+ is a null function by part a) of this example.

Remark 6.5. Consider the following variant of Example 4. Let S = S + ∪ {𝑆0, 𝑆−}, where the up-branch S + is as in Example 4, 
𝑆0 ≡ 1, 𝑆−

0 = 1 and 𝑆−
𝑗
= 0 for 𝑗 ≥ 1. Adapting the arguments in Example 4, one can check that: 1) The point mass 𝐐 on 𝑆0 is the 

unique martingale measure of this model; 2) (𝐿)-a.e. holds; 3) 𝐼 (𝟏{𝑆0}) = 1 and 𝐼(𝟏{𝑆−}) = 1∕2. Hence {𝑆−} is a null set for 𝐐, but 
not w.r.t. 𝐼 . In such a situation our supermartingale decomposition (Theorem 6.1) holds on a larger set than the (uniform) Doob 
decomposition in the classical theory.

We finally present an example, in which (𝐿)-a.e. fails, and demonstrate the importance of this assumption for our results.

Example 5. Let S = {𝑆+,−, 𝑆0, 𝑆−} ∪ {𝑆+,𝑛 ∶ 𝑛 ∈ℕ}, where 𝑆0 = 1 for every 𝑆 ∈ S ,

𝑆1 =
⎧⎪⎨⎪⎩
1, 𝑆 = 𝑆0

2, 𝑆 ∈ {𝑆+,𝑛, 𝑆+,− ∶ 𝑛 ∈ ℕ}
0, 𝑆 = 𝑆−

, 𝑆2 =
⎧⎪⎨⎪⎩
𝑆1, 𝑆 ∈ {𝑆0, 𝑆−}
3, 𝑆 ∈ {𝑆+,𝑛 ∶ 𝑛 ∈ ℕ}
3∕2, 𝑆 = 𝑆+,−

, 𝑆𝑗 =

{
𝑆2, 𝑆 ∈ {𝑆0, 𝑆−, 𝑆+,−}
3 + 1∕𝑛, 𝑆 ∈ {𝑆+,𝑛 ∶ 𝑛 ∈ℕ}

,

for 𝑗 ≥ 3. This trajectory space is illustrated in Fig. 2. Note that (𝐿) holds by Remark 3.2, because the constant trajectory 𝑆0 is 
included in the trajectory set. 
a) We first show that (𝐿(𝑆+,− ,1)) fails and 𝐼(𝟏{𝑆+,−}) ≥ 1∕6, and, thus, condition (𝐿)-a.e. is violated.

Suppose 𝑓 ∶ S(𝑆+,− ,1) →ℝ. Define, for arbitrary, but fixed 𝑘 ∈ℕ,

𝑔0(𝑆) = −𝑘− 2(𝑓 (𝑆+,−) + 𝑘)(𝑆2 − 𝑆1), 𝑔𝑚(𝑆) = 𝑆3 − 𝑆2, 𝑆 ∈ S(𝑆+,− ,1), 𝑚 ≥ 1.

Then, 𝑔0 ∈ E(𝑆+,− ,1), 𝑔𝑚 ∈ E +
(𝑆+,− ,1) for 𝑚 ≥ 1, and, on S(𝑆+,−,1),

∞ ∑
𝑚=0

𝑔𝑚 = 𝑓 (𝑆+,−) +∞ 𝟏{𝑆+,𝑛∶ 𝑛∈ℕ} ≥ 𝑓.

Since 𝑘 was arbitrary, we obtain 𝜎1𝑓 (𝑆+,−) = −∞. By choosing 𝑓 ≡ 0, we observe that (𝜎10)(𝑆+,−) ≠ 0 and, thus, (𝐿(𝑆+,− ,1)) fails by 
Proposition 3.3.

We next show that 𝐼(𝟏{𝑆+,−}) ≥ 1∕6. To this end, assume that for every 𝑆 ∈ S ,

𝟏{𝑆+,−}(𝑆) ≤
∑
𝑚≥1

lim inf
𝑘→∞ Π𝑉 𝑚,𝐻𝑚

0,𝑘 (𝑆),

where Π𝑉 𝑚,𝐻𝑚

0,𝑘 ∈ E +
0 for all 𝑘 ≥ 0 and 

∑
𝑚≥1 𝑉𝑚 <∞. Since 𝑆+,− stays constant after time 2 and the Π𝑉 𝑚,𝐻𝑚

0,𝑘 ’s are non-negative at any 
time, we obtain
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Fig. 2. Illustration of the trajectory set in Example 5. 

𝟏{𝑆+,−}(𝑆) ≤
∑
𝑚≥1

Π𝑉 𝑚,𝐻𝑚

0,2 (𝑆) (20)

for every 𝑆 ∈ S . Writing 𝑣 =
∑

𝑚≥1 𝑉𝑚, 𝑎 =
∑

𝑚≥1𝐻𝑚
0 and 𝑏=

∑
𝑚≥1𝐻𝑚

1 (𝑆
+,−), we note that the series defining 𝑎 and 𝑏 converge in 

ℝ by the Aggregation Lemma 6.4. Inserting 𝑆 = 𝑆+,−, 𝑆 = 𝑆+,1, and 𝑆 = 𝑆− into (20) yields

(𝐼) ∶ 𝑣+ 𝑎− 𝑏∕2 ≥ 1, (𝐼𝐼) ∶ 𝑣+ 𝑎+ 𝑏 ≥ 0, (𝐼𝐼𝐼) ∶ 𝑣− 𝑎 ≥ 0.

Considering 2(𝐼) + (𝐼𝐼) + 3(𝐼𝐼𝐼), we observe that 𝑣 ≥ 1∕6 and, hence, 𝐼(𝟏{𝑆+,−}) ≥ 1∕6. Note that by similar, but easier arguments 
𝐼(𝟏{𝑆−}) ≥ 1∕2 and 𝐼(𝟏{𝑆0}) = 1.

b) We now define the sequence (𝑓𝑗 )𝑗≥0 via 𝑓0 = 1 and 𝑓𝑗 ≡ 𝑓∞ = 𝟏{𝑆0} + 2 𝟏S ⧵{𝑆0} for 𝑗 ≥ 1. We claim that (𝑓𝑗 )𝑗≥0 is a supermartin

gale, which does not have a decomposition as in Theorem 6.1--(ii) for sequences (𝛿𝑗 ) with 0 < 𝛿0 < 1. In particular, the assumption 
(𝐿)-a.e. cannot be dropped in the latter theorem.

In our considerations, we may ignore the null set {𝑆+,𝑛| 𝑛 ∈ℕ} of those trajectories which pass through the arbitrage node (𝑆+,1,2)
of type II. As the computation of 𝜎𝑗 is trivial after trajectories have become constant, we get

𝜎𝑗𝑓𝑗+1(𝑆) = 𝜎𝑗𝑓∞(𝑆) = 𝑓∞(𝑆) = 𝑓𝑗 (𝑆)

for 𝑆 ∈ {𝑆0, 𝑆−} and 𝑗 ≥ 1 and for 𝑆 = 𝑆+,− and 𝑗 ≥ 2. Moreover, by a),

𝜎1𝑓2(𝑆+,−) = −∞ ≤ 𝑓1(𝑆+,−).

For the supermartingale property at the initial node, consider

𝑔0(𝑆) = 1 − (𝑆1 −𝑆0) − 4(𝑆2 − 𝑆1), 𝑔𝑚(𝑆) = 𝑆3 −𝑆2, 𝑆 ∈ S , 𝑚 ≥ 1.

Then, 𝑔0 ∈ E , 𝑔𝑚 ∈ E + for 𝑚 ≥ 1, and, on S ,∑
𝑚≥0

𝑔𝑚 = 𝑓1 𝟏{𝑆0,𝑆− ,𝑆+,−} +∞ 𝟏{𝑆+,𝑛| 𝑛∈ℕ} ≥ 𝑓1.

Hence 𝜎𝑓1 ≤ 1 = 𝑓0. (Since the trajectory 𝑆0 is constant, we also obtain 𝜎𝑓1 ≥ 𝑓1(𝑆0) = 1, i.e., 𝜎𝑓1 = 1 = 𝑓0.)

We now fix a sequence (𝛿𝑗 )𝑗≥0 of positive reals and assume existence of a representation for (𝑓𝑗 ) as in Theorem 6.1--(ii). Then, at 
time 𝑖 = 1,

𝑓1(𝑆) ≤ (1 + 𝛿0) +𝐻0(𝑆1 − 𝑆0)

for 𝑆 ∈ {𝑆0, 𝑆−, 𝑆+,−} (where 𝐻0 is a constant), because none of the singletons {𝑆}, 𝑆 ∈ {𝑆0, 𝑆−, 𝑆+,−}, is a null set by a). This 
leads to the three inequalities

1 ≤ (1 + 𝛿0), 2 ≤ (1 + 𝛿0) −𝐻0, 2 ≤ (1 + 𝛿0) +𝐻0,

and combining the second and third inequality implies 𝛿0 ≥ 1.
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7. Doob’s pointwise supermartingale convergence

This section proves our version of Doob’s pointwise convergence theorem for non-negative supermartingales.

Theorem 7.1 (Supermartingale convergence). Suppose (𝐿)-a.e. holds. Let (𝑓𝑖)𝑖≥0 be a supermartingale with values in [0,∞) and impose the 
following assumption on the trajectory set:

(P) Whenever (𝑆, 𝑗) is an up-down node such that (𝐿(𝑆,𝑗)) holds and (𝐿(𝑆,𝑗+1)) fails, then there are 𝑆1, 𝑆2 ∈ S(𝑆,𝑗) such that 𝑆1
𝑗+1 > 𝑆𝑗+1 >

𝑆2
𝑗+1 and (𝐿(𝑆𝜄,𝑗+1)) holds for 𝜄 = 1,2.

Then, there exists a null set N𝑑𝑖𝑣 such that lim 
𝑖→∞

𝑓𝑖(𝑆) exists in ℝ for every 𝑆 ∈ S ⧵N𝑑𝑖𝑣.

In the game-theoretic setting, a version of Doob’s convergence theorem has been established for non-negative G -supermartingale 
sequences, see, e.g., Theorem 7.5 in [23]. By the discussion in Section 4, the game-theoretic approach can neither accommodate 
incomplete trajectory sets nor arbitrage nodes of type II. The following proposition provides easy-to-check sufficient conditions for 
the validity of our version of Doob’s pointwise convergence theorem (Theorem 7.1) that can hold in trajectorially incomplete models 
and in the presence of arbitrage nodes of type II. It, thus, illustrates that Theorem 7.1 cannot be recovered as a special case of the 
game-theoretic Doob convergence theorem.

Proposition 7.2. Suppose either of the following two sets of conditions holds:

1. (TCbad) and

(Pbad) Whenever (𝑆, 𝑗) is a good up-down node such that (𝑆, 𝑗 + 1) is bad, then there are 𝑆1, 𝑆2 ∈ S(𝑆,𝑗) such that 𝑆1
𝑗+1 > 𝑆𝑗+1 > 𝑆2

𝑗+1
and (𝑆𝜄, 𝑗 + 1) are good for 𝜄= 1,2.

Or

2. (TC𝐼𝐼 ) and

(P𝐼𝐼 ) If (𝑆, 𝑗) is an arbitrage node of type II, then 𝑗 ≥ 1 and (𝑆, 𝑗 − 1) is an up-down node and there are 𝑆1, 𝑆2 ∈ S(𝑆,𝑗−1) such that 
𝑆1
𝑗
> 𝑆𝑗 > 𝑆2

𝑗
and such that (𝑆1, 𝑗), (𝑆2, 𝑗) are not type II arbitrage nodes.

Then, (𝐿)-a.e. and condition (P) in Theorem 7.1 hold.

Proof. 1. Suppose that (TCbad) and (Pbad) hold. We first show that (Pbad) implies (Hbad). To this end, suppose (𝑆, 𝑗) is a good 
up-down node. If (𝑆̃, 𝑗 + 1) is good for every 𝑆̃ ∈ S(𝑆,𝑗), then, we find 𝑆1, 𝑆2 ∈ S(𝑆,𝑗) such that 𝑆1

𝑗+1 > 𝑆𝑗 > 𝑆2
𝑗+1, because (𝑆, 𝑗) is 

up-down -- and (𝑆𝜄, 𝑗 + 1), 𝜄 = 1,2, are automatically good. If (𝑆̃, 𝑗 + 1) is bad for some 𝑆̃ ∈ S(𝑆,𝑗), then, applying (Pbad) to (𝑆̃, 𝑗), 
we find 𝑆1, 𝑆2 ∈ S(𝑆,𝑗) = S(𝑆̃,𝑗) such that 𝑆1

𝑗+1 > 𝑆̃𝑗 = 𝑆𝑗 > 𝑆2
𝑗+1. In both cases, letting 𝑆𝜀,1 = 𝑆1 and 𝑆𝜀,2 = 𝑆2 for every 𝜀 > 0, we 

obtain,

𝑆𝜀,1
𝑗+1 −𝑆𝑗 > 0 > −𝜀, 𝑆𝜀,2

𝑗+1 − 𝑆𝑗 < 0 < 𝜀,

i.e., condition (Hbad) is satisfied. Now, Corollary 3.13 applies and yields (𝐿)-a.e. Moreover, that corollary implies that a node (𝑆, 𝑗)
is bad, if and only if (𝐿(𝑆,𝑗)) fails. Therefore, assuming (TCbad), condition (P) is a consequence of condition (Pbad).

2. Now suppose that (TC𝐼𝐼 ) and (P𝐼𝐼 ) are in force. Analogously to part 1., we first show that (P𝐼𝐼 ) implies (H𝐼𝐼 ). Indeed, assuming 
that (𝑆, 𝑗) is a type II arbitrage node and applying (P𝐼𝐼 ), we observe that 𝑗 ≥ 1 and (𝑆, 𝑗 − 1) is an up-down node. Consequently, 
there is a 𝑆̃ ∈ (𝑆, 𝑗 − 1) such that 𝑆̃𝑗 > 𝑆̃𝑗−1 = 𝑆𝑗−1 and we may take 𝑆𝜀,1 = 𝑆̃ in (H𝐼𝐼 ), provided (𝑆̃, 𝑗) is not an arbitrage node of 
type II. Otherwise, we may apply (P𝐼𝐼 ) with 𝑆̃ in place of 𝑆 and find some 𝑆1 ∈ (𝑆, 𝑗 − 1) = (𝑆̃, 𝑗 − 1) such that 𝑆1

𝑗
> 𝑆̃𝑗 and (𝑆1, 𝑗)

is not an arbitrage node of type II. Then, we may take 𝑆𝜀,1 = 𝑆1. The construction of 𝑆𝜀,2 follows by a ‘symmetric’ argument. Now 
that (H𝐼𝐼 ) is verified, Corollary 3.14 implies that (𝐿)-a.e. holds -- and that 𝐿(𝑆,𝑗) fails, if and only if (𝑆, 𝑗) is an arbitrage node of type 
II. The latter implies (P). Indeed, if (𝑆, 𝑗) is an up-down node and 𝐿(𝑆,𝑗+1) fails, then (𝑆, 𝑗 + 1) is a type II arbitrage node, and, thus, 
by (P𝐼𝐼 ) there are 𝑆1, 𝑆2 ∈ S(𝑆,𝑗) such that

𝑆1
𝑗+1 > 𝑆𝑗+1 > 𝑆2

𝑗+1

and such that 𝐿(𝑆1 ,𝑗+1), 𝐿(𝑆2,𝑗+1) hold, because (𝑆1, 𝑗), (𝑆2, 𝑗) are not type II arbitrage nodes. □

The proof strategy of Theorem 7.1 is to apply the supermartingale decomposition in Theorem 6.1 and to pass to the limit separately 
for the various terms. For the martingale part 

∑𝑖−1
𝑗=0𝐻𝑗 (𝑆)Δ𝑗𝑆 , we can make use of Theorem 2 in [10]. However, this result requires 

International Journal of Approximate Reasoning 187 (2025) 109567 

22 



C. Bender, S.E. Ferrando, K. Gajewski et al. 

that 
∑𝑖−1

𝑗=0𝐻𝑗 (𝑆)Δ𝑗𝑆 is bounded from below by the same constant for every 𝑆 ∈ S , while Theorem 6.1 in conjunction with the 
nonnegativity of 𝑓 only implies boundedness of 

∑𝑖−1
𝑗=0𝐻𝑗 (𝑆)Δ𝑗𝑆 from below for a.e. 𝑆 ∈ S . In view of the following lemma, the 

required boundedness condition can be guaranteed under the additional assumption (P).

Lemma 7.3. Under the assumptions of Theorem 7.1, fix a sequence (𝛿𝑗 )𝑗≥0 of summable positive reals and construct the supermartingale 
decomposition of (𝑓𝑗 )𝑗≥0 as in the proof of the implication (𝑖)⇒ (𝑖𝑖) in Theorem 6.1. Then, for every 𝑆 ∈ S and 𝑖≥ 0,

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 0.

Proof. We construct (𝐻𝑗 )𝑗≥0 as in the proof of the implication (𝑖)⇒ (𝑖𝑖) in Theorem 6.1 and recall that the stopping time 𝜏# has been 
defined in (14) there. As emphasized at the end of Step 2 of the proof of Theorem 6.1; if 𝑗 ≤ 𝜏#(𝑆) − 2, then, the inequality in (17) is 
valid, and, consequently

𝑓𝑗+1(𝑆) − 𝑓𝑗 (𝑆) ≤ 𝛿𝑗 +𝐻𝑗 (𝑆)(𝑆𝑗+1 −𝑆𝑗 ). (21)

Thus, for 0 ≤ 𝑖 < 𝜏#(𝑆),

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 𝑓0 +
∞ ∑
𝑗=𝑖 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝑓𝑗+1(𝑆) − 𝑓𝑗 (𝑆) ≥ 𝑓𝑖(𝑆) ≥ 0.

For the remainder of the proof, we consider the case 𝑖 ≥ 𝜏#(𝑆). Recalling that 𝐻𝑗 (𝑆) = 0 for 𝑗 ≥ 𝜏#(𝑆) by the beginning of Step 1 in 
the proof of Theorem 6.1 and inserting, again, (21) for 𝑗 ≤ 𝜏#(𝑆) − 2, we obtain

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆

= 𝑓0 +
∞ ∑

𝑗=𝜏#(𝑆)
𝛿𝑗 +

𝜏#(𝑆)−2∑
𝑗=0 

𝛿𝑗 +𝐻𝑗 (𝑆)(𝑆𝑗+1 − 𝑆𝑗 ) +
(
𝛿𝜏#(𝑆)−1 +𝐻𝜏#(𝑆)−1(𝑆)(𝑆𝜏#(𝑆) −𝑆𝜏#(𝑆)−1)

)
≥ 𝑓𝜏#(𝑆)−1(𝑆) +

(
𝛿𝜏#(𝑆)−1 +𝐻𝜏#(𝑆)−1(𝑆)(𝑆𝜏#(𝑆) − 𝑆𝜏#(𝑆)−1)

)
.

If (𝑆, 𝜏#(𝑆) − 1) is not an up-down-node, then, 𝐻𝜏#(𝑆)−1(𝑆) = 0 by the construction in Step 1 of the proof of Theorem 6.1 and, thus,

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 𝑓𝜏#(𝑆)−1(𝑆) ≥ 0.

If (𝑆, 𝜏#(𝑆) − 1) is an up-down-node and (𝐿(𝑆,𝜏#(𝑆))) holds, then, 𝑆 belongs to Case A of Step 2 in the proof of Theorem 6.1 with 
𝑗 = 𝜏#(𝑆) − 1. Hence, by (17),

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 𝑓𝜏#(𝑆)(𝑆) ≥ 0.

If (𝑆, 𝜏#(𝑆) − 1) is an up-down-node and (𝐿(𝑆,𝜏#(𝑆))) fails, then (noting that property (𝐿(𝑆,𝜏#(𝑆)−1)) holds by the definition of 𝜏#), 
we may apply assumption (P) with 𝑗 = 𝜏#(𝑆) − 1. Hence, there are 𝑆1, 𝑆2 ∈ S(𝑆,𝜏#(𝑆)−1) such that (𝐿(𝑆𝜄,𝜏#(𝑆))) holds for 𝜄 = 1,2 and 
𝑆2
𝜏#(𝑆)

≤ 𝑆𝜏#(𝑆) ≤ 𝑆1
𝜏#(𝑆)

. Then, 𝑆2 and 𝑆1 belong to Case A of Step 2 in the proof of Theorem 6.1 with 𝑗 = 𝜏#(𝑆)−1. If 𝐻𝜏#(𝑆)−1(𝑆) ≤ 0, 
then, by invoking (17) for 𝑆1,

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 𝑓𝜏#(𝑆)−1(𝑆1) +
(
𝛿𝜏#(𝑆)−1 +𝐻𝜏#(𝑆)−1(𝑆1)(𝑆1

𝜏#(𝑆) −𝑆1
𝜏#(𝑆)−1)

) ≥ 𝑓𝜏#(𝑆)(𝑆1) ≥ 0.

If 𝐻𝜏#(𝑆)−1(𝑆) > 0, then, the same argument with 𝑆2 in place of 𝑆1 yields

𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 𝑓𝜏#(𝑆)(𝑆2) ≥ 0. □

Proof of Theorem 7.1. Fix a sequence (𝛿𝑗 )𝑗≥0 of positive reals with 
∑

𝑗 𝛿𝑗 <∞. By Theorem 6.1 there are sequences (𝐻𝑗 )𝑗≥0, (𝐴𝑗 )𝑗≥0
of non-anticipative real-valued functions such that (𝐴𝑗 )𝑗≥0 is nondecreasing, 𝐴0 = 0, and

𝑓𝑖(𝑆) = 𝑓0 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 −𝐴𝑖(𝑆) +
𝑖−1 ∑
𝑗=0 

𝛿𝑗 , (22)
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for every 𝑆 ∈ S ⧵𝑁𝑓 and 𝑖 ≥ 0, with 𝑁𝑓 a null set independent of (𝛿𝑗 )𝑗≥0. Besides, with 𝑉 ≡ 𝑓0 +
∞ ∑
𝑗=0

𝛿𝑗 it follows by Lemma 7.3

that, for every 𝑖 ≥ 0 and 𝑆 ∈ S ,

Π𝑉 ,𝐻
𝑖

(𝑆) = 𝑓0 +
∞ ∑
𝑗=0 

𝛿𝑗 +
𝑖−1 ∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 0.

Having in mind that there are no portfolio restrictions on H , from [10, Theorem 2] it follows that there exists a null set 𝑁0 such 
that lim 

𝑖→∞
Π𝑉 ,𝐻
𝑖

(𝑆) exists and is finite for any 𝑆 ∈ S ⧵𝑁0. Consequently (Π𝑉 ,𝐻
𝑖

(𝑆))𝑖≥0 is bounded for those 𝑆 . Let N𝑑𝑖𝑣 ≡𝑁0 ∪𝑁𝑓

and restrict the following arguments to 𝑆 ∈ S ⧵ N𝑑𝑖𝑣: From (22) and the nonnegativity of 𝑓 , we obtain that 𝐴𝑖(𝑆) ≤ Π𝑉 ,𝐻
𝑖

(𝑆) for 
every 𝑖 ≥ 0. Hence, (𝐴𝑖(𝑆))𝑖≥0 is bounded from above and since it is nondecreasing, lim𝑖→∞𝐴𝑖(𝑆) exists in ℝ. In view of (22), the 
convergences of (𝐴𝑖(𝑆))𝑖≥0 and of (Π𝑉 ,𝐻

𝑖
(𝑆))𝑖≥0 in ℝ imply that lim 

𝑖→∞
𝑓𝑖(𝑆) exists in ℝ, for any 𝑆 ∈ S ⧵N𝑑𝑖𝑣. □

8. On the relation between the two superhedging operators

As another consequence of the supermartingale decomposition, we show, in this section, that 𝜎 is the ‘correct’ superhedging 
operator in the sense that, for bounded (from below) functions with finite maturity, it corresponds to the infimal superhedging price 
within the usual class of simple portfolios up to the null sets induced by 𝐼 . We also clarify the relation between the two (conditional) 
superhedging operators 𝐼𝑗 and 𝜎𝑗 .

Theorem 8.1. Suppose that (𝐿)-a.e. holds and that 𝑓 ∈𝑄 has maturity 𝑛𝑓 ∈ℕ, is bounded from below and satisfies 𝜎𝑓 <∞. Let 0 ≤ 𝑗 < 𝑛𝑓 . 
Then: For every 𝜀 > 0, there are a null set 𝑁𝑓 and a non-anticipative sequence (𝐻𝑖)𝑖=𝑗,…,𝑛𝑓−1 such that for every 𝑆 ∈ S ⧵𝑁𝑓

𝑓 (𝑆) ≤ (𝜎𝑗𝑓 (𝑆) + 𝜀) +
𝑛𝑓−1∑
𝑖=𝑗 

𝐻𝑖(𝑆)Δ𝑖𝑆.

Conversely, if there are a 𝑉 ∈𝑄 with maturity 𝑗, a non-anticipative sequence (𝐻𝑖)𝑖=𝑗,…,𝑛𝑓−1 and a null set 𝑁̃𝑓 such that for every 𝑆 ∈ S ⧵𝑁̃𝑓

𝑓 (𝑆) ≤ 𝑉 (𝑆0,… , 𝑆𝑗 ) +
𝑛𝑓−1∑
𝑖=𝑗 

𝐻𝑖(𝑆)Δ𝑖𝑆,

then 𝜎𝑗𝑓 ≤ 𝑉 a.e.

In particular,

𝜎𝑓 = inf{𝑉 ∈ℝ| ∃(𝐻𝑗 )𝑗=0,…,𝑛𝑓−1 non-anticipative such that 𝑉 +
𝑛𝑓−1∑
𝑗=0 

𝐻𝑗 (𝑆)Δ𝑗𝑆 ≥ 𝑓 (𝑆) for a.e. 𝑆 ∈ S }.

The proof combines Theorem 6.1 with the following lemma, which deals with the issue that the supermartingale (𝜎𝑖𝑓 )𝑖≥0 (see 
Example 3--b)) may take values ±∞.

Lemma 8.2. Suppose (𝐿)-a.e. If 𝑓 ∈𝑄 is bounded from below by some 𝑐 ∈ℝ and satisfies 𝜎𝑓 <∞, then there is a supermartingale (𝑓𝑖)𝑖≥0
with values in [𝑐;+∞) such that 𝜎𝑗𝑓 = 𝑓𝑗 a.e. for every 𝑗 ≥ 0.

Proof. As in the proof of Theorem 6.1, we consider the stopping time

𝜏#(𝑆) = inf{𝑘 ≥ 0 ∶ (𝐿(𝑆,𝑘)) fails, or [(𝑆,𝑘− 1) is a type I arbitrage node and 𝑆𝑘 ≠ 𝑆𝑘−1]}.

Define

𝑓𝑖(𝑆) = 𝜎𝑖𝑓 (𝑆)𝟏{𝑖<𝜏#(𝑆)} + 𝑐𝟏{𝑖≥𝜏#(𝑆)}, 𝑖 ≥ 0, 𝑆 ∈ S ,

and note that (𝑓𝑖)𝑖≥0 is non-anticipative by Lemma 5.4. Recall that {𝑆 ∈ S ∶ 𝜏#(𝑆) < ∞} is a null set by Lemma A.1.3 and by 
assumption (𝐿)-a.e. In view of Example 3--b), we conclude that (𝑓𝑗 ) is a supermartingale and 𝜎𝑗𝑓 = 𝑓𝑗 a.e. for every 𝑗 ≥ 0.

For the lower bound, note that by Proposition 3.3,

𝑓𝑖(𝑆) = 𝜎𝑖𝑓 (𝑆) ≥ 𝜎𝑖(𝑐)(𝑆) = 𝑐,

whenever 𝑖 < 𝜏#(𝑆). We finally need to verify that 𝑓𝑖(𝑆) <∞ for every 𝑖 ≥ 0 and 𝑆 ∈ S . Since 𝜎𝑓 <∞, we find Π𝑉 0 ,𝐻0

0,𝑛0
∈ E0 and, for 

every 𝑚 ∈ ℕ, Π𝑉 𝑚,𝐻𝑚

0,⋅ such that Π𝑉 𝑚,𝐻𝑚

0,𝑛 ∈ E +
0 for every 𝑛 ≥ 0, 

∑∞
𝑚=1 𝑉

𝑚 <∞ and
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𝑓 (𝑆) ≤
∞ ∑
𝑚=0

lim inf
𝑛→∞ Π

𝑉 𝑚,𝐻𝑚

0,𝑛 (𝑆), 𝑆 ∈ S .

We now fix a node (𝑆, 𝑖). The previous inequality implies

𝑓 (𝑆̃) ≤
∞ ∑
𝑚=0

lim inf
𝑛→∞ Π

𝑉 𝑚(𝑆),𝐻̃𝑚

𝑖,𝑛
(𝑆̃), 𝑆̃ ∈ S(𝑆,𝑖)

where 𝑉 𝑚(𝑆) = Π𝑉 𝑚,𝐻𝑚

0,𝑖 (𝑆) and 𝐻̃𝑚 =𝐻𝑚|S(𝑆,𝑖)
. Hence, 𝜎𝑖𝑓 (𝑆) ≤∑∞

𝑚=0 Π
𝑉 𝑚,𝐻𝑚

0,𝑖 (𝑆). We still need to check that the right-hand side is 
finite, if 𝑖 < 𝜏#(𝑆). In this case, for every 𝑗 < 𝑖, the node (𝑆, 𝑗) is an up-down node or 𝑆𝑗+1 = 𝑆𝑗 . Indeed, if (𝑆, 𝑗) were an arbitrage 
node of type II, then, by Proposition 3.10, (𝐿(𝑆,𝑗)) fails, which results in 𝜏#(𝑆) ≤ 𝑗 < 𝑖; a contradiction. Similarly, we arrive at a 
contradiction, if (𝑆, 𝑗) were an arbitrage node of type I and 𝑆𝑗+1 ≠ 𝑆𝑗 , because, then, 𝜏#(𝑆) ≤ 𝑗 + 1 ≤ 𝑖. Thus, we may apply the 
Aggregation Lemma 6.4 to conclude that, for every 0 ≤ 𝑗 < 𝑖, the series 

∑∞
𝑚=0(𝐻

𝑚
𝑗
(𝑆)Δ𝑗𝑆), converges in ℝ. Consequently

∞ ∑
𝑚=0

Π𝑉 𝑚,𝐻𝑚

0,𝑖 (𝑆) =
∞ ∑
𝑚=0

𝑉 𝑚 +
𝑖−1 ∑
𝑗=0 

∞ ∑
𝑚=0

(𝐻𝑚
𝑗 (𝑆)Δ𝑗𝑆) ∈ℝ. □

Proof of Theorem 8.1. Fix some 𝜀 > 0 and choose a sequence (𝛿𝑖)𝑖≥0 of positive reals such that 
∑𝑛𝑓−1

𝑖=𝑗 𝛿𝑗 ≤ 𝜀. In view of Lemma 8.2, 
we choose a real-valued supermartingale (𝑓𝑖)𝑖≥0 such that 𝑓𝑖 = 𝜎𝑖𝑓 a.e. for every 𝑖 ≥ 0. Note that 𝑓𝑛𝑓 = 𝜎𝑛𝑓 𝑓 = 𝑓 a.e. by Lemma A.2.3

and assumption (𝐿)-a.e., since 𝑓 has maturity 𝑛𝑓 . Hence, we may apply Theorem 6.1 to (𝑓𝑖)𝑖≥0 in order to construct a non-anticipative 
sequence (𝐻𝑖)𝑖=0,…,𝑛𝑓−1 such that

𝑓 (𝑆) = 𝑓𝑛𝑓 (𝑆) ≤
⎛⎜⎜⎝𝑓𝑗 +

𝑛𝑓−1∑
𝑖=𝑗 

𝛿𝑗

⎞⎟⎟⎠+
𝑛𝑓−1∑
𝑖=𝑗 

𝐻𝑖(𝑆)Δ𝑖𝑆 ≤ (𝜎𝑗𝑓 + 𝜀
)
+

𝑛𝑓−1∑
𝑖=𝑗 

𝐻𝑖(𝑆)Δ𝑖𝑆 (23)

for every 𝑆 ∈ S ⧵𝑁𝑓 , where 𝑁𝑓 is a null set.

For the converse inequality, assume that there are 𝑉 ∈𝑄 with maturity 𝑗, 𝐻 = (𝐻𝑖)𝑖=𝑗,…,𝑛𝑓−1 non-anticipative, and a null set 𝑁̃𝑓

such that for every 𝑆 ∈ S ⧵ 𝑁̃𝑓

𝑓 (𝑆) ≤ 𝑉 (𝑆0,… , 𝑆𝑗 ) +
𝑛𝑓−1∑
𝑖=𝑗 

𝐻𝑖(𝑆)Δ𝑖𝑆.

If 𝑉 (𝑆0,… , 𝑆𝑗 ) = +∞, the inequality 𝜎𝑗𝑓 (𝑆) ≤ 𝑉 (𝑆) is trivial. Otherwise, we note that 𝑔 =∞𝟏𝑁̃𝑓
is a null function and that

𝑓 (𝑆) ≤ 𝑉 (𝑆0,… , 𝑆𝑗 ) +
𝑛𝑓−1∑
𝑖=𝑗 

𝐻𝑖(𝑆)Δ𝑖𝑆 + 𝑔(𝑆) (24)

holds for every 𝑆 ∈ S . By Proposition A.2.1--e), there is a null set 𝑁𝑓 such that 𝐼𝑗𝑔(𝑆) = 0 for every 𝑆 ∈ S ⧵𝑁𝑓 . Consequently, 
for every 𝑆 ∈ S ⧵𝑁𝑓 and 𝜀 > 0 there are sequences (𝑉𝑚)𝑚≥1 of non-negative reals and (𝐻𝑚)𝑚≥1 in H(𝑆,𝑗) such that Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗)

for every 𝑛 ≥ 𝑗, 
∑

𝑚≥1 𝑉𝑚 ≤ 𝜀 and 𝑔 ≤ ∑𝑚≥1 lim inf𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
on S(𝑆,𝑗). Let 𝑉 0 = 𝑉 (𝑆0,… , 𝑆𝑗 ) and define 𝐻0 ∈ H(𝑆,𝑗) via 

𝐻0
𝑖
(𝑆̂) =𝐻𝑖(𝑆̂) for every 𝑗 ≤ 𝑖 ≤ 𝑛𝑓 − 1 and 𝑆̂ ∈ S(𝑆,𝑗). Then, Π𝑉 0 ,𝐻0

𝑗,𝑛𝑓
(𝑆̂) = 𝑉 (𝑆0,… , 𝑆𝑗 ) +

∑𝑛𝑓−1
𝑖=𝑗 𝐻𝑖(𝑆̂)Δ𝑖𝑆̂ for every 𝑆̂ ∈ S(𝑆,𝑗). In 

view of (24), we obtain

𝑓 ≤Π𝑉 0 ,𝐻0

𝑗,𝑛𝑓
+
∑
𝑚≥1

lim inf
𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
on S(𝑆,𝑗),

which implies 𝜎𝑗𝑓 (𝑆) ≤ 𝑉 (𝑆0,… , 𝑆𝑗 ) + 𝜀 for every 𝑆 ∈ S ⧵𝑁𝑓 . Passing with 𝜀 to zero, yields 𝜎𝑗𝑓 ≤ 𝑉 a.e. □

Remark 8.3. Example 1 in Section 4 illustrates how to construct non-negative, bounded functions 𝑓 with finite maturity such that 
𝐼(𝑓 ) > 𝜎𝑓 on a trajectory set satisfying (𝐿)-a.e. In light of the previous theorem, we may conclude that 𝐼 cannot be applied for 
computing superhedging prices in general, but only serves as an auxiliary operator to determine the null sets of the model.

The following theorem shows that the validity of (𝐿(𝑆,𝑗)) at all nodes (𝑆, 𝑗) implies equality for the two families of superhedging 
operators (for non-negative, finite maturity functions 𝑓 ). Therefore, the possibility that 𝜎𝑗𝑓 < 𝐼𝑗𝑓 does stem from cases when (𝐿)
only holds a.e.
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Theorem 8.4. The following assertions are equivalent:

(i) For every 𝑓 ∈ 𝑃 with finite maturity and every node (𝑆, 𝑗),

𝐼𝑗𝑓 (𝑆) = 𝜎𝑗𝑓 (𝑆).

(ii) (𝐿(𝑆,𝑗)) holds at every node (𝑆, 𝑗).

Proof. (i) ⇒ (ii): since 𝐼𝑗 (0)(𝑆) = 0 always holds, we immediately obtain

𝜎𝑗 (0)(𝑆) = 𝐼𝑗 (0)(𝑆) = 0

at any node (𝑆, 𝑗). (𝑖𝑖) then follows from Proposition 3.3.

(ii) ⇒ (i): Step 1: We first consider the initial node (𝑆,0).
Noting that 𝜎𝑓 ≤ 𝐼𝑓 by Remark 2.11, it suffices to show that 𝐼𝑓 ≤ 𝜎𝑓 , for which we may and do assume that 𝜎𝑓 < ∞. By 

Lemma 8.2, we find a supermartingale (𝑓𝑗 )𝑗≥0 with values in [0,∞) such that 𝑓𝑗 = 𝜎𝑗𝑓 a.e. for every 𝑗 ≥ 0. We fix some arbitrary 
𝜀 > 0 and a sequence (𝛿𝑖)𝑖≥0 of positive reals such that 

∑∞
𝑖=0 𝛿𝑖 ≤ 𝜀. Applying the supermartingale decomposition in Theorem 6.1 to 

(𝑓𝑗 )𝑗≥0, we obtain the estimate

𝑓 (𝑆) = 𝑓𝑛𝑓 (𝑆) ≤
(
𝜎𝑓 + 𝜀

)
+

𝑛𝑓−1∑
𝑖=0 

𝐻𝑖(𝑆)Δ𝑖𝑆, 𝑎.𝑒., (25)

for a sequence of non-anticipative functions (𝐻𝑖)𝑖=0,…,𝑛𝑓−1; cp. (23). As (𝐿(𝑆,𝑗)) holds at every node (𝑆, 𝑗), condition (P) in Theorem 7.1

is trivially satisfied. Thus, in view of Lemma 7.3, we may choose the sequence (𝐻𝑖)𝑖=0,…,𝑛𝑓−1 in such a way that

(
𝜎𝑓 + 𝜀

)
+

𝑗−1 ∑
𝑖=0 

𝐻𝑖(𝑆)Δ𝑖𝑆 ≥ 𝜎𝑓 +
∞ ∑
𝑖=0 

𝛿𝑗 +
𝑗−1 ∑
𝑖=0 

𝐻𝑖(𝑆)Δ𝑖𝑆 ≥ 0

for every 0 ≤ 𝑗 ≤ 𝑛𝑓 and 𝑆 ∈ S . Let 𝑉 0 = 𝜎𝑓 +𝜀 and define 𝐻0 via 𝐻0
𝑗
=𝐻𝑗 for 𝑗 ≤ 𝑛𝑓 −1 and 𝐻0

𝑗
= 0 for 𝑗 ≥ 𝑛𝑓 . Then, Π𝑉 0 ,𝐻0

0,𝑗 ∈ E +
0

for every 𝑗 ≥ 0, and, in view of (25), we obtain

𝑓 (𝑆) ≤Π𝑉 0 ,𝐻0

0,𝑛𝑓
= lim inf

𝑛→∞ Π
𝑉 0 ,𝐻0

0,𝑛

for every 𝑆 ∈ S ⧵𝑁𝑓 , where 𝑁𝑓 is a null set. Dealing with the null set 𝑁𝑓 as in the second part of the proof of Theorem 8.1 (taking 
𝑗 = 0 there), we conclude that 𝐼𝑓 ≤ 𝑉 0 + 𝜀 = 𝜎𝑓 + 2𝜀. Letting 𝜀 tend to zero, the proof of Step 1 is complete.

Step 2: We now consider a generic node (𝑆̃, 𝑗).
Define the auxiliary trajectory set

S̃ = {(𝑆𝑗+𝑖)𝑖≥0|𝑆 ∈ S(𝑆̃,𝑗)}.

Then, the 𝜎-operator and the 𝐼 -operator for S̃ at time 0 coincide with 𝜎𝑗 (⋅)(𝑆̃) and 𝐼𝑗 (⋅)(𝑆̃). Moreover, each node (𝑆, 𝑗) in S̃
corresponds to the node ((𝑆̃0,… , 𝑆̃𝑗−1, 𝑆0,…), 𝑗 + 𝑗) in S . Hence, every node (𝑆, 𝑗) in S̃ satisfies (𝐿(𝑆,𝑗)). These observations reduce 
the case of a generic node to the case of an initial node. □

It is important to connect the superhedging outer integral 𝜎 to the pricing paradigm based on martingale measures. While a 
general study of such relations is beyond the scope of the present paper, the following example provides one such connection. The 
example partially relies on the following general observation.

Remark 8.5. Suppose (𝐿)-a.e., that the trajectory set S is countable, and that there is a probability measure 𝐏 on 2S such that 
𝐏 has the same null sets as 𝐼 , i.e., 𝐏(𝐴) = 0 ⇔ 𝐼𝟏𝐴 = 0 for every 𝐴 ⊆ S . If 𝑓 ∈ 𝑄 has maturity 𝑛𝑓 <∞ and is bounded, then, by 
Theorem 8.1 and recalling Remark 2.14,

𝜎𝑓 = inf{𝑉 ∈ℝ| ∃(𝐻𝑗 )𝑗=0,…,𝑛𝑓−1 T -adapted such that 𝑉 +
𝑛𝑓−1∑
𝑗=0 

𝐻𝑗 (𝑇𝑗+1 − 𝑇𝑗 ) ≥ 𝑓 𝐏-almost surely}.

Writing Q𝑛(𝐏) for the set of all probability measures 𝐐 equivalent to 𝐏 such that (𝑇0,…𝑇𝑛) is a martingale with respect to 𝐐, i.e., 
(4) holds for 𝑗 = 0,… , 𝑛− 1, the classical superhedging duality [12, Corollary 7.18] yields,

𝜎𝑓 = sup 
𝐐∈Q𝑛𝑓

(𝐏)∫ 𝑓𝑑𝐐, (26)

provided the set Q𝑛𝑓
(𝐏) is non-empty. (Recall here, that two probability measures 𝐏 and 𝐐 are said to be equivalent, if they have 

the same null sets.)

International Journal of Approximate Reasoning 187 (2025) 109567 

26 



C. Bender, S.E. Ferrando, K. Gajewski et al. 

Example 6. We consider a variant of Example 4, replacing the ‘sure’ arbitrage at the type II arbitrage node (𝑆+,1) by a ‘sure’ arbitrage 
opportunity by trading up to unbounded time. To this end, we replace the up-branch of the model by S̃ + = {𝑆̃+,𝑛 ∶ 𝑛 ∈ ℕ}, where 
now

𝑆̃+,𝑛
𝑖

=
⎧⎪⎨⎪⎩
1, 𝑖 = 0
2, 1 ≤ 𝑖 < 𝑛+ 1
4, 𝑖 ≥ 𝑛+ 1

,

and consider the trajectory set S ≡ S̃ + ∪ S −, with the lower branch S − defined as in Example 4. This modified trajectory set 
fails to be trajectorial complete, since 𝑆∗ ≡ (1,2,2,2,…) ∉ S , but satisfies (𝐿)-a.e. by Corollary 3.13. Its trajectorial completion 
S = S ∪{𝑆∗} satisfies (𝐿(𝑆,𝑗)) at every node by Corollary 3.14. Note that all potential losses at the node (𝑆̃+,1,1) by trading between 
time 0 and 1 can be recuperated in the model S by buying the stock (at all times 𝑖 ≥ 1) and waiting until the stock price eventually 
increases to 4. All conclusions of Example 4 are, therefore, easily seen to remain valid for this variant of the trajectory set. In particular, 
S has no martingale measure. This reasoning fails in the completed model S , because the stock price may remain constant after 
time 1. We will next explain, how the procedure of trajectorial completion changes pricing via the superhedging outer integral in 
this example. To distinguish between the model S and its trajectorial completion S , we write 𝜎(S )

and 𝜎(S )
for the superhedging 

outer integrals with respect to the trajectory sets S and S , respectively.

We first consider the completed model S . Analogously to the proof of assertion d) of Example 1 in Appendix A.4, it is not hard to 
verify that a singleton {𝑆}, 𝑆 ∈ S , is an 𝐼 -null set, if and only if 𝑆 ∈ S̃ + (and, thus, passes through the up-branch of an arbitrage 
node of type I). Hence, every 𝑓 ∈ 𝑄 is 𝐼 -a.e. equal to 𝑓 (1) ≡ 𝑓𝟏

S ⧵S̃+ , which has maturity 1, because all trajectories outside S̃ +

remain constant after time 1. We now fix a probability measure 𝐏 on 2S such that 𝐏(𝐴) = 0, if and only if 𝐴 ⊆ S̃ +. Assuming that 
𝑓 is bounded, we may combine (26) with Proposition A.2.1--b) to conclude that

𝜎
(S )

𝑓 = 𝜎
(S )

𝑓 (1) = sup
𝐐 ∫ 𝑓 (1)𝑑𝐐 = sup

𝐐 ∫ 𝑓𝑑𝐐, (27)

where 𝐐 runs over the set of all probability measures on 2S satisfying, for every 𝑛 ∈ℕ,

𝐐({𝑆̃+,𝑛}) = 0, 𝐐({𝑆−,𝑛}) > 0, 𝐐({𝑆∗}) > 0, and 𝐐({𝑆∗}) −
∞ ∑
𝑛=1 

𝐐({𝑆−,𝑛})
𝑛2

= 0.

Here, the last identity rephrases the property that (𝑇0, 𝑇1) is a martingale with respect to 𝐐. The supremum on the right-hand side 
of (27) does not change, if the positivity conditions 𝐐({𝑆∗}) > 0 and 𝐐({𝑆−,𝑛}) > 0 for every 𝑛 ∈ ℕ are skipped (e.g., by applying 
Fatou’s lemma). Then, noting that all martingale measures assign zero probability to S̃ + and recalling that the other trajectories 
remain constant after time 1, we observe that the classical probabilistic martingale property of (𝑇𝑗 )𝑗≥0 is equivalent to that of (𝑇0, 𝑇1). 
Hence,

𝜎
(S )

𝑓 = sup 
𝐐∈Q

∫ 𝑓𝑑𝐐,

where Q denotes the set of all martingale measures on S . Thus, pricing via the superhedging outer integral is in line with the 
model-free superhedging duality of [4,5] in this example. For later use, we note that, by the previous considerations, 𝐐 ∈ Q, if and 
only if

𝐐(S̃ +) = 0 and 𝐐({𝑆∗}) −
∞ ∑
𝑛=1 

𝑄({𝑆−,𝑛})
𝑛2

= 0 (28)

Coming back to the original trajectory set S = S̃ + ∪ S −, we recall that there is no martingale measure in this model. We first 
note that

𝜎
(S )

𝑓 = lim sup
𝑛→∞ 

𝑓 (𝑆−,𝑛), 𝑓 ∈𝑄. (29)

This identity has been shown in [2] for the trajectory set in Example 4 and their proof can easily been adapted to the present trajectory 
set (the only difference being, how exactly the arbitrage in the respective up-branch of the two trajectory sets is exploited). The pricing 
rule (29) can be related to the martingale measures of the completed model S by observing that

𝜎
(S )

𝑓 = lim 
𝜀→0

sup 
𝐐∈Q𝜀

∫ 𝑓𝑑𝐐, 𝑓 ∈𝑄 bounded from below, (30)

where Q𝜀 denotes the set of martingale measures 𝐐 for S such that 𝐐(S ⧵S ) ≤ 𝜀. To verify (30), we write 𝑓 ∗ = lim sup𝑛→∞ 𝑓 (𝑆−,𝑛)
and first show that 𝑓 ∗ ≤ lim inf𝜀→0 sup𝐐∈Q𝜀

∫ 𝑓𝑑𝐐. For a fixed 𝜈 ≥ 2, define a probability measure 𝐐(𝜈) on 2S via
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𝐐(𝜈)({𝑆}) =

⎧⎪⎪⎨⎪⎪⎩
2∕(𝜈2 + 3), 𝑆 = 𝑆∗

1∕(𝜈2 + 3), 𝑆 = 𝑆−,1

𝜈2∕(𝜈2 + 3), 𝑆 = 𝑆−,𝜈

0, 𝑆 ∈ S ⧵ {𝑆∗, 𝑆−,1, 𝑆−,𝜈}

.

In view of (28), 𝐐(𝜈) ∈ Q𝜀 for 𝜀 ≥ 2∕(𝜈2 + 3) and

∫ 𝑓𝑑𝐐(𝜈) = 𝑓 (𝑆−,𝜈) 𝜈2

𝜈2 + 3
+ 𝑓 (𝑆−,1) 1 

𝜈2 + 3
+ 𝑓 (𝑆∗) 2 

𝜈2 + 3
.

Passing with 𝜈 to infinity along a subsequence (𝜈𝑘)𝑘∈ℕ such that 𝑓 (𝑆−,𝜈𝑘 ) converges to 𝑓 ∗, we obtain,

𝑓 ∗ = lim 
𝑘→∞∫ 𝑓𝑑𝐐(𝜈𝑘) ≤ lim inf

𝜀→0 sup 
𝐐∈Q𝜀

∫ 𝑓𝑑𝐐.

In order to finish the proof of (30), it remains to show that 𝑓 ∗ ≥ lim sup𝜀→0 sup𝐐∈Q𝜀
∫ 𝑓𝑑𝐐. To this end, we may assume 𝑓 ∗ <∞. 

Fixing some 𝐐 ∈ Q𝜀 and 𝑁0 ∈ℕ, we decompose

∫ 𝑓𝑑𝐐− 𝑓 ∗ =
∑
𝑛≥𝑁0

(𝑓 (𝑆−,𝑛) − 𝑓 ∗)𝐐({𝑆−,𝑛}) +
𝑁0−1∑
𝑛=1 

(𝑓 (𝑆−,𝑛) − 𝑓 ∗)𝐐({𝑆−,𝑛}) + (𝑓 (𝑆∗) − 𝑓 ∗)𝐐({𝑆∗})

≤ sup 
𝑛≥𝑁0

(𝑓 (𝑆−,𝑛) − 𝑓 ∗) + sup 
𝑛=1,…,𝑁0−1

|𝑓 (𝑆−,𝑛) − 𝑓 ∗|𝑁0−1∑
𝑛=1 

𝐐({𝑆−,𝑛}) + |𝑓 (𝑆∗) − 𝑓 ∗|𝐐({𝑆∗}).

Noting that 𝐐({𝑆∗}) =𝐐(S ⧵S ) ≤ 𝜀 and, then, by (28), 
∑𝑁0−1

𝑛=1 𝐐({𝑆−,𝑛}) ≤ 𝜀(𝑁0 − 1)2, we obtain

lim sup
𝜀→0 

sup 
𝐐∈Q𝜀

∫ 𝑓𝑑𝐐− 𝑓 ∗ ≤ sup 
𝑛≥𝑁0

(𝑓 (𝑆−,𝑛) − 𝑓 ∗).

Taking the infimum over 𝑁0 ∈ℕ, we finally get lim sup𝜀→0 sup𝐐∈Q𝜀
∫ 𝑓𝑑𝐐− 𝑓 ∗ ≤ 0.

9. Discussion

We introduce a framework, motivated by financial considerations, where the fundamental elements are future price scenarios 
and trading opportunities. This setting naturally fits within the Leinert-König integration framework, which generalizes Lebesgue 
integration beyond lattice structures. A key analytic tool in constructing the conditional outer integral operators 𝜎𝑗 (interpreted as 
superhedging operators in finance) is property (𝐿), which we show is closely tied to no-arbitrage conditions.

Building on this foundation, it is possible to extend classical probabilistic results concerning supermartingales, the latter emerge 
naturally through 𝜎𝑗 . In particular, we establish Doob’s supermartingale decomposition and pointwise convergence theorems, using 
entirely new proof techniques that rely solely on our framework, without invoking classical results or constructions. We also provide 
extensive discussions and examples highlighting the novelty of our results and their dependence on property (𝐿).

Our approach reveals previously unnoticed aspects of null sets and connects to the game-theoretic probability framework of 
Shafer and Vovk [23]. We clarify how our technical hypotheses differ from theirs, leading to distinct assumptions, results, and 
proof techniques. This establishes a link between the Leinert-König [16,14] and Shafer-Vovk [23] approaches which also bridges our 
framework with imprecise probability theory given the known relations between the latter and Shafer-Vovk theory.
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Appendix A

A.1. Partitions, arbitrage nodes, and null sets

In view of Proposition 3.3, the following Lemma shows that property (𝐿(𝑆,𝑗)) fails at type II arbitrage nodes (𝑆, 𝑗).

Lemma A.1.1. Given a trajectory set S consider a node (𝑆, 𝑗), 𝑗 ≥ 0, then: If (𝑆, 𝑗) is a type II arbitrage node, then

𝜎𝑗𝑓 (𝑆) = −∞  for any 𝑓 ∈𝑄.

Proof. We may consider the case when 𝑆̃𝑗+1 > 𝑆𝑗 for all 𝑆̃ ∈ S(𝑆,𝑗). Take then, for all 𝑚 ≥ 1: 𝐻𝑚
𝑗
(𝑆̃) = 1 and 𝐻𝑚

𝑖
(𝑆̃) = 0 for all 𝑖 > 𝑗, 

𝑉 𝑚 = 0. Also, 𝐻0
𝑖
= 0 for all 𝑖 ≥ 𝑗; then, for any 𝑉 0 ∈ℝ:

𝑓 (𝑆̃) ≤ 𝑉 0 +∞= 𝑉 0 +
∑
𝑚≥1

𝐻𝑚
𝑗 (𝑆̃)  Δ𝑗 𝑆̃ holds for any 𝑆̃ ∈ S(𝑆,𝑗) and 𝑓 ∈𝑄.

Thus, the claim follows. □

In Lemma A.1.3 below, it will be proved that trajectories passing through arbitrage nodes of type II form a null set.

Define for 𝑗 ≥ 0,

𝑁◦
𝑗 ≡ {𝑆 ∈ S ∶ (𝑆, 𝑗) is an arbitrage node, and Δ𝑗𝑆 ≠ 0}, 𝑁𝑘 ≡

⋃
𝑗≥𝑘 

𝑁◦
𝑗 ,  for 𝑘 ≥ 0,  and 𝑁(𝑆, 𝑗) ≡𝑁𝑗 ∩S(𝑆,𝑗) for 𝑗 ≥ 0,

and recall that the set 𝑁(𝑆, 𝑗) has already been introduced in (6). Notice that

𝑁0 = N ≡ N (𝐼) ∪N (𝐼𝐼) = {𝑆 ∈ S ∶ ∃ 𝑗 ≥ 0 s.t. (𝑆, 𝑗) is an arbitrage node and 𝑆𝑗+1 ≠ 𝑆𝑗} (31)

where the sets N (𝐼),N (𝐼𝐼) were introduced in the proof of Theorem 6.1.

It will be shown that N is a null set. Whenever 𝑆 ∉ N it follows that 𝑆 ∉𝑁◦
𝑗

for any 𝑗 ≥ 0, therefore such node (𝑆, 𝑗) is: flat, or 
up-down, or type I arbitrage node with 𝑆𝑗+1 = 𝑆𝑗 . On the other hand if (𝑆, 𝑗) is a type II arbitrage node then S(𝑆,𝑗) ⊆𝑁◦

𝑗
. Moreover, 

it can be that 𝑆 ∈𝑁◦
𝑗

, but (𝑆,𝑘) is arbitrage free for some 𝑘 > 𝑗.

Definition A.1.2. Since for any 𝑗 ≥ 0, S is a disjoint union of S(𝑆,𝑗), let Λ𝑗 be an index set, such that for 𝜆∈Λ𝑗 there exists 𝑆𝜆 ∈ S

such that

𝜆 ≠ 𝜆′ ⇒ 𝑆𝜆′ ∉ S(𝑆𝜆,𝑗), S =
⋃
𝜆∈Λ𝑗

S(𝑆𝜆,𝑗), and if (𝑆𝜆, 𝑗)  is an arbitrage node then |Δ𝑗𝑆
𝜆| > 0.

For Γ ⊆Λ𝑗 define 𝐻Γ = (𝐻Γ
𝑖
)𝑖≥0, 𝐻Γ

𝑖
∶ S →ℝ by

𝐻Γ
𝑖 ≡ 0 if 𝑖 ≠ 𝑗 ; 𝐻Γ

𝑗 ≡ 𝟏S Γ , where S Γ ≡⋃
𝜆∈Γ

S(𝑆𝜆,𝑗).

𝐇Γ is non-anticipative: Let 𝑆̃𝑘 = 𝑆𝑘, 0 ≤ 𝑘 ≤ 𝑖. If 𝑖 ≠ 𝑗 then 𝐻Γ
𝑖
(𝑆̃) = 𝐻Γ

𝑖
(𝑆) = 0. For 𝑖 = 𝑗, 𝑆 ∈ S(𝑆𝜆,𝑗) iff 𝑆̃ ∈ S(𝑆𝜆,𝑗) so 

𝐻Γ
𝑗
(𝑆̃) =𝐻Γ

𝑗
(𝑆).

Lemma A.1.3. Consider 𝑗 ≥ 0 and 0≤ 𝑘 ≤ 𝑗, then 𝑁◦
𝑗
, thus also 𝑁𝑗 , are conditionally null sets at any (𝑆,𝑘).

Proof. Define 𝑁◦,+
𝑗

≡ {𝑆 ∈𝑁◦
𝑗
∶ Δ𝑗𝑆 > 0} and Λ+

𝑗
≡ {𝜆 ∈ Λ𝑗 ∶ 𝑆𝜆 ∈𝑁◦,+

𝑗
}, and consider for 𝑚 ≥ 1, 𝑓𝑚 = Π0,𝐻

Λ+
𝑗

𝑘,𝑗+1 ∈ E +
(𝑆,𝑘) for any 

𝑆 ∈ S . Then

𝟏𝑁◦,+
𝑗

≤∑
𝑚≥1

𝑓𝑚, which implies that ‖𝟏𝑁◦,+
𝑗
‖𝑘 = 0.

In a similar way it is shown that 𝑁◦,−
𝑗

≡ {𝑆 ∈𝑁◦
𝑗
∶ Δ𝑗𝑆 < 0} is a conditionally null set at any (𝑆,𝑘), consequently 𝑁◦

𝑗
=𝑁◦,+

𝑗
∪𝑁◦,−

𝑗
is also conditionally null. □

A.2. Basic properties of superhedging functional 𝜎𝑗

We next provide some basic properties of the conditional outer integral. Related results can be found for the non-conditional outer 
integral in [10] and for a variant of the conditional outer integral (without the lim inf ) in [2].
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Proposition A.2.1 (Basic Properties). The following properties hold for 𝑓, 𝑔 ∈𝑄

a) 𝜎𝑗𝑓 (𝑆) ≤ 𝑓 (𝑆) if 𝑓 is constant on S(𝑆,𝑗). (Implies 𝜎𝑗0 ≤ 0 and 𝜎
𝑗
𝑓 ≥ 𝑓 .)

b) 𝜎𝑗𝑓 (𝑆) ≤ 𝜎𝑗𝑔(𝑆), if 𝑓 ≤ 𝑔 a.e. on S(𝑆,𝑗).
c) 𝜎𝑗 [𝑓 + 𝑔] ≤ 𝜎𝑗𝑓 + 𝜎𝑗𝑔.

d) Let 𝑓 ∈𝑄, 𝑔 ∈ 𝑃 , and 𝑔 is constant on S(𝑆,𝑗) then 𝜎𝑗 (𝑔𝑓 )(𝑆) ≤ 𝑔𝜎𝑗𝑓 (𝑆).
e) Let 𝑓 ∈ 𝑃 and 𝑘≥ 0 then 0 ≤ 𝐼(𝐼𝑘𝑓 ) ≤ 𝐼𝑓 . Therefore if 𝑓 is a null function we get 𝐼𝑘𝑓 is a null function.

Proof. The proofs are immediate but we do indicate the arguments for item 𝑑).
Let 𝑐 ≥ 0 be a constant such that 𝑔(𝑆̂) = 𝑐 for all 𝑆̂ ∈ S(𝑆,𝑗). If 𝑐 = 0, 𝜎𝑗 (𝑔𝑓 )(𝑆) = 𝜎𝑗 (0)(𝑆) ≤ 𝑔𝜎𝑗0(𝑆) (already covered by item 

𝑎). So assume 𝑐 > 0. Let 𝑔𝑓 (𝑆̃) ≤ ∑
𝑚≥0

lim inf
𝑛→∞ Π

𝑉 𝑚,𝐻𝑚

𝑗,𝑛
(𝑆̃), 𝑆̃ ∈ S(𝑆,𝑗), with Π𝑉 0 ,𝐻0

𝑗,𝑛0
∈ E(𝑆,𝑗) and, for 𝑚 ≥ 1, Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) for all 𝑛 ≥ 0. 

For each 𝑆̃ ∈ S(𝑆,𝑗) and 𝑚 ≥ 0 define

𝑈𝑚(𝑆̃) = 𝑉 𝑚

𝑔(𝑆)
, and 𝐺𝑚

𝑖 (𝑆̃) =
𝐻𝑚

𝑖
(𝑆̃)

𝑔(𝑆) 
, for 𝑖 ≥ 𝑗.

It follows that 𝑓 (𝑆̃) ≤ ∑
𝑚≥0

lim inf
𝑛→∞ Π

𝑈𝑚,𝐺𝑚

𝑗,𝑛
(𝑆̃), 𝑆̃ ∈ S(𝑆,𝑗), with Π𝑈0 ,𝐺0

𝑗,𝑛0
∈ E(𝑆,𝑗), and for 𝑚 ≥ 1, Π𝑈𝑚,𝐺𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) for all 𝑛 ≥ 0. Thus

𝜎𝑗𝑓 (𝑆) ≤ 𝜎𝑗 [𝑔𝑓 ](𝑆)
𝑔(𝑆) 

.

Notice that one actually obtains 𝜎𝑗 (𝑔𝑓 )(𝑆) = 𝑔𝜎𝑗𝑓 (𝑆) if 𝑔 = 𝑐 > 0 on S(𝑆,𝑗).

We also note that the proof of item 𝑒) is analogous to the one of Proposition 5.5. □

Corollary A.2.2. Suppose 𝑓, 𝑔 ∈𝑄. If 𝑓 ≤ 𝑔 a.e., then 𝜎𝑗𝑓 ≤ 𝜎𝑗𝑔 a.e.

Proof. Note that, for every 𝑆 ∈ S ,

𝜎𝑗𝑓 (𝑆) ≤ 𝜎𝑗 (max{𝑓, 𝑔})(𝑆) = 𝜎𝑗 (𝑔 + (𝑓 − 𝑔)+)(𝑆) ≤ 𝜎𝑗𝑔(𝑆) + 𝐼𝑗 (𝑓 − 𝑔)+(𝑆),

making use of Remark 2.11. As (𝑓 −𝑔)+ is a null function, we conclude by Proposition A.2.1 that 𝐼𝑗 (𝑓 −𝑔)+ is a null function. Hence, 
𝜎𝑗𝑓 ≤ 𝜎𝑗𝑔 a.e. □

Lemma A.2.3. Let 𝑓 ∈𝑄, (𝑆, 𝑗) a fixed node and 𝑘 ≥ 𝑗. If 𝑓 is constant on S(𝑆,𝑗) then 𝜎𝑘𝑓 (𝑆) ≤ 𝑓 (𝑆) ≤ 𝜎
𝑘
𝑓 (𝑆). Moreover once (𝐿(𝑆,𝑘))

holds then

1. If 𝑓 is constant on S(𝑆,𝑗) then 𝜎
𝑘
𝑓 (𝑆) = 𝑓 (𝑆) = 𝜎𝑘𝑓 (𝑆).

2. For a general 𝑓 ∈𝑄, 𝜎𝑗𝑓 is constant on S(𝑆,𝑗); hence: 𝜎𝑘[𝜎𝑗𝑓 ](𝑆) = 𝜎𝑗𝑓 (𝑆) = 𝜎
𝑘
[𝜎𝑗𝑓 ](𝑆) and 𝜎𝑘[𝜎𝑗𝑓 ](𝑆) = 𝜎

𝑗
𝑓 (𝑆) = 𝜎

𝑘
[𝜎

𝑗
𝑓 ](𝑆).

Proof. If 𝑓 is constant on S(𝑆,𝑗), it is also constant on S(𝑆,𝑘) ⊆S(𝑆,𝑗), then 𝑓 ∈ E(𝑆,𝑘), so by Definition 2.10, 𝜎𝑘𝑓 (𝑆) ≤ 𝑓 (𝑆).
If, furthermore, also (𝐿(𝑆,𝑘)) holds, we have 𝜎

𝑘
𝑓 (𝑆) = 𝑓 (𝑆) = 𝜎𝑘𝑓 (𝑆) by applying item (4) of Proposition 3.3 to Π𝑉 ,𝐻

𝑗,𝑗
with 

𝑉 = 𝑓𝟏S(𝑆,𝑗)
and 𝐻 = 0. □

Corollary A.2.4. Let 𝑓, 𝑔 ∈𝑄 and consider a fixed 𝑆 ∈ S . If for 𝑗 ≥ 0 property (𝐿(𝑆,𝑗)) holds and 𝜎𝑗𝑓 (𝑆)−𝜎𝑗𝑓 (𝑆) = 0 = 𝜎𝑗𝑔(𝑆)−𝜎𝑗𝑔(𝑆), 
then all the involved quantities are finite and

(𝑎) 𝜎𝑗 (𝑓 + 𝑔)(𝑆) = 𝜎𝑗𝑓 (𝑆) + 𝜎𝑗𝑔(𝑆) = 𝜎
𝑗
𝑓 (𝑆) + 𝜎

𝑗
𝑔(𝑆) = 𝜎

𝑗
(𝑓 + 𝑔)(𝑆).

(𝑏) 𝜎𝑗 (𝑐𝑓 )(𝑆) = 𝑐𝜎𝑗𝑓 (𝑆) = 𝑐𝜎
𝑗
𝑓 (𝑆) = 𝜎

𝑗
(𝑐𝑓 )(𝑆) ∀𝑐 ∈ℝ.

Proof. The finiteness claims follow from our conventions in the first paragraph of Section 2.2. We then see that the hypotheses imply 
that 𝜎𝑗𝑓 (𝑆) = 𝜎

𝑗
𝑓 (𝑆) and 𝜎𝑗𝑔(𝑆) = 𝜎

𝑗
𝑔(𝑆).

(a) holds from

𝜎𝑗𝑓 (𝑆) + 𝜎𝑗𝑔(𝑆) = 𝜎
𝑗
𝑓 (𝑆) + 𝜎

𝑗
𝑔(𝑆) ≤ 𝜎

𝑗
[𝑓 + 𝑔](𝑆) ≤ 𝜎𝑗 [𝑓 + 𝑔](𝑆) ≤ 𝜎𝑗𝑓 (𝑆) + 𝜎𝑗𝑔(𝑆),

where we have relied on Proposition 3.3. For (b), if 𝑐 = 0 or 𝑐 = −1 the result is clear. For 𝑐 > 0 it follows from the proof of item 𝑑)
of Proposition A.2.1, from where, if 𝑐 < 0

𝜎𝑗 (𝑐𝑓 )(𝑆) = 𝜎𝑗 (−𝑐(−𝑓 ))(𝑆) = −𝑐𝜎𝑗 (−𝑓 )(𝑆) = 𝑐𝜎
𝑗
𝑓 (𝑆). □
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A.3. Proofs for Section 3

Proof of Proposition 3.3. The proof follows the lines of [2], where the analogous result is shown in a related setting (without the 
limit inferior in time in the definition of the superhedging operators).

From item 1. and item c) of Proposition A.2.1 it follows item 2., since 0 ≤ 𝜎𝑗𝑓 (𝑆) + 𝜎𝑗 (−𝑓 )(𝑆).
Assumed item 2., it follows that 0 ≤ 𝜎

𝑗
0(𝑆) ≤ 𝜎𝑗0(𝑆) ≤ 0, first and last inequalities from item a) of Proposition A.2.1, so item 1. 

holds. From here onwards we let 𝑓 =Π𝑉 ,𝐻
𝑗,𝑛𝑓

.

Item 3. follows from item 1. as follows. Let ℎ𝑚 = lim inf
𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
, Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) for every 𝑛 ≥ 𝑗 and 𝑚 ≥ 1, such that 𝑓 ≡
Π𝑉 ,𝐻
𝑗,𝑛𝑓

≤ ∑
𝑚≥1

ℎ𝑚 on S(𝑆,𝑗). Then 0≤ −Π𝑉 ,𝐻
𝑗,𝑛𝑓

+
∑
𝑚≥1

ℎ𝑚, thus (taking 𝑓0 ≡ −Π𝑉 ,𝐻
𝑗,𝑛𝑓

, and 𝑓𝑚 = ℎ𝑚 for 𝑚 ≥ 1) by Definition 2.10, 0 = 𝜎𝑗 (0) ≤
−𝑉 +

∑
𝑚≥1

𝑉 𝑚, which leads to 𝑉 ≤ ∑
𝑚≥1

𝑉 𝑚 as required.

Assumed item 3., let 𝑓0 = Π𝑉 0 ,𝐻0

𝑗,𝑛0
∈ E(𝑆,𝑗) and 𝑓𝑚 = lim inf

𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
, Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) ∀ 𝑛 ≥ 𝑗 and 𝑚 ≥ 1, such that 𝑓 ≤ ∑
𝑚≥0

𝑓𝑚. 

Then 𝑓 − 𝑓0 ≤ ∑
𝑚≥1

𝑓𝑚 with 𝑓 − 𝑓0 ∈ E(𝑆,𝑗), so 𝑉 (𝑆) − 𝑉0 ≤ ∑
𝑚≥0

𝑉 𝑚, and 𝑉 (𝑆) ≤ 𝜎𝑗𝑓 (𝑆). Since by Definition 2.10, 𝜎𝑗𝑓 (𝑆) ≤ 𝑉 (𝑆), 

item 4. holds, having in mind that 𝜎
𝑗
𝑓 (𝑆) = −𝜎𝑗 [−𝑓 ](𝑆) = 𝑉 (𝑆).

Finally, it is clear that item 1. follows from item 4. □

Proof of Proposition 3.10. If (𝑆, 𝑗) is an arbitrage node of type II, then, for every 𝑆̃ ∈ S(𝑆,𝑗), (𝑆̃, 𝑗) is an arbitrage node and 𝑆̃𝑗+1 ≠
𝑆̃𝑗 . Hence, 𝑆̃ ∈𝑁(𝑆, 𝑗) for every 𝑆̃ ∈ S(𝑆,𝑗), i.e., the node (𝑆, 𝑗) is bad.

If (𝑆, 𝑗) is a bad node, then, by Lemma A.1.3, S(𝑆,𝑗) = 𝑁(𝑆, 𝑗) is a conditional null set at (𝑆, 𝑗). Therefore, by Remark 2.11, 
𝜎𝑗1(𝑆) ≤ 𝐼𝑗 (𝟏S(𝑆,𝑗)

)(𝑆) = 0. Thus, property 4. in Proposition 3.3 fails, resulting in the failure of (𝐿(𝑆,𝑗)).

If 𝑆 ∈ N bad, then, (𝑆, 𝑗) is bad for some 𝑗 ≥ 0, and, thus, there is a 𝑘 ≥ 𝑗 such that (𝑆,𝑘) is an arbitrage node and 𝑆𝑘+1 ≠ 𝑆𝑘. 
Therefore, N bad ⊂N , where the set N , introduced in (31), is a null set by Lemma A.1.3. □

Proof of Theorem 3.12. 1. The first implication is obvious, while the second one is an immediate consequence of the fact that any 
good node is not an arbitrage node of type II, see Proposition 3.10.

2. Assuming (H𝐼𝐼 ) we verify (H𝐼𝐼 ’) as follows. Consider any up-down node (𝑆, 𝑗). If (𝑆̂, 𝑗 +1) is not a type II arbitrage node for every 
𝑆̂ ∈ S(𝑆,𝑗), then we find 𝑆1, 𝑆2 ∈ S(𝑆,𝑗) such that 𝑆1

𝑗+1 −𝑆𝑗 > 0 and 𝑆2
𝑗+1 −𝑆𝑗 < 0. We may choose 𝑆𝜀,1 = 𝑆1 and 𝑆𝜀,2 = 𝑆2 for every 

𝜀 > 0. Otherwise, (H𝐼𝐼 ) directly applies.

3. Since arbitrage nodes of type II are always bad (Proposition 3.10), we only need to show that all other nodes are good. To this 
end, we fix a node (𝑆, 𝑗) which is not arbitrage of type II and construct a trajectory 𝑆̃ ∈ S(𝑆,𝑗) ⧵𝑁(𝑆, 𝑗). We set 𝑆𝑛 = 𝑆 for 𝑛 ≤ 𝑗 and 
inductively construct 𝑆𝑛 for 𝑛 > 𝑗 in the following way, which guarantees that (𝑆𝑛, 𝑛) is not a type II arbitrage node: if (𝑆𝑛, 𝑛) is flat 
or an arbitrage node of type I, we choose 𝑆𝑛+1 ∈ S(𝑆𝑛,𝑛) such that 𝑆𝑛+1

𝑛+1 = 𝑆𝑛
𝑛 and note that (𝑆𝑛+1, 𝑛+ 1) is not an arbitrage node of 

type II by (H𝐼𝐼 ). If (𝑆𝑛, 𝑛) is an up-down node, then by (H𝐼𝐼 ) again, we find some 𝑆𝑛+1 ∈ S(𝑆𝑛,𝑛) such that (𝑆𝑛+1, 𝑛 + 1) is not an 
arbitrage node of type II. Since (𝑆𝑛, 𝑛) is not an arbitrage node of type II for every 𝑛 ≥ 𝑗, condition (TC𝐼𝐼 ) implies lim𝑛→∞ 𝑆𝑛 ∈ S . 
By construction, 𝑆̃ ≡ lim𝑛→∞ 𝑆𝑛 = (𝑆𝑖

𝑖
)𝑖≥0 ∈ S(𝑆,𝑗) ⧵𝑁(𝑆, 𝑗).

4. In view of Proposition 3.10, we only need to show that (𝐿(𝑆,𝑗)) holds at every good node. Our proof extends a related argument in 
[10] beyond models that have up-down nodes only.

Fix a good node (𝑆, 𝑗). Let 𝑓 =Π𝑉 0 ,𝐻0

𝑗,𝑛𝑓
∈ E(𝑆,𝑗) and 𝑓𝑚 = lim inf𝑛→∞Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
with Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
∈ E +

(𝑆,𝑗) for all 𝑛 ≥ 𝑗 and 𝑚 ≥ 1 such that

𝑓 ≤∑
𝑚≥1

𝑓𝑚 on S(𝑆,𝑗).

We need to show that

𝑉 0 ≤∑
𝑚≥1

𝑉 𝑚 ≡ 𝑉 ,

(and, hence, can and will assume that 𝑉 <∞). Recall that

𝑁(𝑆, 𝑗) = {𝑆̃ ∈ S(𝑆,𝑗)| (𝑆̃, 𝑘) is an arbitrage node and 𝑆̃𝑘+1 ≠ 𝑆̃𝑘 for some 𝑘 ≥ 𝑗}.

If 𝑆̃ ∈ S(𝑆,𝑗) ⧵𝑁(𝑆, 𝑗), then, for every 𝑘 ≥ 𝑗, (𝑆̃, 𝑘) is an up-down node or 𝑆̃𝑘+1 = 𝑆̃𝑘. Hence, by the Aggregation Lemma 6.4, for 
every 𝑆̃ ∈ S(𝑆,𝑗) ⧵𝑁(𝑆, 𝑗) and 𝑛 ≥ 𝑗

∑
𝑚≥1

Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
(𝑆̃) = 𝑉 +

𝑛−1 ∑
𝑖=𝑗 

𝐻𝑖(𝑆̃)Δ𝑖𝑆̃,

for the non-anticipative sequence
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𝐻𝑖(𝑆̂) =

{∑∞
𝑚=1𝐻

𝑚
𝑖
(𝑆̂), if convergent in ℝ,

0, otherwise,
𝑖 ≥ 𝑗, 𝑆̂ ∈ S(𝑆,𝑗).

Then, by Fatou’s lemma, for every 𝑆̂ ∈ S(𝑆,𝑗)

𝑓 ≤ lim inf
𝑛→∞ 
∑
𝑚≥1

Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
(𝑆̂) ≤ 𝑉 + lim inf

𝑛→∞ 

𝑛−1 ∑
𝑖=𝑗 

𝐻𝑖(𝑆̂)Δ𝑖𝑆̂ +∞𝟏𝑁(𝑆,𝑗)(𝑆̂),

which we may rearrange into

𝑉 0 ≤ 𝑉 + lim inf
𝑛→∞ 

𝑛−1 ∑
𝑖=𝑗 

𝐻̃𝑖(𝑆̂)Δ𝑖𝑆̂ +∞𝟏𝑁(𝑆,𝑗)(𝑆̂)

where 𝐻̃𝑖 =𝐻𝑖 −𝐻0
𝑖

for 𝑖 < 𝑛𝑓 and 𝐻̃𝑖 =𝐻𝑖 otherwise.

Thus, it is enough to show the following: for every 𝛿 > 0 there is an 𝑆̃ ∈ S(𝑆,𝑗) ⧵𝑁(𝑆, 𝑗) such that

lim inf
𝑛→∞ 

𝑛−1 ∑
𝑖=𝑗 

𝐻̃𝑖(𝑆̃)Δ𝑖𝑆̃ ≤ 𝛿. (32)

To this end, we construct a sequence (𝑆𝑛) in S as follows: 𝑆𝑛 = 𝑆 for 𝑛 ≤ 𝑗 and, inductively for 𝑛 > 𝑗 in the following way, which 
guarantees that (𝑆𝑛, 𝑛) is a good node for every 𝑛 ≥ 𝑗. Assume 𝑆𝑛 has already been constructed for some 𝑛 ≥ 𝑗 and (𝑆𝑛, 𝑛) is a good 
node.

If (𝑆𝑛, 𝑛) is a flat node or an arbitrage node of type I, then choose 𝑆𝑛+1 ∈ S(𝑆𝑛,𝑛) such that 𝑆𝑛+1
𝑛+1 = 𝑆𝑛

𝑛 . We argue that (𝑆𝑛+1, 𝑛+1)
is good in the type I case (the flat case being similar and easier). Suppose to the contrary that (𝑆𝑛+1 , 𝑛 + 1) is bad. Then, for every 
𝑆̂ ∈ S(𝑆𝑛+1 ,𝑛+1) ⊆ S(𝑆𝑛,𝑛) there is an 𝑖 ≥ 𝑛 + 1 such that (𝑆̂, 𝑖) is an arbitrage node and 𝑆̂𝑖+1 ≠ 𝑆̂𝑖 -- hence, 𝑆̂ ∈𝑁(𝑆𝑛, 𝑛). Moreover, 
any 𝑆̂ ∈ S(𝑆𝑛,𝑛) ⧵S(𝑆𝑛+1 ,𝑛+1) belongs to 𝑁(𝑆𝑛, 𝑛) because (𝑆𝑛, 𝑛) is a type I arbitrage node. Thus, S(𝑆𝑛,𝑛) =𝑁(𝑆,𝑛) -- a contradiction.

If (𝑆𝑛, 𝑛) is an up-down node, then, by (Hbad), one can choose a sufficiently small 𝜀 > 0 and 𝑆𝑛+1 ∈ S(𝑆𝑛,𝑛) such that

𝐻̃𝑛(𝑆𝑛)(𝑆𝑛+1
𝑛+1 −𝑆𝑛

𝑛 ) ≤ |𝐻̃𝑛(𝑆𝑛)|𝜀 ≤ 𝛿2−(𝑛+1) (33)

and (𝑆𝑛+1, 𝑛+ 1) is a good node.

Note that (𝑆𝑛, 𝑛) cannot be an arbitrage node of type II, because it is good by the inductive hypothesis. Hence, the construction 
of 𝑆𝑛+1 is finished.

By (TCbad), 𝑆̃ ≡ lim𝑛→∞ 𝑆𝑛 = (𝑆𝑖
𝑖
)𝑖∈ℕ0

∈ S . Then, by construction, 𝑆̃ ∈ S(𝑆,𝑗) and either (𝑆̃, 𝑛) = (𝑆𝑛, 𝑛) is an up-down node (and 
then (33) holds) or 𝑆̃𝑛+1 = 𝑆𝑛+1

𝑛+1 = 𝑆𝑛
𝑛 = 𝑆̃𝑛, whenever 𝑛 ≥ 𝑗. Hence, by construction, 𝑆̃ ∉𝑁(𝑆, 𝑗) and

lim inf
𝑛→∞ 

𝑛−1 ∑
𝑖=𝑗 

𝐻̃𝑖(𝑆̃)Δ𝑖𝑆̃ ≤ 𝛿

∞ ∑
𝑖=𝑗 

2−(𝑖+1) ≤ 𝛿,

which establishes (32). Consequently, (𝐿(𝑆,𝑗)) holds. □

A.4. Proofs for Section 4

Proof of Lemma 4.1. Notice that

𝜔 ∈Ω⇔ ∀𝑛 ∈ℕ ∃𝑆𝑛 ∈ S ∶ (𝑠0,𝜔1,… ,𝜔𝑛) = (𝑆𝑛
0 ,… , 𝑆𝑛

𝑛 )

⇔ ∃(𝑆𝑛)𝑛∈ℕ ⊆S ∶ [(∀𝑛 ∈ℕ ∶ 𝑆𝑛
𝑖 = 𝑆𝑛+1

𝑖
, 𝑖 = 0,… , 𝑛) ∧ lim 

𝑛→∞
𝑆𝑛 = (𝑠0,𝜔1,𝜔2,…)]⇔ (𝑠0,𝜔1,𝜔2,…) ∈ S . □

Proof of Lemma 4.3. Case 1: The node associated to 𝑠 = (𝑠0,… , 𝑠𝑗 ) ∈ 𝕊 is an up-down-node:

then, there are 𝑦1, 𝑦2 ∈ Y𝑠 such that 𝑦1 < 𝑠𝑗 < 𝑦2. If |ℎ| = +∞, then either ℎ(𝑦2 − 𝑠𝑗 ) = −∞ or ℎ(𝑦1 − 𝑠𝑗 ) = −∞, which violates the 
condition ℎ(𝑦− 𝑠𝑗 ) > −∞ for every 𝑦 ∈ Y𝑠. If |ℎ| < +∞, then, the condition ℎ(𝑦− 𝑠𝑗 ) > −∞ for every 𝑦 ∈ Y𝑠 is automatically satisfied. 
Hence,

ℎ ∈ (−∞,+∞) ⇔ ℎ(𝑦− 𝑠𝑗 ) > −∞ for every 𝑦 ∈ Y𝑠.

Case 2: The node associated to 𝑠 = (𝑠0,… , 𝑠𝑗 ) ∈ 𝕊 is flat:

then Y𝑠 = {𝑠𝑗} and, hence, ℎ(𝑦− 𝑠𝑗 ) = ℎ ⋅ 0 = 0 for every 𝑦 ∈ Y𝑠 and ℎ ∈ [−∞,+∞].
Case 3: The node associated to 𝑠 = (𝑠0,… , 𝑠𝑗 ) ∈ 𝕊 is an arbitrage node of type I:
we assume that the arbitrage node is of up-type, i.e., 𝑠𝑗 ∈ Y𝑠 and 𝑦 > 𝑠𝑗 for every 𝑦 ∈ Y𝑠 ⧵ {𝑠𝑗}. Take ℎ∗ = +∞. Then, for every 𝑦∈ Y𝑠

and ℎ ∈ [−∞,+∞]
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ℎ∗(𝑦− 𝑠𝑗 ) =

{
0, 𝑦 = 𝑠𝑗

+∞, 𝑦 ≠ 𝑠𝑗

}
≥ ℎ(𝑦− 𝑠𝑗 ).

Hence,

G𝑠 = {𝔣𝑠 ∶ Y𝑠 → [−∞,∞] ∶ ∀𝑦 ∈ Y𝑠 ∶ ℎ∗ ⋅ (𝑦− 𝑠𝑗 ) − 𝔣𝑠(𝑦) ≥ 0} = {𝔣𝑠 ∶ Y𝑠 → [−∞,∞] ∶ 𝔣𝑠(𝑠𝑗 ) ≤ 0}.

If the arbitrage node is of down type, the same argument works with ℎ∗ = −∞.

Case 4: The node associated to 𝑠 = (𝑠0,… , 𝑠𝑗 ) ∈ 𝕊 is an arbitrage node of type II:
again, we only spell out the proof for an up-type arbitrage node, i.e., 𝑦 > 𝑠𝑗 for every 𝑦 ∈ Y𝑠. Taking ℎ∗ = +∞ again, we obtain 
ℎ∗(𝑦− 𝑠𝑗 ) = +∞ for every 𝑦 ∈ Y𝑠, which completes the proof. □

Proof of Items a)-d) in Example 1. Write S + = {𝑆+,𝑛 ∶ 𝑛 ∈ℕ} and note that all trajectories in S + pass through an arbitrage node 
of type II at time 𝑗 = 1.

a) Fix 𝑓 ∶ S → (−∞,+∞). Then, one can easily check that 𝑓 =Π𝑉 𝑓 ,𝐻𝑓

𝑛𝑓
for 𝑉 𝑓 = 𝑓 (𝑆0), 𝑛𝑓 = 3, 𝐻0 = (𝑓 (𝑆0) − 𝑓 (𝑆−,0))∕2,

𝐻1(𝑆) =
⎧⎪⎨⎪⎩
2
(
𝑓 (𝑆0)(1 + 𝑛 

2 ) − 𝑓 (𝑆−,0) 𝑛 2 − 𝑓 (𝑆+,𝑛)
)
, 𝑆 = 𝑆+,𝑛

0, 𝑆 = 𝑆0,

𝑓 (𝑆−,0) − 𝑓 (𝑆−,−), 𝑆 ∈ {𝑆−,0, 𝑆−,−, 𝑆−,+}

,

and 𝐻2(𝑆) = (2𝑓 (𝑆−,0) − 𝑓 (𝑆−,−) − 𝑓 (𝑆−,+))𝟏{𝑆−,+}(𝑆). Thus, 𝜎(𝑓 ) = 𝑉 𝑓 = 𝑓 (𝑆0) by Proposition 3.3.

b) Suppose 𝐐′ is a martingale measure (see Remark 2.14). As in Example 4, we conclude that 𝐐′(S +) = 0, because all trajectories 
in S + pass through an arbitrage node of type II. This in turn implies 𝑇1 ≤ 𝑇0 𝐐′-a.s. and the classical martingale property then 
results into 𝑇1 = 𝑇0 𝐐′-a.s. This shows that 𝐐′ must be the Dirac mass on 𝑆0. Conversely, if 𝐐′ is the Dirac mass on 𝑆0, then 𝑇𝑗 = 𝑇0
𝐐′-almost surely for every 𝑗 ≥ 0, which implies that (𝑇𝑗 )𝑗≥0 is a classical martingale under 𝐐′ .

c) Let 𝑓 ∶ S → (−∞,+∞). We define the non-anticipative sequence (𝑔∗
𝑗
)𝑗≥0 via

𝑔∗0 (𝑆) = 𝑔∗1 (𝑆) = max{𝑓 (𝑆−,0), 𝑓 (𝑆0)}, 𝑆 ∈ S

𝑔∗2 (𝑆) =

{
+∞, 𝑆 ∈ S +

𝑔∗1 (𝑆) + (𝑔∗1 (𝑆) − 𝑓 (𝑆−,−))(𝑆2 −𝑆1), 𝑆 ∉ S + , 𝑔∗𝑗 (𝑆) =

{
+∞, 𝑆 ∈ S + ∪ {𝑆−,+}
𝑔∗2 (𝑆), 𝑆 ∈ {𝑆0, 𝑆−,−, 𝑆−,0}

, 𝑗 ≥ 3.

Noting that (𝑆,1) is an arbitrage node of type II for 𝑆 ∈ S + and (𝑆+,−,2) is an arbitrage node of type II (and that all other nodes 
are either up-down or flat), one can easily check by Lemma 4.3 that (𝑔∗

𝑗
) is a G -supermartingale sequence. Moreover, (𝑔∗

𝑗
) obviously 

is bounded from below (uniformly in 𝑗 and 𝑆). Since 𝑔∗
𝑗
(𝑆) ≥ 𝑓 (𝑆) for every 𝑗 ≥ 3 and 𝑆 ∈ S , we conclude that 𝔼(𝑓 ) ≤ 𝑔∗0 =

max{𝑓 (𝑆−,0), 𝑓 (𝑆0)}.

For the converse inequality suppose that (𝑔𝑗 )𝑗≥0 is any G -supermartingale sequence, which is bounded from below and satisfies 
lim inf 𝑗→∞ 𝑔𝑗 ≥ 𝑓 on S . Since the nodes (𝑆0, 𝑗) are flat for every 𝑗 ≥ 1 and the nodes (𝑆−,0, 𝑗) are flat for every 𝑗 ≥ 2, the sequences 
(𝑔𝑗 (𝑆0))𝑗≥1 and (𝑔𝑗 (𝑆−,0))𝑗≥2 are nonincreasing by Lemma 4.3 and the G -supermartingale property. Therefore,

𝑔1(𝑆0) ≥ 𝑓 (𝑆0), 𝑔2(𝑆−,0) ≥ 𝑓 (𝑆−,0). (34)

The G -supermartingale property at the node (𝑆−,0,1) implies (by Lemma 4.3) that

𝑔1(𝑆−,0) ≥ inf{𝛼 ∈ℝ ∶ ∃ ℎ ∈ℝ ∀ 𝑆 ∈ {𝑆−,−, 𝑆−,0, 𝑆−,+} ∶ 𝑔2(𝑆) − 𝛼 ≤ ℎ(𝑆2 − 2)}.

Since 𝑆−,0
2 = 2, we observe that 𝑔1(𝑆−,0) ≥ 𝑔2(𝑆−,0), which, in view of (34), yields

𝑔1(𝑆0) ≥ 𝑓 (𝑆0), 𝑔1(𝑆−,0) ≥ 𝑓 (𝑆−,0). (35)

Now, the G -supermartingale property at the initial node (𝑆,0) implies (by Lemma 4.3, again) that

𝑔0 ≥ inf{𝛼 ∈ℝ ∶ ∃ ℎ ∈ℝ ∀ 𝑆 ∈ S ∶ 𝑔1(𝑆) − 𝛼 ≤ ℎ(𝑆1 −𝑆0)}.

Note that for every 𝛼 ∈ℝ and ℎ < 0, inf𝑛∈ℕ(𝛼 + ℎ(𝑆+,𝑛
1 − 𝑆+,𝑛

0 )) = −∞. Hence, the requirement that 𝑔1 is bounded from below leads 
to

𝑔0 ≥ inf{𝛼 ∈ℝ ∶ ∃ ℎ ≥ 0 ∀ 𝑆 ∈ S ∶ 𝑔1(𝑆) − 𝛼 ≤ ℎ(𝑆1 −𝑆0)}.

Then, by (35),

𝑔0 ≥ inf{𝛼 ∈ℝ ∶ ∃ ℎ ≥ 0 ∀ 𝑆 ∈ {𝑆0, 𝑆−,0} ∶ 𝑓 (𝑆) − 𝛼 ≤ ℎ(𝑆1 −𝑆0)}.
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Noting that ℎ(𝑆1 − 𝑆0) ≤ 0 for every ℎ ≥ 0 and 𝑆 ∈ {𝑆0, 𝑆−,0}, we conclude that 𝑔0 ≥max{𝑓 (𝑆−,0), 𝑓 (𝑆0)}. Since 𝑔 was arbitrary, 
this in turn implies 𝔼(𝑓 ) ≥max{𝑓 (𝑆−,0), 𝑓 (𝑆0)}.

d) Fix some 𝑓 ∶ S → [0,∞). We first prove 𝐼(𝑓 ) ≥max{ 1
2𝑓 (𝑆

−,−), 𝑓 (𝑆−,0), 𝑓 (𝑆0)} and, hence, assume that 𝐼𝑓 <∞. Suppose we are 
given portfolios (𝑉 𝑚,𝐻𝑚)𝑚≥1 such that Π𝑉 𝑚,𝐻𝑚

0,𝑛 is non-negative for every 𝑚 ≥ 1 and 𝑛 ≥ 0, 𝑣0 ≡∑∞
𝑚=1 𝑉𝑚 <∞ (this is possible as 

𝐼𝑓 <∞) and 𝑓 ≤∑∞
𝑚=1 lim inf𝑛→∞Π𝑉 𝑚,𝐻𝑚

on S . Applying the aggregation lemma (Lemma 6.4) to the initial node (𝑆,0) and to the 
node (𝑆−,0,1), we find real numbers ℎ0, ℎ1 ∈ℝ such that

𝑣0 ≥ 𝑓 (𝑆0), 𝑣0 − 2ℎ0 ≥ 𝑓 (𝑆−,0), 𝑣0 − 2ℎ0 − ℎ1 ≥ 𝑓 (𝑆−,−), 𝑣0 − 2ℎ0 + ℎ1 ≥ 0.

Here, the first three inequalities arise from superhedging on the trajectories 𝑆0 , 𝑆−,0, and 𝑆−,− (noting that these trajectories become 
constant after times 𝑗 = 0, 𝑗 = 1, and 𝑗 = 2, respectively). The last inequality is implied by the nonnegativity of the portfolio wealth 
at time 𝑗 = 2 on the trajectory 𝑆−,+. Adding the last two inequalities, we get 𝑣0 − 2ℎ0 ≥ 1

2𝑓 (𝑆
−,−). Now the nonnegativity of the 

portfolio wealth at time 𝑗 = 1 on the trajectories 𝑆+,𝑛, 𝑛 ∈ℕ, implies ℎ0 ≥ 0. Hence, 𝑣0 ≥max{ 1
2𝑓 (𝑆

−,−), 𝑓 (𝑆−,0), 𝑓 (𝑆0)}. By passing 
to the infimum in 𝑣0 ≥ 0, we obtain 𝐼(𝑓 ) ≥max{ 1

2𝑓 (𝑆
−,−), 𝑓 (𝑆−,0), 𝑓 (𝑆0)}.

For the converse inequality, consider the portfolio (𝑉 ,𝐻) defined via 𝑉 =max{ 1
2𝑓 (𝑆

−,−), 𝑓 (𝑆−,0), 𝑓 (𝑆0)} and

𝐻𝑗 (𝑆) =

{
0, 𝑗 ≠ 1 or 𝑆 ∉ S(𝑆−,0 ,1)
− 1

2𝑓 (𝑆
−,−), 𝑗 = 1 and 𝑆 ∈ S(𝑆−,0 ,1).

Then, one easily observes that Π𝑉 ,𝐻

0,𝑛 (𝑆) ≥ 0 for every 𝑛 ≥ 0 and 𝑆 ∈ S and that lim inf𝑛→∞Π𝑉 ,𝐻

0,𝑛 ≥ 𝑓𝟏{𝑆0 ,𝑆−,0 ,𝑆−,−} on S . Noting 
that all trajectories 𝑆 ∈ S ⧵ {𝑆0, 𝑆−,0, 𝑆−,−} pass through an arbitrage node of type II and, thus, S ⧵ {𝑆0, 𝑆−,0, 𝑆−,−} is an 𝐼 -null 
set by Lemma A.1.3, we conclude from Proposition 2.9--1. that

𝐼(𝑓 ) ≤ 𝐼(𝑓𝟏{𝑆0 ,𝑆−,0 ,𝑆−,−}) + 𝐼(𝑓𝟏S ⧵{𝑆0 ,𝑆−,0 ,𝑆−,−}) = 𝐼(𝑓𝟏{𝑆0 ,𝑆−,0 ,𝑆−,−}) ≤ 𝑉 =max{1
2
𝑓 (𝑆−,−), 𝑓 (𝑆−,0), 𝑓 (𝑆0)}. □

Proof of Proposition 4.4. We fix some time index 𝑗 ≥ 0 and some trajectory 𝑆 ∈ S . We may and do assume without loss of generality 
that 𝑔𝑗 (𝑆) < +∞, since otherwise the inequality 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑔𝑗 (𝑆) is obviously satisfied. We distinguish the following cases:

(𝑆, 𝑗) is an arbitrage node of type II: then, 𝜎𝑗𝑔𝑗+1(𝑆) = −∞ by Lemma A.1.1; and the inequality 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑔𝑗 (𝑆) trivially holds.

(𝑆, 𝑗) is an arbitrage node of type I or flat: we consider the case that 𝑆̃𝑗+1 ≥ 𝑆𝑗 for every 𝑆̃ ∈ S(𝑆,𝑗) and fix a trajectory 𝑆̄ ∈ S(𝑆,𝑗)
such that 𝑆̄𝑗+1 = 𝑆𝑗 . Then, applying the same portfolio as in the proof of Lemma A.1.1, we obtain

∞ ∑
𝑚=0

lim inf
𝑛→∞ Π𝑉 𝑚,𝐻𝑚

𝑗,𝑛
(𝑆̃) = 𝑉 0 +∞ 𝟏𝑆̃𝑗+1≠𝑆𝑗 , for every 𝑆̃ ∈ S(𝑆,𝑗),

which is bigger than or equal to 𝑔𝑗+1(𝑆̃) for every 𝑆̃ ∈ S(𝑆,𝑗), if and only if 𝑉 0 ≥ 𝑔𝑗+1(𝑆̄). Passing to the infimum in 𝑉 0 ∈ ℝ, we 
obtain that 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑔𝑗+1(𝑆̄) (which, in fact, can easily be seen to be an equality). Moreover, by the G -supermartingale property 
and Lemma 4.3, we observe that

𝑔𝑗+1(𝑆̄) = inf{𝛼 ∈ℝ ∶ 𝑔𝑗+1(𝑆̄) − 𝛼 ≤ 0} ≤ 𝑔𝑗 (𝑆).

Combining both inequalities, we arrive at 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑔𝑗 (𝑆).
(𝑆, 𝑗) is an up-down node: if 𝑔𝑗(𝑆) ∈ℝ, then we conclude by the G -supermartingale property and Lemma 4.3: for every 𝜀 > 0 there 
is an ℎ ∈ℝ such that

𝑔𝑗+1(𝑆̃) ≤ (𝑔𝑗 (𝑆) + 𝜀) + ℎ(𝑆̃𝑗+1 − 𝑆𝑗 ) = (𝑔𝑗 (𝑆̃) + 𝜀) + ℎ(𝑆̃𝑗+1 − 𝑆̃𝑗 )

for every 𝑆̃ ∈ S(𝑆,𝑗). Defining 𝑉 0 = 𝑔𝑗 (𝑆) + 𝜀, 𝑉 𝑚 = 0 for 𝑚 ≥ 1, 𝐻0
𝑗
(𝑆) = ℎ and 𝐻𝑚

𝑖
≡ 0 for (𝑚 ≥ 1 and 𝑖 ≥ 𝑗) and for (𝑚 = 0 and 

𝑖 > 𝑗), we observe that 𝜎𝑗𝑔𝑗+1(𝑆) ≤ 𝑔𝑗 (𝑆). If 𝑔𝑗 (𝑆) = −∞, we may replace 𝑔𝑗(𝑆) + 𝜀 by −𝜀−1 in the above argument and obtain 
𝜎𝑗𝑔𝑗+1(𝑆) = −∞= 𝑔𝑗 (𝑆). □
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