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ARTICLE INFO ABSTRACT

MscC: Supermartingales are here defined in a non-probabilistic setting and can be interpreted solely
60G48 in terms of superhedging operations. The classical expectation operator is replaced by a pair of
Zgg‘l‘i subadditive operators: one defines a class of null sets, and the other acts as an outer integral. These

operators are motivated by a financial theory of no-arbitrage pricing. Such a setting extends the
classical stochastic framework by replacing the path space of the process by a trajectory set, while
also providing a financial/gambling interpretation based on the notion of superhedging. The paper
proves analogues of the following classical results: Doob’s supermartingale decomposition and
Doob’s pointwise convergence theorem for non-negative supermartingales. The approach shows
how linearity of the expectation operator can be circumvented and how integrability properties
in the proposed setting lead to the special case of (hedging) martingales while no integrability
conditions are required for the general supermartingale case.
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1. Introduction

The paper introduces a class of non-probabilistic supermartingales in a setting where a set of price scenarios (also called trajec-
tories) is given along with the possibility to trade as price trajectories unfold over time. Trajectories are sequences S = (5;);5¢ € -/
in infinite discrete time with a common origin S, = s,, where the set .# substitutes the abstract sample space € of the probabilistic
setting. Following ideas of the theory of non-lattice integration developed by Leinert [16] and Konig [14], one can construct an outer
integral operator, denoted by &, which corresponds to the superhedging price when trading takes place by means of some idealized
class of linear combinations of buy-and-hold strategies, see [10]. The idealization facilitates to establish an analogue of Daniell’s
continuity-from-below-condition for this outer superhedging integral operator, which is a standing assumption for the main results
of this paper. Considering an investor, who enters the market at any later time, we can naturally introduce a conditional version of
this superhedging outer integral operator, denoted by & ;, which gives rise to the notion of a superhedging supermartingale via the
relation o, f;,| < f; where (f;);¢ is a sequence of real valued functions with domain .. More precisely, the latter relation is only
required to hold outside a null set — and it is an important subtlety of Leinert’s integration theory, that the null sets are determined
by a countably sub-additive operator, I say, which is closely related but, in general, different from the outer integral 5.

While the definitions of the operators & and I are motivated by Leinert’s [16] theory of non-lattice integration, they closely connect
to other theories that employ subadditive operators. If the continuity-from-below condition holds, then  and I can be shown to satisfy
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the conditions of a sublinear expectation in the sense of Peng [20]. The operator I is defined on the cone of non-negative functions
and is always countably subadditive. Therefore, its restriction to the set of indicator functions of subsets of . defines an outer
probability measure and constitutes a discrete-time analogue to Vovk’s [28] outer measure in the theory of continuous-time robust
finance. We only rely on T for defining null sets — and we frequently exploit the countable sub-additivity of I in our infinite discrete-
time framework to aggregate a countable family of null sets into a null set. In contrast, ¢ has an unrestricted domain, but fails to be
countably sub-additive in general (and, thus, is less suitable for defining null sets). Both operators & and I can also be interpreted
as upper previsions in the sense of Walley [29]; cp. also the monograph [26]. The corresponding offer sets consists of all payoffs
of financial derivatives (or, gambles) which can be superhedged with zero initial endowment, where different trading idealizations
are used in the definitions of & and I, respectively. While & can always be shown to be a coherent upper prevision, if continuity
from below holds, I may fail to satisfy the coherence axiom. Therefore, superhedging prices in terms of I may violate the rationality
requirement encoded in Walley’s notion of coherence, explaining the need to work with two different subadditive operators in our
framework; see Remark 3.4 for more details on these relations.

Proofs of classical results (i.e., in a stochastic setting) that involve supermartingales rely, at one point or another, on properties of
conditional expectation operators as well as on some measure theory. In our non-probabilistic setting, also referred to as trajectorial
setting, it turns out that the space of integrable functions (restricted on which the superhedging outer integral operator acts linearly)
could be inconveniently small, see [2] for details. This fact obstructs the naive strategy of emulating classical proofs by replacing the
expectation operator with the non-classical superhedging integral, but suggests to work with the superhedging outer integral instead.
This is a subadditive operator with unrestricted domain but its definition allows to bypass the need for the linearity of the expectation
as well as the non availability of some classical limit theorems.

In this paper, we prove analogues of several classical results (see for example [17] and [12]) for supermartingales in the trajectorial
setting. In particular, we derive a representation theorem for superhedging supermartingales. Our representation is of a similar type
as the uniform Doob decomposition in discrete time (Theorem 7.5 in [12]) or the optional decomposition in continuous time, see
[9,15] in the classical setting or [19,18] for non-dominated versions. As illustrated by an example, our Doob decomposition can
also be applied to trajectory sets which do not have any martingale measure and, thus, cannot be recovered by classical robust
supermartingale decompositions.

Combining the supermartingale representation theorem with a convergence result for martingale transforms in the trajectorial
setting (derived in [10]), we can, moreover, prove an analogue of Doob’s a.e. pointwise convergence theorem for non-negative
supermartingales.

As another application of the supermartingale representation theorem, we clarify the role of the two superhedging operators ¢
and 1. Theorem 8.1 shows that the superhedging outer integral ¢ indeed provides the ‘correct’ superhedging price in the sense that
for payoffs of finite maturity it coincides with the infimal superhedging cost within the class of linear combinations of buy-and-hold
strategies up to the null sets induced by the T operator.

Our work in the Leinert-Konig setting provides an independent meaning, purely financially motivated, to the results listed above.
An inspection of our proof techniques shows also the need to rely on new and independent proof arguments.

1.1. Relation to the literature

The paper could be loosely considered as being part of the literature on robust financial mathematics that weakens a-priori prob-
abilistic modeling hypothesis, or dispenses with them altogether. This literature ranges from discrete-time model-free superhedging
dualities (e.g., [3-5]) to extending stochastic calculus beyond its original settings (e.g., [28,21,1]).

Our setting is, however, more closely related to the game theoretic approach to probability initiated by Shafer, Vovk and coauthors
(see e.g. [23,24] and the references therein), which has been related to Walley’s [29] notion of coherent (lower and upper) previsions
by de Cooman and coauthors [6,25]. On a technical level, a key difference between the Shafer/Vovk approach and our setting is that
their conditional global upper expectation operator E; satisfies the axiomatic properties of an outer expectation in every situation
(Proposition 8.3 in [24]), while our conditional outer integral operator o; may assign value —co to any bounded function on a null
set, on which the conditional version of the continuity from below property fails. In view of Corollary 3.14 below such a failure
of the conditional continuity from below property can have two origins: a) The trajectory set may run in a situation (or, node, as
we call it), in which the stock price will move upwards for sure (or will move downwards for sure) leading to an obvious arbitrage
opportunity; b) A sure arbitrage situation arises at some node by trading up to an unbounded investment horizon, when the trajectory
set turns out to be trajectorially incomplete (in the sense of Section 3 below). To the best of our knowledge, the aforementioned
types of arbitrage situations are not presently accommodated into the abstract game-theoretic setting (as presented in Chapter 7
of [24]), but they are detected as null sets by our I-operator (as should be); see also Section 4 for a detailed comparison to the
game-theoretic approach. Dealing with these additional null sets does not only lead to significant technical difficulties, but, in view
of Theorem 8.4, we are required to work with the two different families of conditional superhedging operators ¢ ; and 1 ; (as opposed
to the single family of global conditional upper expectations E, in the game-theoretic approach). Our developments, originally
based on Leinert’s and Konig’s work on non-lattice integration, were developed independently of the game theoretic approach to
probability, in particular, our proof techniques are new as well as the main results we provide. In this sense, our paper builds a
bridge between the game-theoretic approach of Shafer and Vovk and the theory of non-lattice integration developed by Leinert
and Konig.
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1.2. Structure of the paper

The paper is organized as follows; Section 2 introduces the trajectorial setting, provides the definitions of the basic superhedging
operators, and clarifies the relation of our constructions to classical integration. The crucial continuity-from-below property of the
superhedging outer integral as well as easy-to-check sufficient conditions for continuity from below at almost every node are discussed
in Section 3. A detailed comparison of our setting to the game-theoretic approach is carried out in Section 4. Section 5 defines
supermartingales and stopping times and provides some examples. Section 6 proves our supermartingale representation theorem.
Doob’s pointwise convergence result for non-negative supermartingales is derived in Section 7. The relation of the two families
of superhedging operators o; and Tj is discussed in Section 8. In particular, we show that these operators actually differ, if the
conditional continuity from below property is only asked to hold almost everywhere (Theorem 8.4) and that &; provides the ‘correct’
superhedging prices for derivatives with finite maturity (see Theorem 8.1 for a precise statement). A concluding discussion can be
found in Section 9. Some technical ramifications and the proofs of the results of Sections 3 and 4 are provided in the Appendices.

2. Basic setting and fundamental operators

2.1. Trajectorial setting

Definition 2.1 (Trajectory set). [10, Definition 1] Given a real number s, a trajectory set, denoted by ./’ =.7(s), is a subset of

o (50) ={S = (SDienuio) * Si ER, Sp=50}.

We make fundamental use of the following conditional spaces; for S € .7 and j > 0 set:
Ssp={8Ses 1 §,=8, 0<i<j},

the notation (.S, j), henceforth referred as a node, will be used as a shorthand for 75 ).

We interpret . as a fixed market price model and .S € . as a possible stock price scenario unfolding in infinite discrete time. The
units of the variables .S; are in terms of a bank account units i.e., the latter acts as a numeraire. From a mathematical point of view
- is given and fixed. Then, the conditional space .75 ;) models the set of stock price evolutions, if the investor enters the market at
time j € N and the stock prices (S, ... ,Sj) have been realized at times 0, ..., j.

Notice .75 ) = - and, if Se As.j)» then F5 y = Hs ). Moreover for j <k it follows that . ;) € .5 ;). On the other hand,

for any fixed pair j < k, one can write . ;) as a disjoint union of sets .75 ;, with S € A, for some A C s
Local properties are relative to a given node. The classification of distinct nodes is presented in the following definition:

Definition 2.2 (Types of nodes). Given a trajectory space . and a node (.S, j):

 (S,)) is called an up-down node if

osup (S5, —S)>0 and < i;f (841 - S)<0. 1)
SeSA s &7 (8.5

+ (S,)) is called a flat node if

sup (S —S)=0=_inf (S, -S5). )
SeHs j+ ! SeFsy T !

(S, j) is called an arbitrage-free node if (1) or (2) hold, otherwise it is called an arbitrage node. An arbitrage node (S, j) is said to be
of type I, if there exists S € Ss,j) such that $j+1 = §;; otherwise it is said to be of type IL.

In practice, the coordinates .S; are multidimensional in order to allow for multiple sources of uncertainty. For simplicity we
restrict to .S; € R, but one can also extend the framework to allow for several coordinates S,.k (see [7], [8], and [11]). In particular,
[7] presents a method to build trajectory sets from historical stock price data, which can lead to arbitrage nodes due to a pruning
mechanism.

Besides the set .7, the other basic component are the portfolios defined as follows.
Definition 2.3 (Conditional portfolio set). For any fixed S € . and j > 0, 75 ;, will be the set of all sequences of functions H =

(H;);»;, where H; : /s ;y = R are non-anticipative in the sense: for all S.8e As.j) such that S, =8, for j <k <i, then H,(S)=
H,-(S') (i.e., H,-(S') = H,-(SO, ey S‘,—)). Again, we introduce the shorthand notation 7 = (5 .

Given a conditional portfolio (H,);»; € #s j), the function H; represents the number of shares of stock S held by an investor at
time i and who entered the market at time i > j. Notice that by assuming H,(S) € R we allow for H,(S) <0, an operation that is
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called short selling in finance. The notion of non-anticipativeness ensures that the portfolio position only depends on the past stock
prices and does not make use of future information. Otherwise we do not impose any trading restrictions, but refer to [2] for the
modeling of trading restrictions in the trajectorial framework.

Remark 2.4. Note that we do not impose any measurability condition on the functions H; : R™*! — R in the representation H,(S) =
H,(S,, ... S;) of a portfolio position. The main reason is that we will work with a subadditive outer integral operator instead of a
linear integral operator. On the one hand, this can be viewed in analogy to the use of the outer expectation operator in probability
and statistics (see, e.g., [27]), which does not require any measurability properties of the integrands. On the other hand, this is in line
with the protocols used in the discrete time game-theoretic approach of Shafer and Vovk [23], where no measurability conditions
are imposed on the functions announced by the Skeptic.

For a node (S, ), H € jf(’S’j), V €R and n > j we define HK;IH : 47’(3’1.) — R, as:
n—1
1 S)=v + ) H(S)AS, where AS=5,,-5, i>j, Se.7
i = ; S iD= 9yl i» t2J, LS.
i=j
This expression equals the wealth at time n of the self-financing portfolio with initial endowment V" at time j, when H; represents
the number of shares of the stocks held by the investor at time i. We recall that ‘self-financing’ means that the remaining capital
H;./IZH (S)— H;(S)S;, which is not invested in the stock, is put into the bank account at time i. Notice that V' is assumed to be constant

on s ;, and so its value could change with S, i.e., ¥ =V (S) (depending on the past stock price evolution up to time ;).
In the sequel, being .« a set of real valued functions, </ will denote the set of its non-negative elements.

Definition 2.5 (Elementary vector spaces). For a fixed node (S, j) set

V.H . .
5”(5,])={fznj,nf tHeHs,, VER and n,eN}.

Observe that &g ; is a real vector space. Its elements are called elementary functions.

Thus, elementary functions are nothing but the payoff functions of financial derivatives that can be perfectly hedged in the
conditional stock price model by finite linear combinations of buy-and-hold strategies.
Let also define

&={f:7->R: f|y(5,,)€<5"(s,j) VS e’}
where the notation f| s, means that the global domain of f, namely .7, is being restricted to the subset . ;. We note in passing
some abuse of notation as the same symbol H;/;Ijl is used to denote elements from & ;) and &} (in particular the implicit dependence

on S is not made explicit in the case when H;/;: € &s.j))- More details on global versus local portfolios are provided in [2].

2.2. Fundamental operators and almost everywhere notions

Let O denote the set of all functions from . to [—o0,00] and P C O denote the set of non-negative functions. The following
conventions are in effect: 0 c0 =0, co + (—0) =00, u —v=u+ (—v) V u,v € [-00, ], and inf # = co (unless indicated otherwise). An
inequality a < b in [—o0, 0] is read to be as b —a > 0 (i.e., b — a is non-negative) and is, thus, valid, if a=b=+co or a=b = —oo.

We say that f € Q has maturity ng €N, if £(S)=f(S) for every S €.% and S € EV(S!,,/), i.e., if f depends on .S only through the
first n r+1 coordinates S, ...,.S, .. In this case, we sometimes write f(S,... ,S,,f) in place of f(5). If f has maturity n I for some
ny € N, we will speak of a function f with finite maturity.

We define next the operator T IE P éT, which is a conditional extension of the operator T defined in [10] and it is used to
define null sets.

Definition 2.6. For a given node (.S, j) and a general f € P define

T —1 . CI ym gm , ym gm .
ij(S):mf{ ZV’". f< Zh’mg}f ), on s, MM esk v nz]}l

m>1 m>1

We will use the notation I f= 70 f. We also set, for a general f € QO:

A1, = ;1716S) and [I£11=11£11o(S)-

Notice that ij(S) = 7jf(S0, s S)), Le, ij(~) is constant on % ;. Moreover Emzl V™ > 0 hence, ij >0, so ||0||j =0.
[ 11;(S) will be called a conditional norm.
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The operator 1 ; is defined as the infimal superhedging cost with the following two idealizations: On the one hand, a superposition
of wealth processes of countably many portfolios is utilized. On the other hand (and in contrast to the portfolios applied in the
definition of elementary functions), each portfolio can be re-balanced infinitely many times. Note, however, that the portfolio wealth
HK:’H " of each of the individual portfolios must be non-negative at any time. This restriction on the portfolio wealth is crucial to
ensure the countable sub-additivity of T j» see Proposition 2.8. The key role of the operators T ; s to detect subsets of trajectories,
on which arbitrage opportunities exist, as (conditional) null sets. While the countable superposition is required to detect, e.g., the
obvious arbitrage opportunities at arbitrage nodes of type II as null sets, the idealization of re-balancing a portfolio infinitely often is
used to find further null sets that appear ‘at infinite time’.

Our notions of conditional null set and the conditional a.e. property are introduced next.

Definition 2.7 (Conditional a.e. notions). Given a node (S, j), a function g € Q is a conditionally null function at (.S, j) if:

lgll;($)=0.

Asubset E C .7 is a conditionally null set at (S, j) if |1 || ;(S) = 0. A property is said to hold conditionally a.e. at (.S, j) (or equivalently:
the property holds “a.e. on . ;") if the subset of .5 ;, where it does not hold is a conditionally null set at (S, j). In particular, the
latter definition applies to g = f a.e. on .5 ;, which also will be noted with g = f when j =0.

Notice that when j = 0, the previous notions do not depend on .S and we apply the abbreviation “a.e.” for “a.e. at (.S, 0)”. Moreover,
E C . is called a null set and g is called a null function, if ||[1;|| =0 and ||g|| = 0, respectively.

The next results, from [10], give properties of null functions and null sets that are widely used.
Proposition 2.8. [10, Proposition 1] Tis isotone, positive homogeneous, countable subadditive and 7(1 )<L

Proposition 2.9. [10, Proposition 2] Consider f,g : ¥ — [—o0, ], then

1. |gll=0iff g=0ae.
2. The countable union of null sets is a null set.

All appearing equalities and inequalities are valid for all points in the spaces where the functions are defined unless qualified by
an explicit a.e.

We introduce next the operator o; : Q — &;, which we will call a conditional superhedging outer integral (or conditional outer
integral); it is the key tool to define the notion of trajectorial supermartingales, the main object of study in our paper. The only
difference compared to the superhedging operator 1 ; is that we relax the non-negativity assumption on the portfolio wealth and, in
this way, enlarge the set of hedging strategies. While this relaxation may look harmless, it can, in general, destroy the countable sub-
additivity of the operator. Moreover, it turns out to be crucial for computing reasonable superhedging prices which are compatible
with the null sets determined by 7, see Theorem 8.1 and Example 1 in Section 4.

Definition 2.10 (Conditional Outer Integral). For a node (.S, j) and a general f € Q,

Ejf(S)Einf{ZV'"I FEY 0n<7”<s,j>}’

m>0 m>0

VO, HO
where f, = Hj’ S (S“‘(S’j) and form>1,

no
T . ym gm ym gm + .
fom —llﬂg’lf I'Ij’n , and Hj,n € ‘f(s,j) vV n>j.

Define also gjf(S) =—0,;(=f)(S). We will also set o f =0 f.

In some cases we may use the notation o ;) f to make clear that the quantity o g ; / keeps (.S, j) fixed. More common and useful
is our reliance on the defining notation o ;[ (S) treating o ;fasa function on .. Note that the initial endowments V" at node (.S, j)
may depend on S through (S, ...,.S;) in all appearances.

Remark 2.11. Note that ¢, f(S) =0, (S, ..., S;). Also ¢; < T ; on the set of non-negative functions (Example 1 provides a case
where the inequality is strict). Also, and as a side remark, f, can also be written in a similar form as the f,,, m > 1, for notational

. IR TR vOHO _ . 0_ .
convenience, by means of f, =liminf,_, I, with H’ =0 for i > nj.
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2.3. Relation to classical integration

In this subsection, we briefly explain that the construction of the conditional outer integral in Definition 2.10 is analogous to
Daniells’ approach to classical integration with respect to a measure, see Chapter 16 in Royden’s textbook [22] for a detailed account
on Daniell integration. To this end, let Q # @ be a set, % be an algebra of subsets of Q and y; : Z — [0, ) be a measure on the
algebra #, and write

n
ER)={) a1y : @, €ER, A, €Z)
i=1

for the set of step functions over %. Then, define the elementary integral via

n n

100 8@ >R, Y aly = Y auglAy).

i=1 i=1
It is well-known that &(Z) is a vector lattice, i.e., a vector space which is closed under the operation of taking the positive part, that

the elementary integral is well-defined, and that the following continuity-from-below property is satisfied: If (f,,),,en iS @ sequence in
ET(R) and f € &(Z%), then

FEY fu = 190 < Y 11, 3

m=1 m=1

see, e.g., [22, p. 420]. For a function f : Q — [0, ), resp. f : Q — R, write

I#0(f) =inf { DSt [ €EETR), F LY f } , Tesp.

m=1 m=1

E(”O)(f)=inf { 2 1(;40)(fm) L fo €EER), [ eETAYm>1), f< 2 fm} .

m=0 m=0

Then, a function f : Q — R is called Daniell integrable ([22, p. 425]), if A f +o )(— /) =0. Denoting the space of Daniell integrable
functions by .#), a function f : Q — R is said to be Daniell measurable ([22, p. 429]), if min{ f,g} € .Z] for every g € .Z|. Then, the
system & = {A CQ : 1, is Daniell measurable} of subsets of Q is a o-field ([22, Lemma 16.19]) and

wA)=5"1,), Aco

is a measure ([22, Lemma 16.21]), which extends the original measure y, (which was defined on the algebra Z#). As usual, we write
L,(L, <7, u) for the space of <7-measurable functions f : Q — R, which are integrable with respect to the measure y. Then:

Proposition 2.12. Let f : Q — R. Then, the following assertions are equivalent:

@D feLQ ., . B
(ii) There is a sequence (f,,),cy in &(%) such that lim,_, , (| f — f,])=0.
@Gii) () +5¥(=f) =0, ie., f is Daniell integrable.

If one (and, then, all of these equivalent) conditions are satisfied, then

/ fdu=5"(f)= lim 140(f,).

Proof. The equivalence of (i) and (ii) and the identity / fdu= E(”>( f) for f € L(Q, <, u) are justified by the formulation and the
proof of Stone’s theorem in [22, Theorem 16.22]. Continuity from below implies that 1#0)(f) = T*0)(f) for every f € &+(%). By the
lattice property of &(#) and the linearity of the elementary integral we observe that, for every f € &(%),

I_(”0>(f+) — I(”O)(f+) — I(”O)(f) + I(”O)(f_) — I(”O)(f) + I’(Mo)(f_)_

Here, f, and f_ denote the positive and the negative part of f, respectively. Hence, the continuity property (*) imposed in [14, p.
449], is satisfied. The equivalence of (i) and (iii) and the identity 5 (f) = lim,_,, I*%0)(f,) for Daniell integrable / now follows
from [14, pp. 453-454]. [

Roughly speaking (i.e., ignoring the limit inferior in time for the moment), in our construction of the conditional superhedging
outer integral o j(~)(S), the step functions are replaced by the vector space &g, 7 of elementary functions, see Definition 2.5, which

model the terminal portfolio wealth H;/nlf{ of finite linear combinations of buy-and-hold strategies. Moreover, in the definition of

I ((S) and o S (0S), the elementary integral is replaced by the initial endowment V' required to set up the portfolio.
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Note, however, that the vector space &5 ;), in general, fails to be a vector lattice except in simple special cases such as binomial
tree models. Therefore, we are outside the classical Daniell integration theory, but closely follow the constructions of the general
theory of non-lattice integration developed by Leinert [16] and Konig [14]. In contrast to [14,16], our framework incorporates the
notion of conditioning, which is not present in their theory. Otherwise, the only way, in which we deviate from their constructions,
is that we have added the limit inferior of the portfolio wealth of the individual portfolios (as time goes to infinity) in the definitions
of I S and ¢ 5 (0S). This modification is required to obtain a sufficiently rich class of null sets ‘at infinity’ and plays an important
role in deriving an analogue of the supermartingale convergence theorem in Section 7 below; compare also the discussion in [10].

Remark 2.13. a) Analogously to condition (iii) in Proposition 2.12, we say that f € Q is integrable in our framework, if o) f =0 f.

Moreover, f € Q is called a conditionally integrable function at j if it satisfies: g; f=o;f, T — a.e. As emphasized in [2], this notion
of integrability is rather restrictive and, therefore, it will play a side role in our work.

b) In the classical integration theory, the identity s )( ) =I%(f) holds for every f € LT(Q, o, u), see [13, p. 98]. In contrast,

Example 1 below illustrates that the identity & = I may fail, in general, on the set of non-negative integrable functions in our non-
lattice framework.

While the theory of Leinert [16] and Konig [14] shows how to dispense with the lattice property of the space of elementary func-
tions in the integral construction, the continuity-from-below property is still crucial for deriving an (outer) integral with reasonable
properties. Therefore, we will discuss continuity-from-below in our framework in the next section.

Remark 2.14. In some of the examples below, we will contrast our trajectorial approach to the classical approach to mathematical
finance, in which pricing is linked to the concept of martingale measures by the fundamental theorem of asset pricing and the
superhedging duality theorem, see [12] in a model-based context or [5] for a model-free (or, more precisely, a pointwise) theory in
finite discrete time. Whenever comparing to the classical probabilistic literature, in order to avoid subtle measurability issues, cp. [5],
we will only consider illustrative examples with a countable trajectory set .. Writing T' = (T) >, for the coordinate process, defined
via T;(S) =S, for every S €. and j >0, we denote by .7 = ('-7/')1'20 the filtration generated by 7, i.e., ﬂj =o(T;...,T;). Then, a
sequence (f});»( of functions from . to R is non-anticipative, if and only if it is .7 -adapted. Indeed, if it is non-anticipative, then for
every j > 1, there is a function F; : R/ — R such that f; = F(T},...,T;) and F; can be chosen Borel-measurable, because (T}, ..., T})
takes at most countably many values. The converse is implied by the factorization lemma of Doob and Dynkin [13, Corollary 1.97].
Given a probability measure Q on the power set 2= of ., we, thus, say (following the standard definition [13, Definition 9.241)
that a non-anticipative sequence (f});»o of functions from % to [—o0, 00] is a classical probabilistic martingale (with respect to Q), if
for every j>0and B€ 7},

[iriie<e ad [0 - 115000, @

The probability measure Q is said to be a martingale measure for the trajectory set ., if the coordinate process (T});» is a classical
probabilistic martingale with respect to Q.

3. Continuity from below

We now explain, how to phrase and check the crucial continuity-from-below condition in our framework. In view of the recap of
classical integration in the previous subsection, the following property is completely analogous to the formulation of continuity from
below in (3).

Definition 3.1 (Property (Ls ;). For a fixed node (S.j), f =TI/l € & and f, = liminf,_, ) with T e
éa&j) forall n> j and m > 1, define property (Ls ;) by
(Lisy): [ fmonFs,) = V<Y V™
m>1 m>1
If (L(s j)) holds for S € 7 T — a.e., it will be written (L;) holds a.e. Since (L)) does not depend on S, it will be denoted by (L).

We apply the letter ‘L’ for this property, as (up to our use of the limit inferior in the definitions of T and &) this is the continuity
condition imposed in theory of non-lattice integration by Leinert in [16].

Remark 3.2. If ¥ ;) contains a trajectory 59, which remains constant after time j, i.e., S? =S, for every i > j, then fa(SH=vm"
for every m > 0 and f(S%) =V, and, thus, (Les j) holds.

The following proposition contains some equivalent formulations of property (L g ;). Its proof is based on standard arguments in
the theory of non-lattice integration and is postponed to Appendix A.3.
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Proposition 3.3. For a fixed node (S, j), the following items are equivalent:

. 0;0(8)=0.
- 0,/(8)<5,f(S) forany f €0.
. Property (L(s j)-

- 0,/ (S)=V(S)=5,;f(S) for every f = H;’n’f* 8.

AW N

Remark 3.4. Suppose (Lg, ) holds at a (fixed) node (.S, j).
a) Then Ej(-)(S) satisfies the following properties:

(S1) Isotone: If f,g € O and f < g, then 5, f(S) <0, f(S).

(S2) Constant preserving: ¢ ;c(S) = c for every constant ¢ € R.

(S3) Subadditive: For every f,g € O, o,(f +g)(S) <o, f(S) +0,;8(S).

(S4) Positive homogeneous: For every f € Q and every non-negative constant A, o S(ANS) = /IE]- ()S).

Here, (S1) and (S3) are implied by item b) and c) in Proposition A.2.1, (S2) is a consequence of Proposition 3.3-4., and (S4) holds
by Proposition 3.3-1. for 4 =0 and by Proposition A.2.1-d) for 4> 0. Hence, o;(-)(S) is a sublinear expectation in the sense of Peng
[20, Definition 1.1.1]. Moreover, (S1) and (S2) imply that Ejf(S) <supgre o f(S) for every f € Q. Thus, by Theorem 4.15 in [26],
the restriction of ¢ ;(-)(S) to the vector space of bounded functions from .’ to R is a coherent upper prevision.

b) Moreover, one can easily check that T j(-)(S) satisfies (S1)—(S4) on the cone P of non-negative functions (i.e., Q must be replaced
by P in (S1)-(S4) and (S2) is only supposed to hold for constants ¢ > 0). These properties follow from the conditional version of
Proposition 2.8 and noting that, for every constant ¢ > 0, ¢ =0;c(S) < I ;,¢(S) < c by property (S2) for ¢,(-)(S), Remark 2.11, and
the definition of /;. Since the bounded functions in P do not form a vector space, Theorem 4.15 in [26] cannot be applied to check
whether 1 i()(S) isa coherent upper prevision. We will show in Example 4 below, that ;()(S) may fail to satisfy, in general, the
coherence property (D) in [26, Definition 4.10]. The operator I;(-)(S) is, however, always countably subadditive (Proposition 2.8),
while & ;(1)(S) may fail to satisfy the latter property. Again, Example 4 serves as a counterexample, as detailed in [2].

Remark 3.5. Suppose the function f describes the payoff of a financial product. If f € & ;), then f has the form H;/ 1 and, thus,
the payoff can be perfectly replicated by the portfolio value of a finite linear combination of buy-and-hold strategies with initial
endowment V'(S) at time j. Hence, no investor entering the market at time j would be willing to buy the financial product for a
higher price than V' (.S) or to sell it for a lower price than V' (S), which makes V'(.S) the only candidate for a rational price of f. Thus,
the equivalent condition 4. for (L g ;) in Proposition 3.3 is a minimal condition for Ej to be a reasonable pricing operator.

Remark 3.6. Note that the conditional outer integral o; f(S) is defined at any node (S, j) and for any function f € Q. However,
if (L¢s.j) fails, then, Ej f(S) € {—0,4+0} for every f € Q. Indeed, in this case, by Proposition 3.3, EjO(S) < 0. Consequently, by
Proposition A.2.1-d),

c,0(8)= A}l_r)nooaj(N -0)(S) < ]\}'1—I>nooN 0;0(8)=—00
which in turn implies, by the subadditivity of o; in Proposition A.2.1-c),
0;f(8) <5, f(S)+5,0(5) =0, f(S) + (—0)

for every f € Q. Hence, ajf(S) € {—00,+00}.

By the previous two remarks, the failure of the continuity-from-below property (L s ;) at a node (S, j) should be exceptional in
order to come up with a reasonable theory of robust pricing by trajectorial superhedging. Therefore, we will assume, for most of the
upcoming results, that property (L s ;) holds outside an T-null set in the sense of the following definition.

Definition 3.7 (Assumption (L) — a.e.). The following two properties will be referred as the assumption (L)-a.e.:
D) (L) Gee., (Lsp)) holds,
i)
NP =(Ses :3j20s.1 (L) fails} (5)

is a null set (in particular, (L i) holds a.e. for every j).
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Remark 3.8. a) If (L) fails, then the set .4/ in display (5) equals the whole trajectory set .. Therefore, in order to avoid trivialities,
we include property (L) in the definition of the assumption (L)-a.e.

b) The continuity property (L) implies that T(Iy) =1 by Proposition 3.3-4), and, thus,

1= )< T g\ )+ 1) STA g\ 4) <1,

where ./ is any arbitrary null set. In particular, 7(1 A\ ) =1 whenever (L)-a.e. holds.

Example 5 below provides a counterexample in which .# D is not an 7-null set and, hence, property (L)-a.e. fails. For the
remainder of this section, we will, therefore, discuss, how to check this crucial property in our framework.

The strategy is to find an as large as possible subset of .4 (), which can be shown to be a null set, and, then, to identify sufficient
conditions under which this null set actually coincides with .# (), This strategy leads to the following notion of a ‘bad’ node.

Definition 3.9 (Bad nodes). For a fixed node (S, j), let

N(S,j)={Se S (S, k) is arbitrage node and 5k+1 * S‘k for some k > j}. 6)
A node (S, ) is called bad, if S5 =N, ). Otherwise, (S, /) is said to be good.

Proposition 3.10. For every node (S, j) the following chain of implications holds:
(S, ) is an arbitrage node of type I =  (S,j)isbad = (L(S,j))fails.
Moreover, the set

wbad _ (g e v (S, ) is bad for some j > 0}

is an I-null set.

The proof is provided in Appendix A.3.

We will next identify sufficient conditions for the converse implications in Proposition 3.10. These sufficient conditions will be
based on two types of hypotheses. The first one is concerned with the possibility to construct trajectories iteratively (and relaxes the
notion of trajectorial completeness from [10]), while the second one imposes some restrictions on the successors of up-down nodes.

Definition 3.11 (Trajectorial completeness). Suppose (S"), is a sequence in . satisfying

Sr=sm0<i<n, @)

for all n € N,. Then, its limit is defined as

lim S" =S =(S,);50, wherein ;=5

n—oo -
Denote by .7 the set of all such limits S. Then, ‘7 is called the trajectorial completion of . and the trajectory set . is said to be
trajectorially complete, (TC) for short, if ¥ =.7.

Clearly, .77 C .# given that for § €.7 we can take $" = S for all n > 0. As argued in Proposition 13 of [10], .7 is always
trajectorially complete. Moreover, the completion process, i.e., passing from .# to .# does not alter the type of the nodes (being
up-down, no arbitrage, etc.), but, importantly, it can change a null node (i.e., a node which constitutes an T-null set) into a non-null
node, see Example 6 below.

We now list the hypotheses which will be applied in the upcoming results:

(TChaq) If (8™),50 is a sequence in . satisfying (7) and if there is an n; > 0 such that (8", n) is a good node for every n > n, then
lim,_, S" €.7.
(TC; ;) If (S™),0 is a sequence in .7 satisfying (7) and if there is an ny > 0 such that (8", n) is not an arbitrage node of type II for
every n > ny, then lim,_, S" €.7.
(Hpaq) If (S, )) is a good up-down node, then for every & > 0 there are sel g8l e ) such that (S&!,j + 1) and (52, + 1) are
good nodes satisfying
e,1 €2
Sj+1 —Sj > —¢, Sj+l —Sj <e.
(H; ;) If (S,)) is an arbitrage node of type II, then j > 1 and (.S, j — 1) is an up-down node and for every ¢ > 0 there are .S’ el ge2 ¢
As,j-1) such that
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€,1 €2 _
Sj —-S;_12-¢, Sj S;_1<¢

and such that (S&!, j), (552, j) are not type II arbitrage nodes.
(H; ;") If (S, /) is an up-down node, then for every € > 0 there are sel ge2 e 9’(5’1») such that
)1 €2
Sj+1 —-Sjz-e Sj+l —-S;<e

and (S=!,j + 1) and (§%2,j + 1) are not arbitrage nodes of type II.

The interplay between these conditions and their relation to the converse implications in Proposition 3.10 are clarified in the
following theorem, which we prove in Appendix A.3.

Theorem 3.12.

.(TC) = (TCrp) = (TChqq)

. Hp) = (Hyp)

. [(TC;p) and (H;p)] = [(S,j)is an arbitrage node of type Il < (S, ) is bad]
- [(TChqg) and (Hpoq)] = [(S.j)isbad & (L) fails]

HWN

As corollaries we obtain the following sufficient conditions for (L)-a.e. The first one, formulated in terms of bad nodes, is more
general; the second one, formulated in terms of arbitrage nodes of type 11, is easier to check.

Corollary 3.13. Assume (TCpqq), (Hpqq), and that (S,0) is good. Then, (Ls. i fails exactly at the bad nodes and (L)-a.e. holds.

Proof. Since (S,0) is good, Theorem 3.12-4) implies that (L) holds. Moreover, .4 1) = ¢ bad by Theorem 3.12-4), again. Since,
bad i an T-null set by Proposition 3.10, the proof is complete. []

Corollary 3.14. Assume (TC; ;) and (H ). Then, (Ls ;) fails exactly at the arbitrage nodes of type II and (L)-a.e. holds.

Proof. By Theorem 3.12-3), the bad nodes are, then, exactly the arbitrage nodes of type II. Therefore,
(Hppq) < EHp).

Thus, in view Theorem 3.12-2) the assumptions imply that (Hbad) holds. Moreover (chad) is satisfied by Theorem 3.12-1) and
(S, 0) is not an arbitrage node of type II by assumption (H;;) (and, thus, good by Theorem 3.12-3), again). Therefore, Corollary 3.13
applies. []

4. Comparison to the game-theoretic framework

In this section, we provide a detailed comparison to the game-theoretic setting as described in the recent monograph of Shafer
and Vovk [23]. We also refer to de Cooman and coauthors [6,25], who clarify the relation of the game-theoretic approach to Walley’s
behavioral notion of coherence, which can equivalently be formulated in terms of lower previsions or in terms of acceptance sets.

For the comparison, we consider the game-theoretic setting of Protocol 7.10 in [23]. Its starting point is a situation space S,
which is a set of finite sequences of elements of a nonempty set . To accommodate the setting of Section 2, we let % =R and call
s =(sg,...,s,) a situation, if s = (S, ...,.S,) for some S € .7, i.e,, if s is the initial segment of some trajectory. We call (s) the initial
situation and note that the initial situation is denoted by [] in [23]. Then, the set of all situations

S={(8p,5}....5,) 1 S€7, neN}U{(sp)}

is called the situation space.

Note that the function, which maps the situation s = (s, ..., s,) €S to the node {S € .7 : (S),...,S,) = s}, provides a one-to-one
correspondence between the game-theoretic situations and our nodes. For each s = (s¢,....s,) €S and y € R, the game-theoretic
framework applies the notation sy = (s, ..., s,,y) and

. ={yeR: syeS}.

The assumption that %/ is non-empty for every situation s ensures that one can continue from any situation of a given length n to
a new one of length »n + 1 and so on. It is trivially satisfied in our specification: if s = (S, ...,S,) for some S €. and n € N, then

S,+1 € %;. Given a situation space S, Shafer and Vovk introduce the sample space

Q={weRN: VneN (sy,,,...,w,) ES}.

The next lemma shows that the sample space of Shafer and Vovk coincides with the trajectorial completion of the trajectory set,
see Definition 3.11.

10
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Lemma 4.1. .7 = {(sg, 01, ®,,...) : ®€Q}.
The proof of Lemma 4.1 as well as the proofs of the other results of this section will be given in Appendix A.4.

Remark 4.2. By the previous lemma, the sample space of the game-theoretic framework always corresponds to a complete trajectory
set, while no assumption on trajectorial completeness is made in the general setting of our trajectorial framework. Working with
incomplete trajectory spaces provides more flexibility in the modeling. For example, let us consider

S ={(,51,89,...) : s; € {0,1}, s; = linfinitely often and s;= 0 infinitely often}.

This trajectory space models a sequence of coin tosses, but rules out that heads (‘0’) or tails (‘1’) only come up finitely often. The
corresponding sample space Q = {0,1}N cannot incorporate the a-priori belief on neither heads nor tails coming up only finitely
often.

However, the lack of trajectorial completeness will lead to substantial differences in the theory to be developed in this paper
compared to the game-theoretic framework.

To each situation s = (s, ..., s ;), one can associate a one-period financial model with initial stock price s s where #; denotes
the set of possible stock prices one time step later. We may think of a financial derivative in this one-period model as a function
fs © ¥, — [—o0, 0], where f,(y) describes the payoff of the derivative, if the stock price y realizes at the end of the one-period model.

The set of payoffs offered to the investor in situation s = (sy, ..., s;) is denoted by ;. In the superhedging context, one may choose

Go=1{f; : ¥~ [~o0,00] : Fn€E[~00,00]VyE X, h-(y—s;)—f(y)=20and h-(y—s;)>—oo} 8)

as offer sets, for s = (s, ...,s j) € S. In the terminology of [23], the investor is also called ‘Skeptic’ and chooses the portfolio position
h in the one-period model. The investor can be considered to play a game against an opponent called ‘Reality’ or ‘World’ who picks
the stock price y at the end of the one-period model.

By (8), a payoff f, is offered at situation s, if and only if it can be superhedged with zero initial endowment in the one-period
sub-model starting at situation s. Note that infinite portfolio positions are possible, provided the portfolio wealth cannot become
—oo, compare also Example 6.3 in [23] for a related definition. However, the infinite portfolio positions are only required to fully
exploit the arbitrage opportunities that arise at arbitrage nodes. E.g., applying an infinite portfolio position at an arbitrage node of
type II, leads to an infinite gain and, thus, all payoffs are offered at arbitrage nodes of type II. On the contrary, at up-down nodes
finite portfolio positions can be applied only. These aspects are clarified by the following lemma.

Lemma 4.3. Suppose s = (s, ... ,sj) € S. Then,

G, =(f, : % — [~o0.00] 1 FhE (=00, 00)VyEZ, 1 h-(y—5,)2f,(),
if the associated node {S € .7 : (S, ...,S;) = s} is an up-down node;

G, = {f, : % — [~o0,00] : f,(s;) <O},

if the associated node is an arbitrage-node of type I or a flat node;

&y ={fs 1 % = [-00, 0]},

if the associated node is an arbitrage-node of type II.

The game-theoretic approach largely relies on the assumption that the acceptance sets <7, = {—f, : f, €%, } constructed from the
offer sets satisfy certain rationality assumptions related to Walley’s behavioral notion of coherence. The latter include, see [6]:

(D.1) If (—f,)(») <0 for every y € %, and (—f,)()’) < 0 for some y’ € %, then (—f,) & <.
(D.2) If (—f,)(y) > 0 for every y € %, then (—f,) € <.

(D.3) If (—f,),(—g,) € <, then so is (—f,) + (—g,)-

(D.4) If (—f,) € #/, and 4 > 0 is constant, then A(—f,) € 7.

Axioms (D.2)—(D.4) are easily verified for the offer sets ¢, introduced above. However, (D.1), which can be considered as a model-free

no-arbitrage condition for the one-period models, fails, if for s = (sq,....s )ES the associated node {S € .7 : (S,...,S;)=s}is

an arbitrage node (as can be seen from Lemma 4.3). (D.1), at first glance, may look both natural and compelling as a starting axiom

as one is not accepting a gamble, in which one cannot win, but one may lose. Nonetheless, this reasoning fails at arbitrage nodes:

suffering a loss becomes irrelevant, if the loss can be compensated by exploiting the arbitrage that is available at an arbitrage node.
The setting of Shafer and Vovk [23], p. 121, weakens the rationality axiom (D.1) to

(D.1) If (—f,)(y) <O for every y € %, then (—f,) & .

11
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(D.1’) can accommodate arbitrage nodes of type I, but is still in conflict with arbitrage nodes of type II (see Lemma 4.3, again).
Therefore, by considering arbitrage nodes of type II, our setting neither satisfies (D.1) nor the weaker assumption (D.1’), which
crucially changes the analysis compared to the standard game-theoretic approach.
We next relate sequences (g { ) 20 of non-anticipative functions (see Definition 2.3) with values in [—o0, 0] to the notion of a process
in the game-theoretic framework, which is (by definition) a mapping g : S — [—o0,+o0]. Given a sequence (g;) of non-anticipative
functions and a situation s = (s, ..., s ), we choose some .S € . such that (S, ...,.S;) = s and define

a(s) = g;(S), ©

which does not depend on the choice of .5, because the sequence (g;) is non-anticipative. Clearly, this construction provides a one-
to-one correspondence between the set of sequences of non-anticipative functions and the set of mappings from S to [—o0, x].

The game-theoretic approach applies the offer sets to define a notion of supermartingale. In view of Propositions 6.10 and 7.2 in
[23], we say that a process g : S — [—00,+00] is a supermartingale with respect to the offer sets (9,),cs (¢-supermartingale, for short),
if for every s € S

inf{fa eR : (¥ = [-00,+x], y g(sy) —a) €Y, } < g(s). (10)

Accordingly, a sequence (g;);»o of non-anticipative functions will be said to be a &-supermartingale sequence, if the associated process
via (9) is a ¥-supermartingale. Note that this notion of a ¢-supermartingale is ‘local’ in the sense that it only relies on superhedging
in the one-period submodels that start at each node (or, equivalently, at each situation).

Based on the notion of ¢-supermartingales, the game-theoretic approach defines a ‘global’ outer expectation operator, see p. 142
in [23]. In our notation it can be written as

Ef =inf{gy : (g;);0isa 4-supermartingale sequence,  inf g;(8) > —oo, and liminf §;i($) = f(S) for every S € .7}.
- j>0,5€.7 j—ooo

The following example shows that this global outer expectation operator E does, in general, neither coincide with the superhedging

outer integral ¢ nor with the operator T, which determines the null sets in the trajectorial approach.

Example 1. We consider the trajectory set

7 ={8%57",80 §7F ST neN},

wherein SIQ =4 for every j >0,

4
4 i=0 4, j=0 s iz1 4, i=0,
SO TN ey oy, st =l T stiolaia =1, neN
J 2, 121 J J :4)’7 Jj= J
1, j>2 > n+7/2, 22
s, J 2

As illustrated in Fig. 1, this trajectory set features arbitrage nodes of type II. For this trajectory set, (L)-a.e. holds by virtue of
Corollary 3.14. Moreover, the following will be shown in Appendix A.4:

a)o(f)=f(SY= / fdQ for every f : ./ — (—o0, ), where Q denotes the Dirac measure on S9;
b) Q is the unique martingale measure for ., cp. Remark 2.14;

c) Ef = max{ £ (S9), (S~} for every f : . — (—00,0);

d) 1/ =max{f(S?), f(S0), %f(S‘v‘)} for every f : . — [0,00).

Items a), ¢) and d) show that o(f) < E f< T f,if % (S~ > (570 > £(S°) > 0. Thus, both operators & and T, which are constructed
along the lines of the Konig-Leinert theory of non-lattice integration [14,16], are different from the global outer expectation operator
of the game-theoretic approach of Shafer and Vovk [23]. Moreover, by item b), only the superhedging operator ¢ computes prices
which are compatible with the paradigm of martingale pricing in mathematical finance. Theorem 8.1 below provides more evidence
that the (conditional) superhedging outer integral o ; has a proper interpretation as superhedging price operator, where superhedging

takes place by trading with linear combinations of buy-and-hold strategies and the superhedge must hold up to an 7-null set. Note
that, by item d), neither {5~} nor {.$~} are I-null sets, while both are null sets with respect to the unique martingale measure
Q. Hence, in this example, superhedges in our setting must hold on a larger set than superhedges constructed in the probabilistic
framework.

Following the lines of Example 6 below, one can easily modify the trajectory set in such a way that it does not have arbitrage nodes
of type II, but fails to be trajectorially complete, and properties a)-d) still hold. Summarizing, the example (as well as Theorem 8.1
below) illustrates that in our framework which encompasses trajectorially incomplete models and models with arbitrage nodes of
type II, the outer integral operator E of the game-theoretic approach might better be replaced by the superhedging outer integral &
for the computation of meaningful superhedging prices.

12
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0 1 2 3 4

Fig. 1. Illustration of the trajectory set in Example 1.

The main object studied in this paper are supermartingales defined via the conditional superhedging outer integral o; by the
property

06;fis1<f; I—ae 0<j<oo.

Here, (f});»0 is, of course, a sequence of non-anticipative functions. By the following proposition every ¢-supermartingale sequence
is also a supermartingale in our sense (defined via o j).

Proposition 4.4. If a sequence of non-anticipative [—oo, +0o]-valued functions (g;);»( is a ¢-supermartingale sequence, then, for every
j>0and S €.,

Ejgj+1(S) < gj(S).

It turns out, however, that there are supermartingales (based on ¢ j), which fail to be ¢¥-supermartingale sequences. The intuitive
reason is that o is based on superhedging in infinite time, and so failure to superhedge in the one-period submodel can be compensated
by exploiting arbitrage opportunities that may arise at later times. These arbitrage opportunities at later times and, thus, the new
types of supermartingales appear because of trajectorial incompleteness or the presence of arbitrage nodes of type II, and, for these
reasons, do not show up in the game-theoretic framework (compare Lemma 7.6 in [23]). Here is a simple example.

Example 2. In the framework of Example 1, consider the sequence (f});»( defined via f, =0 and f; = lT] 44 for j > 1 - recalling
T,(S) = 8, for every .S € .. Then, by Proposition A.2.1-a), EjfjH(S) = Ej(lT1 2)(8) < lT1 24(S)=f;(S) forevery j>1and S € 7.
Moreover, by item a) in Example 1, 5, f] = f1(S°) = 0 = f,. Hence, (f});»0 satisfies o, f;,1(S) < f;(.5) for every j >0 and S € 7.
However, (f j ) >0 is not a ¢-supermartingale sequence for the offer sets introduced in (8). Otherwise, by Lemma 4.3 and the definition
of a ¢-supermartingale sequence in (10), for every € > 0 we would find an 4 € R such that € + (S| — S;) > f;(S) =1 for every
Ses\ {S0}. This clearly leads to a contradiction, since, e.g., S;’O - S(;’O <0and S;r’l - S(;r’l > 0.

Summarizing, in the context of financial models in infinite discrete time, the game-theoretic framework can only be applied, if
the trajectory set is trajectorially complete and has no arbitrage nodes of type II. In this case, the continuity condition (L g ;) holds
at every node (S, j) by Corollary 3.14 and the two families of superhedging operators (c;);>, and (Tj )j>0 coincide on the cone of
non-negative functions by Theorem 8.4. More generally, our setting allows for the case where (L s ;) fails on a null set; in this case

the two families of superhedging operators (v )5 and a j)j»0 differ. Moreover, o has a proper interpretation as superhedging price

by Theorem 8.1 and the role of 1 is to detect the arbitrage opportunities as null sets. In our more general financial setting, new types
of supermartingales (defined via ) arise compared to the notion of supermartingales in the game-theoretic framework.

Remark 4.5. The game-theoretic approach to mathematical finance can also be applied in continuous time, as initiated by Vovk [28].
In this approach, the null sets of the model are determined by the outer measure introduced in [28] or variations thereof [1]. This
outer measure, thus, plays a similar role as the superhedging functional I in our trajectorial approach, but we emphasize again that
proper superhedging prices are computed by the outer superhedging integral ¢ in our approach; cp. also Section 2.5.2 in [2] for a
more detailed comparison to the continuous-time game theoretic approach.
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5. Supermartingales: definition and examples
Next is our definition of trajectorial supermartingales, submartingales, and martingales and of stopping times.

Definition 5.1. Consider a sequence (f )j0 of non-anticipative functions f ;1S = [0, 0], j 2 0. We say,
(f;) is a supermartingale if

Ejfj+1 Sfj ae. 0<j< oo,

(f;) is a submartingale if

fjﬁgjfﬂ_l ae. 0<j< oo,

) is a martingale if
; 41=0;fjz1=/f; ae 0<j<oo.

Remark 5.2. Notice that if (f}),»( is a martingale, then according to Remark 2.13, f;,, is conditionally integrable at j for any j > 0.
Moreover, if (f Djsoisa sub- and a supermartingale, then, under Assumption (L)-a.e., (f Djsoisa martingale, since by Proposition 3.3
gjf <o, f holds a.e. for any f € Q.

Definition 5.3 (Stopping time, as per Definition 8 in [10]). Given a trajectory space ., a trajectory based stopping time (or stopping time
for short) is a function 7 : . - NU {0} such that:

forany S, §'e€.” if S, =S, for 0<k<z(S), then 7(S)=1(S").
We next provide examples for the above definitions.

Example 3. a) Suppose that (L)-a.e. holds. If V' € R and (H,),» is a non-anticipative sequence, then

j-1
M(S)=V + Y H(SAS, Se.7, )20,
i=0
satisfies the martingale property g; M, (S)= Ej M, (S)=M,;(S) whenever (Lis jy) holds (this is so by Proposition 3.3 item (4)).
In particular, the coordinate process (T}) ;>0 Tj(S) =S, forms a martingale sequence (with H; =1 and V = .5)).

b) For any f € O, the sequence (f); defined by

[i(8)=5,/(S), Se, j=0,

forms a supermartingale and the sequence (f});» defined by

fi($)=o,/(S), S€5,j20,
forms a submartingale by the tower property in Proposition 5.5 below.

o) If (f});»0 is a supermartingale and (D;);»( is a non-anticipative sequence of non-negative functions, then the supermartingale
transform (g,),50

j-1
8(S)=fo+ 2 Dlfis = 1)) S€F.j20,
i=0
is again a supermartingale. This follows from subadditivity of ¢ ; and the remark that: o 8j+1(8) < c 8, (S)+ Ej(D i (fi1 = F0(8) <
gj(S) + D;(S) Ej(fjH = [S) <g;(S) + Dj(S)[EjfjH(S) =[] <g;(S) (where we relied on Proposition A.2.1 for the second
inequality and to conclude that Ej(fﬁ_l -8 = Ej(fj+l)(S) +Ej(—fj)(S) < Ej(fjH)(S) = f;(S).
If (f jz0 isa submartingale, then we call (g )70 (defined as above) a submartingale transform, which by the duality f (e

o, >0 isa submartingale.

jy

d) If (f;);»0 is a supermartingale and 7 is a stopping time, then the stopped sequence ( f}.’) >0 defined by

f;(S) = frs)n (),

is a supermartingale. This is a consequence of the previous item with the choice

14



C. Bender, S.E. Ferrando, K. Gajewski et al.
International Journal of Approximate Reasoning 187 (2025) 109567

1, o(8)>i ‘
Di(S)= , Ses, j=0,
0, 7(S)<i

which is non-anticipative by Lemma 5.4 below.

Lemma 5.4. Let 7 a stopping time and H* = (H ’.k) i>0» k= 1,2 sequences of non-anticipative functions. For S € ., j > 0 define the following
functions on (g j:

= HINS) if j<i<z(S) ._ . &
z = U ~ > . .
#S) { HS) if wS<i, 2P ST
Then H™ = (H);; is a sequence of non-anticipative functions on (s ;).

Proof. Let S, S € .75 ; such that S =8, j <k <i. If j <2($) <i = o(8) =2(S) <i & HI(S) = HX(S) = HX(S) = H} (). While,
by symmetry in previous reasoning, i < 7($) =i < 7($) & H/($)=H!($)=H($)=H}(S). O

Proposition 5.5 (Tower Inequality). Let .S be an arbitrary element of . and j < k non-negative integers; also let f € Q. Then,
G /)S) <5, £(S).

Proof. In order to establish the desired result, it is enough to consider the case when the following inequality holds on .%( ;, (oth-
erwise Ejf(S) = 00):

0 g0 m pm 0 g0 m
f< HK,,(’)H + X sy liminf,_ HKn H" for some (V' H™),5( such that HK,,(')H € &s,j) and HK:”H € é”&,’j) for every n > j. This in-
equality implies that 5, f(S) < Y0 H;//':’H " (5) holds for all § € Hs.j)» which in turn implies 5 (5, f)(S) < X5 V"™ (S). Therefore

the result follows by the definition of o; as an infimum. []

We next present sufficient conditions for the tower inequality to turn into an equality (and so obtaining an analogous result to the
classical tower property), which in turn implies that (¢ ;/)j>0 is a martingale sequence.

Corollary 5.6. Assume (L)-a.e. and, for a fixed f € Q, assume that either a) or b) below hold:

a) [ is conditionally integrable for every j > 0;
b) f is integrable and I ='c on non-negative functions with finite maturity.

Then, 5 (o) f)(S)=0,f(S) holds for every j < k and for a.e. S and (c; f);» is a martingale sequence.

Proof. We start with the following preliminary considerations: since (L)-a.e. holds, we conclude from Proposition 3.3 that 0,8 o8
a.e. holds for every g € Q and j > 0. Applying this twice with g = f and with g =0, f, for j <k, in view of Corollary A.2.2, the
following chain of inequalities holds a.e.

0,l0, /120, f125,[5,f1.

Applying Proposition 5.5, we obtain,

o,f<o,l0,f1<0,0,f1<0;[0,f1<0;f. ae. (11

a) The conditional integrability assumption now turns all a.e.-inequalities in (11) into equalities valid a.e. In particular, taking
k =j + 1, it follows that (¢ iN)jsoisa martingale.

b) Let j = 0. Then, the integrability assumption turns all inequalities in (11) into identities. In particular, we obtain o[c; f] =
olo, f1, olo, f1=0lo, f]and also olo, f1= E[gkf] (with —f in place of f). We then have access to Corollary A.2.4 (applied to the
functions 6, f and —¢, f and j = 0) to compute

oloyf — o, fl=0lofl1+ol-c, f1=0lo, f]-clo, f1=0.

Therefore, given that o, f — o «J =0 a.e. (as per Proposition 3.3) we have

1@ f —0,/)1=5(@f — 0, )41 =5[6,f —0,f1=0,

which, by Proposition 2.9 item (1), implies 5, f — o, f <0 a.e. The two inequalities together yield , f = g, f a.e., hence the condi-
tional integrability of f at k. Since k is arbitrary, b) is reduced to a). []
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6. Supermartingale decomposition

In this section we prove a supermartingale representation theorem. It can be considered as an analogue of the uniform Doob
decomposition in discrete time (see, e.g., Theorem 7.5 in [12]) or the optional decomposition theorem in continuous time [15],
which apply to stochastic processes that are supermartingales simultaneously under a family of probability measures.

Theorem 6.1 (Supermartingale decomposition). Under Assumption (L)-a.e., let (f )j=0 be a sequence of non-anticipative real-valued func-
tions. Then, the following assertions are equivalent:

@) (f});»0 is a supermartingale.

(ii) For every sequence (5;);( of positive real numbers there are sequences (H ), and (A;) >, of non-anticipative real-valued functions
defined on ., such that (A )js0 IS nondecreasing, Ay =0, and

i-1 i-1
[(S)=fo+ Y HJS)AS - A(S)+ ) 6.
Jj=0 Jj=0

forevery S€ 7\ N, and i > 0. Here N is an T-null set independent of (6 1) 200

Remark 6.2. Theorem 6.1 shows that up to the small §-errors and null sets, supermartingales can be decomposed into a difference
of a martingale (of the special form as in Example 3-(a)) and a non-anticipative, nondecreasing sequence. We will illustrate the
supermartingale decomposition theorem, its assumptions, and its applicability beyond the classical probabilistic setting in a series of
examples at the end of this section.

The proof of Theorem 6.1 relies on two lemmas, which we call Finite Maturity Lemma and Aggregation Lemma.

Lemma 6.3 (Finite Maturity). Suppose f : ./ — R has maturity n, for some n; € N. Let j <n, and S* € . be such that the property
(L(S*,nf)) holds.

If f,, =liminf,_ HK:’H'", HK:‘Hm € cg’&*’j), where m>1, and fy= HK:(’)HO € &5+ ) satisfy

o)

TED N O (12)
m=0

then,

©

f< Z HK:;HM on ,7(5*!,,/) (each side is constant on f(s*’nf)). 13)
m=0

Proof. Define for each § €. Sty

VS = =S+ (5% ==f(sh) + T, (s,

Jsh g Ang
ny—1 ny—1
2($)=U%sH+ Y HUSHAS=US")+ Y HIS)AS,
i=n s Angy i=ny

where we have used the fact that Hl.0 =0 for i > ngy, and for m> 1
n—1
my gy — V" H™  ox S\ — prmy Q* s mes S
Un(SH =G, ST, gu($)=UM(ST) +liminf Z H™(S)A;S.

l:nf

It follows that

* 0 0 770
usMH.H =—f(S*)+HKn’H € st ) forany n>n,,

ng.n
and form>1

HU'"(S*),H'" _ va’Hm c (5‘)+

npn in ) forany n>n;.

Notice that (12) implies 0 < ) g, holds on .%(g , ) and since property (L g~ , f)) holds, Proposition 3.3 yields
m>0
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0=(5,,0(5") < Z Un(S*)=~/(5%)+ 2 Iy, (s,
m=0
from where (13) holds. []

The following aggregation lemma is proved in [10] (Lemma 3) under the assumption that all nodes are up-down nodes. The proof
there can easily be adapted to our more general setting (which allows for any type of node).

Lemma 6.4 (Aggregation Lemma). For j > 0 fixed let, for m > 1 H™ = (H[")»;, be sequences of non-anticipative functions on ., and V'"
functions defined on ., depending for each S only on Sy, ...,S;.
Fix a node (S, j) and assume for any m>1, n>j, and S € LS.5) that:

n—1
n" H" (S =vm(S) + ZH'”(S)A S$>0, and Z V™(S) < 0.
i=j m>1
Then, for every S € Ss.j) and k > j the following holds: if (8. k) is an up-down node and, for every j < p < k, (S, p) is an up-down node
or §p+] = .SA‘p, then,

Z H IZ”(S’) converges in R.

m>1
Proof of Theorem 6.1. Let

N D ={Se.7:3j>0s.1.(S,j)is a type I arbitrage node and S #55)
NID = (Se.7:3j>05.1.(S,j)isa type II arbitrage node},

and recall that .# (1), defined in (5), is a null set by assumption. Note that .4 ") and .# /) are null sets by Lemma A.1.3 and that
D ¢ _y@) by Proposition 3.10.

(i) = (ii): By the supermartingale property of (f;);>( we may fix an T-null set A} such thato; f;,,(S) < f;(S) for every S € 7\ A}
and j >0.Let N, =/ Dy iy . We first introduce the stopping time

1#(S) =inf{k>0: (Lis k) fails, or 6 f41(S) > fi(S), or [(S,k — 1) is a type I arbitrage node and S, # .S;_;1}, 14

and we recall the convention inf § = +co. Note that 77(.S) = oo, if S ¢ Ny.

Now we fix some j > 0 and choose a family {SA}AEA/- for some index set A; so that {54y + A€ A} is a partition of . (see
Definition A.1.2 in Appendix A.1). ‘
Step 1: Construction of H;:

We now construct the function H; : . — R in such a way that it is constant on the nodes of the partition (and, thus, non-
anticipative). To this end, we consider an arbitrary but fixed node (5%, j) of the partition and proceed as follows:

If 7#(S4) < j, then .51 ;) C N and we simply let H;(S) =0 for any S € .51 ).

If 7#(S#) > j + 1 note that, in particular, (L ;)) holds and 5, f;,,(S*) < f;(S*) € R. Applying the definition of 5 ;, we find g,’s
such that

fj+1 < Z &m On ‘ZSAJ)’

m=0
m_pm m g 0 g0
where g, = liminf,_, Hzn A HK,, = éa(f?*,j) form>1, gy = HKH(’)H € &4 ;) and
(S
D Vi < f(SH+6; (15)
m=0

Notice that H J’" is constant on %51 ;, and we write h,, for this constant value. If (S#, ) is an up-down node, then Yoo By converges

)’
in R by the Aggregation Lemma 6.4. We now define H;(S) = H;(S Yy for S e A (s4jy in the following way:

m>

« If (S4, ) is an up-down node, then H; ($H= 2 oh
» Otherwise H;(S*)=0.

This completes the construction of H ;- For later use, we make the following observation: If S € (5%, j) satisfies (L(s j+1))s then, by
the Finite Maturity Lemma 6.3 with n fr =4 F 1,
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)
[111() S YV + 1y} S). (16)
m=0

Step 2: Construction of A;,| — A;:

We next construct the increment a;=A;, —A;. Asin Step 1, we let a;(S)=0, if Se S st j) and 7#(S%) < j. Assuming now that
S € 54 ) for some S* satisfying 7#(S*) > j + 1, we distinguish two cases. We say .S belongs to Case A, if S’ satisfies (Ls,j+1)) and
[(S%, ) is an up-down or § i+1 =15;]. Otherwise, we say .S belongs to Case B.

We first continue the construction of a i1 if .S belongs to Case A. Then, by (15) and (16),

FiS)+8 = (D482 T Vo2 [j11(S) = T ;S = £141(5) = Hy(S)AS.

m=0

Therefore,

()= 6;+ Hi(S)A;S = (11 (S) = £,(5) 0. (17)

In order to complete the construction of a;, we let

a;(S)=0,

if S belongs to Case B. Belonging to Case B means that (Ls ;;)) fails or [(S%, ) is not an up-down and Si1 #8511 (Lis jyny)
fails, then 7#(S) = j + 1 by definition. If the other condition for case B holds, then (%, ) can neither be an up-down node nor a
flat node and, thus, must be an arbitrage node. However, by Proposition 3.10, (S*, j) can neither be an arbitrage node of type II,
because (L g, ) holds by the assumption that z#(S4) > j + 1. Therefore, the condition [(S*, j) is not an up-down and .S i+1 #S;] can
be rephrased as [(S, ) is an arbitrage node of type I and S, # S;]. Consequently, #(S)=j+1.

Summarizing, if « ; is not defined via (17), then 7#(S) < j + 1, which implies S € N Iz
Step 3: Finalizing the proof of (i) = (i):

We define (4;);5( via A4; = Z;_:B a;(.S). Then, by Steps 1-2, the sequences (4;);>( and (H;);, are non-anticipative, (4;);>q is
nondecreasing and Ay =0. Now let S € ¥\ N . Then, as emphasized at the end of Step 2, a;(.5) is defined by (17) for every j > 0.
Hence, for S € 7\ Ny and every i > 0,

i-1 i—1 i-1

AL(S)= DU6; + H ()AL = (f141(S) = f;(SN] = fo = [i(S) + %H;(SM/-S + ZO %
J= Jj=

Jj=0
which provides the representation of (f;);»( as asserted in (ii).

(ii) = (i): We first fix some j > 0 and some positive integer K and let §; = 1/K. Condition (ii) implies

[i41(S) S [+ 1/K + H;(S)Sj41 —S))

for every S € .7\ N,. We define
81 = () +1/K+ H;(S)(Sj11 = S))
for every S € .. Then, g;,; € &; and 7,8;,1(S) < f;(S) + 1/K for every S € .. Consequently, by monotonicity and sub-additivity
of o; (as per Proposition A.2.1),
Ejfj+1(S) < Ej(gj+1 + (fj+1 - gj+1)+)(S) < Ejgj+1(s) +Ej((fj+1 - gj+1)+)(S)
< FH S VK +T,((f141 = 811):)(S). (18)

Noting that (f;,; —g;,1) can only be positive on the /-null set N ;, we may deduce from Proposition A.2.1-e), that I;(f, 1 —g;41)4 =
0 T-a.e. for every j > 0. Hence, there is an T-null set A such that I_j(fjﬂ —8j+1)+(S) =0 for every S € ./ \ A} and j > 0. In view
of Remark 2.11, we conclude that Ej((fjH —8i+1):)(S) <0 for every S € .7\ Ny and j > 0. Inserting this identity into (18) and
passing to the limit K — oo, yields (i). []

We close this section with some illustrative examples. The first example shows that condition (L)-a.e. may hold in a situation
when the model does not have a martingale measure, cp. Remark 2.14. Moreover, the example also shows that the §-sequence in the

supermartingale decomposition (Theorem 6.1) cannot be dispensed with.

Example 4. Let ¥ = .1t U.%~, where .7* = {S*" : n€ N} and

1, i=0 | -
stn=Jo i=1, S?":{’ LT
24

1

1
;’ =

18
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Then, the node (S*!,1) = (§+", 1), n > 2, is an arbitrage node of type II, the initial node (5,0) is up-down, and all other nodes are
flat. For an illustration of this trajectory set, we refer to [2], where different aspects of this example are discussed.

a) We first show that (L)-a.e. holds, but there is no martingale measure for this trajectory set.

Since S| - Sy " = —1/n? is arbitrarily close to zero for sufficiently large n, we observe that (H;;) in Corollary 3.14 is satisfied.
Trajectorial completeness is obvious, because all trajectories stay constant after time j = 2. Hence, by Corollary 3.14, this trajectory
set satisfies (L)-a.e. Since all trajectories S™" pass through the arbitrage node (S*!,1) of type II, .#* is a null set by Lemma A.1.3
and, hence, I(1,-) =1 by Remark 3.8.

It is also clear that there is no probability measure Q on the power set of ., which turns the coordinate process 7; : % > R, S —
S into a martingale in the classical probabilistic sense. Otherwise Q(.#*) = 0 (because any martingale measure assigns probability
zero to type II arbitrage nodes) and then T < T;; Q-almost surely — a contradiction.

Consequently, by Example 3-a), the coordinate process (T;);», is an example of a trajectorial martingale, which fails to be a
martingale in the classical probabilistic setup.

b) We next construct a supermartingale, for which a decomposition as in Theorem 6.1—(ii) is not possible, if we let § ;= 0 (and, hence,
the small §-errors cannot be avoided in the formulation of the supermartingale decomposition theorem).
To this end, we define f; : " —> R via

£18)= 0, Sestor;j=0
P27 L s=s5"and j>1°

n

and consider the sequence (f;);»¢. Since all of its ‘paths’ j — f;(.S) are nondecreasing, (f;);»( obviously is a submartingale. We claim
that (f;);» is also a supermartingale (despite of the nondecreasing paths) and apply Theorem 6.1 to verify this. Given a sequence
(60 of positive reals, let

Hy=-[8,""1, H;=0,j>0,

and note that, for every n €N,

_ _ Zip 1 _
8o+ Ho(ST" = Sy ") =60+ 6,71 —zo=h(S ), (19)

S =

by considering the cases n < [6,”'] and n > [6,”'] separately. Hence, we may define a nondecreasing, non-anticipative sequence
(A;) via Ay =0 and

-17. L _
Aj(S)—Aj—l(S):{zo+[50 =

10

, j=land S=85""
j>2or Se.st.

1
n

It is then straightforward to check that, for every i >0 and S €./,

-1 i-1
[(S)=fo+ D H{(S)A;S — A(S) +
j=0

3;.
J =0

Jj
Indeed, for i = 1, this is a consequence of (19) and the definition of A;, while, for i > 2, f; = f;, and the increments of A compensate
the 6’s. Hence, (f ;)isa supermartingale by Theorem 6.1. Note that, in view of Remark 5.2, (f Dizo isa martingale.

It remains to prove that a decomposition as in Theorem 6.1-(ii) is not possible for this (super-)martingale (f;);5o, if 5; =0 for
every j > 0. Precisely, we will argue that such a decomposition requires 6, > 0. We first show that for every H, € R there is an ny € N
such that for every n > nj

SIS > fo+ Ho(ST" = S5,

By inserting the definition of f| and f|,, this inequality is equivalent to

H,
1 <1 + —°> >0,
n n
which trivially holds for sufficiently large n. Hence, no matter of the choice of (H;) and (4;), a decomposition as in Theorem 6.1(ii)
with &, = 0 will necessarily fail ati = 1 on the set == = {§~"|n > n,} for some n; € N. It, thus, remains to show that I_(ly-,zno) >0
for every ny € N. To this end, assume that for every S €.,

12y (8) < 3 liminf 117077 (S),
m>1

m m
where H(I)/ i e é"0+ forallk>0and }, ., ¥, < co. Since the trajectories in .~ are constant after time k = 1, the previous inequality

and the Aggregation Lemma 6.4 imply
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for every n > ny,. Passing with » to infinity, we observe that 3, -, V,, > 1 and, hence, I(1 ,->n,) =1 for every ny € N.
The foregoing also shows that (f});» is an example of a martingale, which is not a.e. equal to a ‘simple’ martingale of the form
discussed in Example 3-a).

¢) We finally show, as asserted in Remark 3.4-b), that the restriction of T to the set of bounded functions in P fails to be a coherent
upper prevision. Recall that coherence of I means that for every m,n € N and for every bounded g, ... g, in P,

n
sup <<2 I(gp) - gk(S)> - m(I(gg) — go(S))> >0;
Ses k=1

see condition (D) in [26, Definition 4.10]. To see that this property is violated, we choose m=n=1 and g, =1 + g, for

(5)= 0, Sest Ses
8M)ZY L S5 forsomeneN’ o

n_zs
Then,
sup <<Z I(g) —gk(S)> —m(I(gg) = go(S))> =—1+1I(g)~I(g):
Ses k=1

and it suffices to show that I(g,) < 1 and I(g) > 0. Suppose, to the contrary, that I(g,) = 0. Noting that 1 .- <lim,_,, kgy = X, &,
we conclude that I(1,-) < }7°, I(gy) =0 by isotonicity and countable sub-additivity of / (see Proposition 2.8). Hence, 1 - is a
null function, contradicting the property that /(1 .- ) = 1, which has been derived in part a) of this example. To verify that I(g;) <1,
consider the non-negative elementary function g,(S) =1 — (S — Sy) = g9(S) + 1 - (S) = g;(S) — 1 -+ (), which clearly satisfies
1(8)<1.Then, I(g))=1(& +15+)<1(g§)+I(15+)<1,because 1+ is a null function by part a) of this example.

Remark 6.5. Consider the following variant of Example 4. Let . = &+ U {S°,5~}, where the up-branch .+ is as in Example 4,
S0=1, Sy =1and Sj’ =0 for j > 1. Adapting the arguments in Example 4, one can check that: 1) The point mass Q on S° is the
unique martingale measure of this model; 2) (L)-a.e. holds; 3) I_(I{So)) =1 and I_(I(S_}) =1/2. Hence {S~} is a null set for Q, but

not w.r.t. I. In such a situation our supermartingale decomposition (Theorem 6.1) holds on a larger set than the (uniform) Doob
decomposition in the classical theory.

We finally present an example, in which (L)-a.e. fails, and demonstrate the importance of this assumption for our results.

Example 5. Let . = { S+, 50,87} U {S™" : n €N}, where S, =1 for every S €.7,

—_

, §S=9° S, Se{s’ s} o
S5, Se(S0.5, 5}
S1=42, Se{st", St :neN}, S,=13, Se{St":neN}, §;= ,
B _ 3+1/n, Se{S™:neN}
0, =S5 3/2, S=S8%

for j > 3. This trajectory space is illustrated in Fig. 2. Note that (L) holds by Remark 3.2, because the constant trajectory S° is
included in the trajectory set.
a) We first show that (Ls+.- ;) fails and Ia (s+-}) = 1/6, and, thus, condition (L)-a.e. is violated.

Suppose f : # s+~ 1) — R. Define, for arbitrary, but fixed k €N,

80(S) = —k = 2(f (ST +Kk)(Sy = S)), gn(S)=S83—Sy SEHgiqym21.

Then, gy € &5+ 1) Em € &%

s+ 1) for m2 1, and, on e ),

Y 8 =F(STT) 001 ghn:eny 2 f
m=0
Since k was arbitrary, we obtain o f(S™~) = —co. By choosing f =0, we observe that (c;0)(S™7) # 0 and, thus, (L(s+-1)) fails by
Proposition 3.3.
We next show that T (1{ s+t-1) =1 /6. To this end, assume that for every S € .7,

L5+ (8) < ) liminf 115717 (S),
m>1

VmH™,

where H(I)/:’H "e é”(;r forallk>0and Y., V,, < co. Since S* stays constant after time 2 and the I,

time, we obtain

s are non-negative at any
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s+l

s+2
S+,3

S+

50

0 1 2 3 4

Fig. 2. Illustration of the trajectory set in Example 5.

gemy($) < Yy () 20)

m>1
for every S € /. Writing v=3, . V,, a=% . H'and b=} | H"(S*7), we note that the series defining a and b converge in
R by the Aggregation Lemma 6.4. Inserting S = S*~, S =S*!, and § = S~ into (20) yields
(I):v+a-b/2>1, (I):v+a+b>0, (III): v—a>0.

Considering 2(I) + (IT) + 3(IIT), we observe that v > 1/6 and, hence, (1 ( S+,_}) > 1/6. Note that by similar, but easier arguments
I(1(5-,)21/2 and I(150)) =1

b) We now define the sequence (f});»o via fo=1and f; = f, = 150y +2 ly\(so] for j > 1. We claim that (f;);»( is a supermartin-
gale, which does not have a decomposition as in Theorem 6.1-(ii) for sequences (5;) with 0 <, < 1. In particular, the assumption
(L)-a.e. cannot be dropped in the latter theorem.
In our considerations, we may ignore the null set { S*"| n € N} of those trajectories which pass through the arbitrage node (S*!,2)
of type II. As the computation of o; is trivial after trajectories have become constant, we get
5L 4108) =5, foo(S) = foo(S) = £,(S)

for S € {5°,.5"} and j > 1 and for S = .S+~ and j > 2. Moreover, by a),
G1[2(SHT) =00 < f1(SH7).
For the supermartingale property at the initial node, consider

gS)=1-(S; - Sy —4(S, - S)), g.,(8H=853-S5,, Ses m>1
Then, gy €&, g,, €& form>1, and, on .7,
Z &m = fl I[SO,S‘,S+~‘] + o0 1{S+~"|MEN) > fl'
m>0
Hence o f| < 1 = f,. (Since the trajectory S is constant, we also obtain o f; > f1(S*) =1, ie., 5/, = 1= f;.)
We now fix a sequence (6 )70 of positive reals and assume existence of a representation for (f ;) asin Theorem 6.1-(ii). Then, at
timei=1,
F1(S) (1 +6p) + Hy(S| — Sp)

for S € {S°,.5-, 5"} (where H, is a constant), because none of the singletons {.S}, .S € {S89,57,5+7}, is a null set by a). This
leads to the three inequalities

1<(1+6p), 2<(1+6y)—Hy, 2=<(1+6y)+H,.

and combining the second and third inequality implies 6, > 1.
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7. Doob’s pointwise supermartingale convergence

This section proves our version of Doob’s pointwise convergence theorem for non-negative supermartingales.

Theorem 7.1 (Supermartingale convergence). Suppose (L)-a.e. holds. Let (f;);»( be a supermartingale with values in [0, c0) and impose the
following assumption on the trajectory set:

(P) Whenever (S, j) is an up-down node such that (Les ) holds and (L(S,Hl))fails, then there are S!, 8% L.5) such that S}H >8>
S}?H and (Lg: j41) holds for 1=1,2.

Then, there exists a null set .4y;, such that lim f;(S) exists in R for every S € .7 \ A,;,.
11— 00

In the game-theoretic setting, a version of Doob’s convergence theorem has been established for non-negative ¢-supermartingale
sequences, see, e.g., Theorem 7.5 in [23]. By the discussion in Section 4, the game-theoretic approach can neither accommodate
incomplete trajectory sets nor arbitrage nodes of type II. The following proposition provides easy-to-check sufficient conditions for
the validity of our version of Doob’s pointwise convergence theorem (Theorem 7.1) that can hold in trajectorially incomplete models
and in the presence of arbitrage nodes of type II. It, thus, illustrates that Theorem 7.1 cannot be recovered as a special case of the
game-theoretic Doob convergence theorem.

Proposition 7.2. Suppose either of the following two sets of conditions holds:
1. (chad) and

(Phad) Whenever (S, )) is a good up-down node such that (S, j + 1) is bad, then there are S', S? € .75 ;) such that S}+1 >8> Sj2+l
and (S',j + 1) are good for 1=1,2.

Or
2. (TC;p) and

(P;p) If (S,)) is an arbitrage node of type II, then j > 1 and (S,j — 1) is an up-down node and there are sl s?e H8.j-1) such that
S} >8> Sf and such that (S, j), (52, ) are not type II arbitrage nodes.

Then, (L)-a.e. and condition (P) in Theorem 7.1 hold.

Proof. 1. Suppose that (TCp,q) and (Pp,q) hold. We first show that (Py,q) implies (Hy,4). To this end, suppose (S, ) is a good
up-down node. If (S,j + 1) is good for every Se Y(S’j), then, we find S!, .52 Y(S’j) such that S}H > SJ- > Sf+1’ because (S, j) is
up-down - and (S',j + 1), 1 = 1,2, are automatically good. If (S,j + 1) is bad for some S € S8.)) then, applying (Py,q) to S, ),
we find S!, 5% € A,y =75, such that S}+1 > S'j =S8;> SJ?H. In both cases, letting S%! = S! and $%% = 52 for every ¢ > 0, we

obtain,
£,1 £,2
Sj+l —Sj>0>—e, Sj+l —Sj<0<e,
i.e., condition (Hp,q) is satisfied. Now, Corollary 3.13 applies and yields (L)-a.e. Moreover, that corollary implies that a node (.S, )

is bad, if and only if (Lys, ) fails. Therefore, assuming (TCp,,q), condition (P) is a consequence of condition (Pp,q)-

2. Now suppose that (TC;;) and (P;;) are in force. Analogously to part 1., we first show that (P;;) implies (H;;). Indeed, assuming
that (.S, ) is a type II arbitrage node and applying (P;;), we observe that j > 1 and (S, — 1) is an up-down node. Consequently,
there is a S € (.5, — 1) such that Sj > Sj_l =S5, and we may take 5l =S in (H;;), provided (§,/) is not an arbitrage node of
type IL. Otherwise, we may apply (P;;) with § in place of S and find some S! € (S,j — 1) =(S,j — 1) such that S} > §; and (S, )
is not an arbitrage node of type II. Then, we may take S&! = S!. The construction of S¢2 follows by a ‘symmetric’ argument. Now
that (H;) is verified, Corollary 3.14 implies that (L)-a.e. holds - and that L g ; fails, if and only if (.S, j) is an arbitrage node of type
IL. The latter implies (P). Indeed, if (.5, /) is an up-down node and L g, J+1) fails, then (S, + 1) is a type II arbitrage node, and, thus,
by (P, ;) there are S', 5% € A s,j) such that

1 2
Sj+l >Sjr1> Sj+l

and such that L1 ), Ls2 4y hold, because (S, /), (52, ) are not type I arbitrage nodes. []

The proof strategy of Theorem 7.1 is to apply the supermartingale decomposition in Theorem 6.1 and to pass to the limit separately
for the various terms. For the martingale part Z‘/_:{) H [ (S)A j S, we can make use of Theorem 2 in [10]. However, this result requires
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that Zi_l H;(S)A;S is bounded from below by the same constant for every .S € ., while Theorem 6.1 in conjunction with the

nonnegativity of f only implies boundedness of E H;(S)A;S from below for a.e. S €.7. In view of the following lemma, the
required boundedness condition can be guaranteed under the addltlonal assumption (P).

Lemma 7.3. Under the assumptions of Theorem 7.1, fix a sequence (3;);» of summable positive reals and construct the supermartingale
decomposition of (f J)jzo0 asin the proof of the implication (i) = (ii) in Theorem 6.1. Then, for every S € .¥ and i >0,

i—1

f0+26 + D H(S)A;S >0.

j=0 j=0

Proof. We construct (H;);» as in the proof of the implication (i) = (ii) in Theorem 6.1 and recall that the stopping time 7 has been
defined in (14) there. As emphasized at the end of Step 2 of the proof of Theorem 6.1; if j < t#(.S) — 2, then, the inequality in (17) is
valid, and, consequently

F141(8) = £,(S) <6, + H(S)S}4, — S)). 1)

Thus, for 0 <i < 7#(S),

i-1

f0+26 +2H(S)A S>f0+25 + D f41(8) = £,(8) > £,(85) 20

Jj=0 Jj=0 Jj=i Jj=0

For the remainder of the proof, we consider the case i > 7#(S). Recalling that H;($)=0 for j > 7*(S) by the beginning of Step 1 in
the proof of Theorem 6.1 and inserting, again, (21) for j < 7#(S) — 2, we obtain

f0+25 +ZH(S)A s

Jj=0 Jj=0
S (52
=fot D 8+ D 8+ HSHS s = S)+ (8,051 + Horis) 1 (S)(Sprcs) = Sevs)-1))
j=t*(S) Jj=0

> foris)1(S) + (8.#05)-1 + Hors)-1(S)(Stsy — Setisy-1)) -
If (S, 7%(S) — 1) is not an up-down-node, then, H #(5)-1(5) = 0 by the construction in Step 1 of the proof of Theorem 6.1 and, thus,

0 i—1
fo+ D6+ D H(S)A;S > fra05,1(8) 2 0.
j=0 j=0

If (S,7#(S) — 1) is an up-down-node and (Ls.#(sy) holds, then, S belongs to Case A of Step 2 in the proof of Theorem 6.1 with
j=1"(S) — 1. Hence, by (17),

0 i—1
fot D08+ D H{(S)A;S > fou(5)(S) 0.
j=0 j=0

If (S,7%(S) — 1) is an up-down-node and (Ls #(s)) fails, then (noting that property (L( Ot s)-1)) holds by the definition of ™),
we may apply assumption (P) with j = 7#(S) — 1. Hence, there are S', 5% € Ss.2#(s)-1) such that (Lig #sy) holds for 1= 1,2 and
STZ#(S) <SS < S! sy Then, S? and S' belong to Case A of Step 2 in the proof of Theorem 6.1 with j = z#(S)— 1. If H #5)-1(S) <0,
then, by invoking (17) for S,

i—1

f0+25 +2H (SIS 2 fercs (S + (8ercsymt + Horgsya (SIS Ly ) = Shais 1)) = Forsy(SH 2 0.
P!

If H, #5)-1(S) > 0, then, the same argument with 52 in place of S! yields

i—1

f0+26 +ZH(S)A 8> s ($H20. O

= =0

Proof of Theorem 7.1. Fix a sequence (& I ) >0 of positive reals with Y’ j é ; < 0. By Theorem 6.1 there are sequences (H f ) >0 (A j ) >0
of non-anticipative real-valued functions such that (A i)jz0 18 nondecreasing, A, =0, and

i—1 i-1

F(S)=fo+ Y H(S)A,S = A(S)+ Y5, (22)
j=0 j=0

23



C. Bender, S.E. Ferrando, K. Gajewski et al.
International Journal of Approximate Reasoning 187 (2025) 109567
(o]

for every S € #\ N, and i > 0, with N, a null set independent of (5;);5¢- Besides, with V' = f; + } §; it follows by Lemma 7.3
j=0
that, for every i >0 and S € .7,

0 i—1
7 (S) = fo+ 26, + Y Hi(S)A;S >0.
j=0 j=0

Having in mind that there are no portfolio restrictions on .7, from [10, Theorem 2] it follows that there exists a null set N, such
that ’1_1510 H;/’H(S) exists and is finite for any S € .\ N,. Consequently (H:/‘H(S )ixo is bounded for those S. Let 43, = NgU N

and restrict the following arguments to S € .\ .#;;,: From (22) and the nonnegativity of f, we obtain that A,(S) < I'II.V’H (S) for
every i > 0. Hence, (4;(S5));»( is bounded from above and since it is nondecreasing, lim;_, ., 4;(S) exists in R. In view of (22), the
convergences of (4,(S));sq and of (IT" (:5)),5¢ in R imply that lim f,(S) exists in R, for any S € .7\ Az;,. O

- - 11— 00

8. On the relation between the two superhedging operators

As another consequence of the supermartingale decomposition, we show, in this section, that ¢ is the ‘correct’ superhedging
operator in the sense that, for bounded (from below) functions with finite maturity, it corresponds to the infimal superhedging price
within the usual class of simple portfolios up to the null sets induced by I. We also clarify the relation between the two (conditional)
superhedging operators 71- and o;.

Theorem 8.1. Suppose that (L)-a.e. holds and that f € Q has maturity n; € N, is bounded from below and satisfies 6 f < co. Let0 < j <n.

Then: For every € > 0, there are a null set N, and a non-anticipative sequence (H,),—;  , -1 such that for every S € '\ N

np—1
[SE (S +e)+ Y, H(SAS.
i=j
Conversely, if there area V' € Q with maturity j, a non-anticipative sequence (H,);_ oot —1 and anull set N r such that for every S € 7'\ N I
np—1
F(S) SV (Sp,... S+ Y, HSA,S,
i=j

theno;f <V ae.

In particular,
np—1
of = inf{V eR| H(IEIJ-)/-=0“MW_1 non-anticipative such that V' + Z H;($)A;S > f(S) forae. S €7}
=0

The proof combines Theorem 6.1 with the following lemma, which deals with the issue that the supermartingale (c; f);»( (see
Example 3-b)) may take values +oo.

Lemma 8.2. Suppose (L)-a.e. If f € Q is bounded from below by some ¢ € R and satisfies 6 f < co, then there is a supermartingale (f;);»
with values in [c; +o0) such that 5 ; f = f; a.e. for every j > 0.

Proof. As in the proof of Theorem 6.1, we consider the stopping time
T#(S) =inf{k >0 : (L)) fails, or [(S,k — 1) is a type I arbitrage node and Sy # Sy_;1}.
Define

[ =T f (S jgrisy) + A pisetisy). 120, SES,

and note that (f;);5( is non-anticipative by Lemma 5.4. Recall that {S € ./ : #(S) < o0} is a null set by Lemma A.1.3 and by
assumption (L)-a.e. In view of Example 3-b), we conclude that (f;) is a supermartingale and o, f = f; a.e. for every j > 0.
For the lower bound, note that by Proposition 3.3,

fi(8)=0,f(S)20,(c)(S)=c,
whenever i < 7#(5). We finally need to verify that fi(S) < oo for every i >0 and S €.7. Since ¢ f < oo, we find I'I(‘)/ :(’)HO € &, and, for

m m m m
every me N, HK_ " such that H(I)/,n H" e & forevery n >0, 3> | V™ < co and
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. VM HM ,
(8 < Zoh'mgt - (s), ses.
We now fix a node (S, i). The previous inequality implies

o ~ ~
F(S< Zhﬂnliogfnfn GH(S), Se s
m=0

where V"(S) = H(I)/;"’H m(S) and A" = H l'f’gﬁ . Hence, 5, f(S) < Zm —0 H(I)/ H™ (.S). We still need to check that the right-hand side is

finite, if i < 7(5). In this case, for every j < z, the node (., ) is an up-down node or § i1 =S Indeed, if (.S, j) were an arbitrage
node of type II, then, by Proposition 3.10, (L ;) fails, which results in 7#(S) < j < i; a contradiction. Similarly, we arrive at a
contradiction, if (.S,/) were an arbitrage node of type I and S;,, # S;, because, then, 7#(S) < j 4+ 1 <i. Thus, we may apply the
Aggregation Lemma 6.4 to conclude that, for every 0 < j < i, the series 2 0(H m (8)A;S), converges in R. Consequently

i-1 o

ZHV”‘H(S) ZVm+ZZ(H’"(S)AS)€R O
=0

m=0 Jj=0m=0

-1
Proof of Theorem 8.1. Fix some ¢ > 0 and choose a sequence (4;);( of positive reals such that an 6; <. Inview of Lemma 8.2,
we choose a real-valued supermartingale such that f; =0, f a.e. for every i > ote that =0, a.e. emma
h l-valued sup gale (f});»o such that f; =0,/ a.e. f yi20.N hf,,f ,f=/faebyl A.2.3
and assumption (L)-a.e., since f has maturity n,. Hence, we may apply Theorem 6.1 to (f;);( in order to construct a non-anticipative

sequence (H;);— . , np—1 such that
ng=1 ng=1 ng—1
= fo, D[+ X 8|+ X, HIOASS (5, +€) + ), H(SAS (23)
i=j i=j i=j

for every S € ¥\ N, where N is a null set.
For the converse inequality, assume that there are V' € Q with maturity j, H = (H;),— ¥

such that for every S €.\ N,

| non-anticipative, and a null set N r

nf—l
FSYSV(Sy....S) + Z H,(S)A,S.
=j

IfV(Sy,...,S;) =+, the inequality & S fS)SV(S)is trivial. Otherwise, we note that g = ool N, is a null function and that

np=1
fS) SV(Sy,....S)+ Z H(S)A;S +g(S) 24)
=j
holds for every S € 7. By Proposition A.2.1-e), there is a null set N such that T ;8(8) =0 for every S € .7\ N. Consequently,

for every S € ¥\ N, and £ > 0 there are sequences (V,,),,»; of non-negative reals and (H™),,> in #s ;, such that HV H" ¢ o@& i

for every n>j, 3,5, V,, <€ and g < 3, - liminf,_, HK:’,H”’ on /s ;. Let VO =V(S),...,S;) and define HO € Hs ) via
A A P 0 g0 A -1 A A N
H($) = H,(S) for every j<i<n;—1and § € # ;. Then, H;fn’fH )=V (Sps . SN+ L H(S8)A,S for every $ € .75 . In

view of (24), we obtain
VO g0 L ym g
f Snj.nf + Z llrll’Illolgf Hj,n on ,5’(5’]),
m>1

which implies Ejf(S) <V(Sy,....S;) +eforevery S € .7\ N . Passing with ¢ to zero, yields Ejf <Vae [

Remark 8.3. Example 1 in Section 4 illustrates how to construct non-negative, bounded functions f with finite maturity such that
I(f)>of on a trajectory set satisfying (L)-a.e. In light of the previous theorem, we may conclude that I cannot be applied for
computing superhedging prices in general, but only serves as an auxiliary operator to determine the null sets of the model.

The following theorem shows that the validity of (L g ;,) at all nodes (.S, j) implies equality for the two families of superhedging

operators (for non-negative, finite maturity functions f). Therefore, the possibility that o, f < T ;S does stem from cases when (L)
only holds a.e.
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Theorem 8.4. The following assertions are equivalent:

(i) For every f € P with finite maturity and every node (.S, j),

1,/(S)=5,1(S).
@) (Ls ) holds at every node (S, j).

Proof. (i) = (ii): since T j (0)(S) = 0 always holds, we immediately obtain

5,0)(S)=T1,(0)($)=0
at any node (.S, j). (ii) then follows from Proposition 3.3.
(ii) = (i): Step 1: We ﬁ_rst consider the initial node (S, 0). _

Noting that ¢ f < I f by Remark 2.11, it suffices to show that I f <o f, for which we may and do assume that ¢f < 0. By
Lemma 8.2, we find a supermartingale (f});», with values in [0, c0) such that f; =, f a.e. for every j > 0. We fix some arbitrary
€ > 0 and a sequence (§;);5( of positive reals such that Zfio 6; < €. Applying the supermartingale decomposition in Theorem 6.1 to
(fi)jz0, We obtain the estimate

ng—1l
JS) =1, ()< (Gf +€)+ Y, H(SAS, ae., 25)
i=0
for a sequence of non-anticipative functions (H;);_, . cp. (23). As (L g ;) holds at every node (S, j), condition (P) in Theorem 7.1

1 in such a way that

anp= 15
is trivially satisfied. Thus, in view of Lemma 7.3, we may choose the sequence (H;);— ., -

Jj—1 o0 j—1
(Gf+e)+ Y H(SAS2Tf+ D 6+ ) H(S)AS>0
i=0 i=0 i=0
forevery0<j<n,and S €.7.Let V=5 +¢ and define H via HJQ =H,forj<n;—1and HIQ =0 for j > n;. Then, Hg;)’HO S
for every j >0, and, in view of (25), we obtain
VORY .. . VO HO
f(S) < HO,”f = llrlz’IlloIgf HO,n
for every S € #\ N, where N is a null set. Dealing with the null set N, as in the second part of the proof of Theorem 8.1 (taking
j =0 there), we conclude that Tf <V +e=05f +2e. Letting € tend to zero, the proof of Step 1 is complete.

Step 2: We now consider a generic node (S, j).
Define the auxiliary trajectory set

T ={(S51)i0|S € Z 5.5}

Then, the o-operator and the Y-Operator for .7 at time O coincide with E;(-)(S‘) and 7;(«)(5‘). Moreover, each node (S, ) in 7
corresponds to the node ((S'O, ,S‘;_l, So, ...),j+j) in .. Hence, every node (S, j) in 7 satisfies (Ls j))- These observations reduce

the case of a generic node to the case of an initial node. []

It is important to connect the superhedging outer integral ¢ to the pricing paradigm based on martingale measures. While a
general study of such relations is beyond the scope of the present paper, the following example provides one such connection. The
example partially relies on the following general observation.

Remark 8.5. Suppose (L)-a.e., that the trajectory set . is countable, and that there is a probability measure P on 2 such that
P has the same null sets as I, i.e., P(A) =0 < I1 4 =0 for every A C.7. If f € Q has maturity n ;<o and is bounded, then, by
Theorem 8.1 and recalling Remark 2.14,

n /—1

of =inf{V eR| H(Hj)j=0,...,nf—1 7 -adapted such that V + Z H;(T;;, —T;) 2 f P-almost surely}.

j=0
Writing 2,(P) for the set of all probability measures Q equivalent to P such that (T, ... T},) is a martingale with respect to Q, i.e.,
(4) holds for j =0,...,n — 1, the classical superhedging duality [12, Corollary 7.18] yields,

of = sup /fdQ, (26)

Qe2, ()

provided the set o@nf (P) is non-empty. (Recall here, that two probability measures P and Q are said to be equivalent, if they have
the same null sets.)
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Example 6. We consider a variant of Example 4, replacing the ‘sure’ arbitrage at the type II arbitrage node (S, 1) by a ‘sure’ arbitrage
opportunity by trading up to unbounded time. To this end, we replace the up-branch of the model by .+ = {§*" : n € N}, where
now

1, i=0
SH=92, 1<i<n+1,
4, izn+1

and consider the trajectory set . =.#* U.#~, with the lower branch .7~ defined as in Example 4. This modified trajectory set
fails to be trajectorial complete, since S* = (1,2,2,2,...) € ., but satisfies (L)-a.e. by Corollary 3.13. Its trajectorial completion
S = .7 U{S*) satisfies (L(s.j)) at every node by Corollary 3.14. Note that all potential losses at the node (§*+1,1) by trading between
time 0 and 1 can be recuperated in the model . by buying the stock (at all times i > 1) and waiting until the stock price eventually
increases to 4. All conclusions of Example 4 are, therefore, easily seen to remain valid for this variant of the trajectory set. In particular,
. has no martingale measure. This reasoning fails in the completed model ., because the stock price may remain constant after
time 1. We will next explain, how the procedure of trajectorial completion changes pricing via the superhedging outer integral in

() and 5 for the superhedging

this example. To distinguish between the model . and its trajectorial completion ., we write &
outer integrals with respect to the trajectory sets . and ., respectively.

We first consider the completed model .. Analogously to the proof of assertion d) of Example 1 in Appendix A.4, it is not hard to
verify that a singleton {.S}, S €., is an I-null set, if and only if S € .7* (and, thus, passes through the up-branch of an arbitrage

node of type I). Hence, every f € Q is I-a.e. equal to f(V = f 1;\ +» which has maturity 1, because all trajectories outside St

remain constant after time 1. We now fix a probability measure P on 2% such that P(A) =0, if and only if A C.*. Assuming that
f is bounded, we may combine (26) with Proposition A.2.1-b) to conclude that

=57 5" = sup / rVdQ=sup / 1dQ. @7)
Q Q
where Q runs over the set of all probability measures on 27 satisfying, for every n € N,

QSN =0, QUUS™}) >0, Q({S*}) >0, and Q({S*}) - )’ 0.

QUS™) _

n=1 n?
Here, the last identity rephrases the property that (7}, T}) is a martingale with respect to Q. The supremum on the right-hand side
of (27) does not change, if the positivity conditions Q({.S*}) > 0 and Q({S™"}) > 0O for every n € N are skipped (e.g., by applying
Fatou’s lemma). Then, noting that all martingale measures assign zero probability to .+ and recalling that the other trajectories
remain constant after time 1, we observe that the classical probabilistic martingale property of (T}),» is equivalent to that of (Ty, T}).

Hence,
a7 f=sup / /dQ,

where 2 denotes the set of all martingale measures on .#. Thus, pricing via the superhedging outer integral is in line ‘with the
model-free superhedging duality of [4,5] in this example. For later use, we note that, by the previous considerations, Q € 2, if and
only if

N oS
Q(#*) =0 and Q({S })—; = =0 (28)

Coming back to the original trajectory set . =.#* U.#~, we recall that there is no martingale measure in this model. We first
note that

7 f =limsup £(S™"), f€OQ. (29)

n—oo

This identity has been shown in [2] for the trajectory set in Example 4 and their proof can easily been adapted to the present trajectory
set (the only difference being, how exactly the arbitrage in the respective up-branch of the two trajectory sets is exploited). The pricing
rule (29) can be related to the martingale measures of the completed model . by observing that

E(y)f =lim sup /fdQ, f € O bounded from below, (30)
£~ —
Qe2,

where EE denotes the set of martingale measures Q for ' such that Q(? \ #) < €. To verify (30), we write f* =limsup,_, ., f(S™")
and first show that f* <liminf, o supy. [ fdQ. For a fixed v > 2, define a probability measure Q) on 2 via
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2/ +3), S=5*%

1/02+3), S=85"1

V(A +3), S=57

0, Se.Z\{s*,81, 57}

QV({shH =

In view of (28), Q™ e EE for e > 2/(\/2 +3) and
V2 1 2
vZ+3 V243 V243

Passing with v to infinity along a subsequence (v, ),y such that f(S™") converges to f*, we obtain,

+£(S™h

+ (S5

/ £dQY = f(S™)

f*= klim fdQ(Vk)slimi(r)lf sup [ fdQ.
—00 E£E— —_—

Qe2,
In order to finish the proof of (30), it remains to show that f* > limsup,_,, SUPoc [ fdQ. To this end, we may assume f* < co.
Fixing some Q € Eg and N, € N, we decompose

No-1

/fdQ—f*= Z (fSE™M = HQUS™H + Z (fES™ = HAUS™" N+ (F(S™) = FHAUS™ D
n>N n=1
No-1
Ssup (fS™=fH+  sup (ST -7 Z QUS™"PD+If(S™) = FH1QUS™ .
n>No n=1,....No—1 fou]

No—1
n=1

Noting that Q({S*}) = Q(y\ ) < € and, then, by (28), ) Q{S™"}) <e(Ny— 1)2, we obtain
limsup sup /fdQ — [P < sup (F (ST — f7).
n>N

-0 Qegé

Taking the infimum over N, € N, we finally get limsup, SUDoc [ fdQ - f*<0.

9. Discussion

We introduce a framework, motivated by financial considerations, where the fundamental elements are future price scenarios
and trading opportunities. This setting naturally fits within the Leinert-Konig integration framework, which generalizes Lebesgue
integration beyond lattice structures. A key analytic tool in constructing the conditional outer integral operators o ; (interpreted as
superhedging operators in finance) is property (L), which we show is closely tied to no-arbitrage conditions.

Building on this foundation, it is possible to extend classical probabilistic results concerning supermartingales, the latter emerge
naturally through ;. In particular, we establish Doob’s supermartingale decomposition and pointwise convergence theorems, using
entirely new proof techniques that rely solely on our framework, without invoking classical results or constructions. We also provide
extensive discussions and examples highlighting the novelty of our results and their dependence on property (L).

Our approach reveals previously unnoticed aspects of null sets and connects to the game-theoretic probability framework of
Shafer and Vovk [23]. We clarify how our technical hypotheses differ from theirs, leading to distinct assumptions, results, and
proof techniques. This establishes a link between the Leinert-Konig [16,14] and Shafer-Vovk [23] approaches which also bridges our
framework with imprecise probability theory given the known relations between the latter and Shafer-Vovk theory.
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Appendix A
A.1. Partitions, arbitrage nodes, and null sets

In view of Proposition 3.3, the following Lemma shows that property (L s ) fails at type II arbitrage nodes (S, ).

Lemma A.1.1. Given a trajectory set . consider a node (.S, j), j >0, then: If (S, j) is a type II arbitrage node, then

Ejf(S) =—oo forany f €Q.
Proof. We may consider the case when §,,, > S; for all § € % ;). Take then, for all m > 1: H}T"(S’) =1and H,,"’(S‘) =0foralli>j,
V™ =0. Also, H’ =0 for all i > j; then, for any V? € R:

f(S‘)§V0+oo=VO+ZH;”(S‘) A;S  holds forany S€.% ) and f€Q.

m>1

Thus, the claim follows. []

In Lemma A.1.3 below, it will be proved that trajectories passing through arbitrage nodes of type II form a null set.
Define for j > 0,

N;E{SEY : (S, j) is an arbitrage node, and AjSaéO}, NkEUN;’ for k>0, and N(S,)H)=N;nF s ) for j >0,
>k

and recall that the set N (.S, ) has already been introduced in (6). Notice that
No=A# =Dy D ={Ses:3 j>0 st(S,)) isan arbitrage node and S, # S} (31)

where the sets 4, _#"ID) were introduced in the proof of Theorem 6.1.

It will be shown that .4 is a null set. Whenever S & ./ it follows that .S ¢ Nj‘.’ for any j > 0, therefore such node (.S, j) is: flat, or
up-down, or type I arbitrage node with S| =.S;. On the other hand if (.S, ) is a type II arbitrage node then %5 ;) C N]‘.’. Moreover,
it can be that .S € NJT’, but (S, k) is arbitrage free for some k > j.

Definition A.1.2. Since for any j > 0, .# is a disjoint union of LS. let A j be an index set, such that for A€ A j there exists S* € .7
such that

AN = s & 5/’(S4’j), S = U ,ZSAJ), and if (S’l,j) is an arbitrage node then |AjS’l| > 0.
JEN,

For ' C A, define H" = (H[);5o, H : # > R by

HI.FEO ifi#j; erzlyr, where .97 = U<ZS’1,/')‘
IS

H' is non-anticipative: Let S‘k =8, 0<k<i. Ifi#j then H,.F(S’) = HiF(S) =0.Fori=j, Se Sshj) iff § e S shj) SO
HJ.F(S‘) = HJ.F(S).

Lemma A.1.3. Consider j >0 and 0 < k < j, then N]‘.’, thus also N |, are conditionally null sets at any (.S, k).
At
3 o+ _ o . + = . QA o+ . _0H o+
Proof. Define Nj ={Se Nj 1 A;8>0} and Aj ={1€A; :S5"€ Nj }, and consider for m > 1, f,, _HkJ+1 S Op(S,k) for any
S € .. Then

1o+ < Z fm» Which implies that ||1N/o,Jr I, =0.

J m>1

In a similar way it is shown that N;’_ ={Se N;’ 1 A;S <0} is a conditionally null set at any (.5, k), consequently N;’ = N;,+ U N;’_
is also conditionally null. []

A.2. Basic properties of superhedging functional o;

We next provide some basic properties of the conditional outer integral. Related results can be found for the non-conditional outer
integral in [10] and for a variant of the conditional outer integral (without the liminf) in [2].
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Proposition A.2.1 (Basic Properties). The following properties hold for f,g € O

a) Ejf(S)sf(S) if f is constant on 'ZSJ)' (Implies EJ.OsO and gjf >f.)

b) Ejf(S)SEJE(S), i{f <gae on g -

¢) o;[f+gl<o;f+0;8

d) Let f €Q, g € P, and g is constant on . ; then o ;(g f)(S) < go,; f(S).

e) Let f € P and k>0 then 0 57(7,c ) <If. Therefore if f is a null function we get Tk f is a null function.

Proof. The proofs are immediate but we do indicate the arguments for item d).
Let ¢ > 0 be a constant such that g($)=c for all $ € S,y He=0, Ej(gf)(S) = Ej(O)(S) < gEjO(S) (already covered by item

~ L. ymgm, & ~ . VO,HO ym gm +
a). So assume ¢ > 0. Let g f(S) < mgohyllriglf Hj!n (5), S € As.jy with 1'[/.,"0 € (s j) and, for m > 1, Hj’n S o@(&j) for all n > 0.

For each S € Ss.,j) and m >0 define

u™(S) V" and G"(S) [ fori>j
=— i = > L2].
g(S) ! g(S)
It follows that £(S) < Y liminf H;,J;"’G"' S, Se (5.j)» With 1'[;/:(;60 € &s,j), and for m> 1, 1'[;/""‘,6'" c é”& 5 for all n > 0. Thus
mZO n—oo o K o 2, B 5
5 (S) < o;[gf1(S)
5. <2
/ g(S)

Notice that one actually obtains 5 ,;(g/)(S) = go,; f(S) if g=c¢ >0 on S ;.

We also note that the proof of item e) is analogous to the one of Proposition 5.5. []
Corollary A.2.2. Suppose f,g§ € Q. If f <gae,theno;f <c;gae.

Proof. Note that, for every S €.7,

5, /(S) <5,max{£,g)(S) =5;(g +(f — ) )(S) <T;8(S) +1,(f = 8)4(S),
making use of Remark 2.11. As (f — g), is a null function, we conclude by Proposition A.2.1 that T (f—gyisa null function. Hence,

c,f<o;gae []

Lemma A.2.3. Let f € Q, (S, ) a fixed node and k > j. If f is constant on LS. then o, f(S) < f(S) < 0, f(S). Moreover once (Ls )
holds then

1. If f is constant on .5 ;, then o, f(S) = f(S) =0 f(S).
2. Forageneral f € Q, o, f is constant on .7 ;); hence: ,[c; f1(S) =0, f(S) =0, [0; f1(S) and Ek[gjf](S) = gjf(S) = gk[gjf](S).

Proof. If f is constant on %[ ;), it is also constant on Z(s x) € #(s j), then f € &g ), so by Definition 2.10, 5 f(S) < f(.5).
If, furthermore, also (Lis k) holds, we have o, f(S)=f(S)= o, f(S) by applying item (4) of Proposition 3.3 to H;/j’.H with
14 =f15p(sl_) and H=0. [

Corollary A.2.4. Let f, g € Q and consider a fixed S € .. If for j > 0 property (Les jy) holds and Ejf(S)—gjf(S) =0= Ejg(S)—gjg(S),
then all the involved quantities are finite and

(@ o0;(f+8)8)=0,f(5)+0;8(S)=0,f(S)+0,8(S)=0,(f +8)S).
(b) o;(cf)S)=co;f(S)=co, f(S)=0,(cf)S) VceR.

Proof. The finiteness claims follow from our conventions in the first paragraph of Section 2.2. We then see that the hypotheses imply
that o; f(S) = gjf(S) and 5;g(S) = gjg(S).
(a) holds from

5,(S)+5,8(S)=0,f(S)+0,8(S) < g, f +81(S) <T,Lf +gI(S) <5, £(S) +5,8(S),

where we have relied on Proposition 3.3. For (b), if ¢ =0 or ¢ = —1 the result is clear. For ¢ > 0 it follows from the proof of item d)
of Proposition A.2.1, from where, if ¢ <0

0,(cf)S)=0,;(=c(=fMS) =—co; (=S =cg, f(S). O
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A.3. Proofs for Section 3

Proof of Proposition 3.3. The proof follows the lines of [2], where the analogous result is shown in a related setting (without the
limit inferior in time in the definition of the superhedging operators).

From item 1. and item c) of Proposition A.2.1 it follows item 2., since 0 <& f(S) + 0 ;(—f)(S).

Assumed item 2., it follows that 0 < gjO(S) <o 50(8) <0, first and last inequalities from item a) of Proposition A.2.1, so item 1.

holds. From here onwards we let f = n’4.
Jong

[S é”&j) for every n > j and m > 1, such that f =

and f,, = h,, for m > 1) by Definition 2.10, 0 = Ej(O) <

Item 3. follows from item 1. as follows. Let A, = liminf I'I;/:l ’Hm, n/"H"
n—oo »

j.n
n’f < > M, on .S ;). Then 0 < -’ 4 Y h,, thus (taking f; = -n"-H
Snr m>1 J Snr m>1 f

Jing?
-V+ Y V™, which leads to V' < > V™as r(;.quired_
m>1 m21

s VO,HO .. ym gm ym gm X
Assumed item 3., let f; = Hj’ . € &, and f, = hglorolf Hj,n , Hj’n e éz’&j) V n>jand m> 1, such that f < mz>:0 S

A,
Then f— fo < Y f, with f = fy € Eis,jy SO V(S) =V < > VM oand V(S) < Ejf(S). Since by Definition 2.10, Ejf(S) <V(S),
m>1 m>0
item 4. holds, having in mind that gjf(S) =—0,[-f1S) =V (S).
Finally, it is clear that item 1. follows from item 4. []

P~roof of Pr(zposition 3.10. If (S, ~j) is an arbitrage node of type II, then, for every Se SS.)) (§8,)) is an arbitrage node and S i1 E
Sj. Hence, S € N(S, ) for every S € CY(SJ), i.e., the node (.S, /) is bad.

If (S,j) is a bad node, then, by Lemma A.1.3, Hs.p=N(S.j)isa conditional null set at (S, j). Therefore, by Remark 2.11,
o, 1($)< ;1 , Svj))(S) = 0. Thus, property 4. in Proposition 3.3 fails, resulting in the failure of (Ls ;)).

fses bad’ then, (S, ) is bad for some j >0, and, thus, there is a k > j such that (.S, k) is an arbitrage node and .S}, # .S.
Therefore, .4 bad C ./, where the set .4, introduced in (31), is a null set by Lemma A.1.3. []

Proof of Theorem 3.12. 1. The first implication is obvious, while the second one is an immediate consequence of the fact that any
good node is not an arbitrage node of type II, see Proposition 3.10.
2. Assuming (H, ;) we verify (H,,’) as follows. Consider any up-down node (S, j). If (S, j + 1) is not a type II arbitrage node for every
S € A5 then we find S', 5% € .7 ;) such that S}H -§;>0and S/?+1 -8, <0. We may choose S¢! = ! and S¢? = 52 for every
€ > 0. Otherwise, (H; ) directly applies.
3. Since arbitrage nodes of type II are always bad (Proposition 3.10), we only need to show that all other nodes are good. To this
end, we fix a node (.5, j) which is not arbitrage of type II and construct a trajectory S € Hs.py \N(S,j). Weset S"=.5 forn < j and
inductively construct S” for n > j in the following way, which guarantees that (S”, ) is not a type II arbitrage node: if (S”, n) is flat
or an arbitrage node of type I, we choose S"*! € S (snm sSuch that S;’Ill = S and note that (S "+1 n+ 1) is not an arbitrage node of
type Il by (H,,). If (§”,n) is an up-down node, then by (H,,) again, we find some S"*! € S (sn.n such that (S"*!,n+ 1) is not an
arbitrage node of type II. Since (S”,n) is not an arbitrage node of type II for every n > j, condition (TC;;) implies lim,_, , S" €.7.
By construction, § =1im,_, , S" = (5});59 € Hs.j, \ N(S..)).
4. In view of Proposition 3.10, we only need to show that (L g ;)) holds at every good node. Our proof extends a related argument in
[10] beyond models that have up-down nodes only.
0 0 m prm m pm
Fix a good node (S, j). Let f = H;fn’fﬂ € &5 j) and f, =liminf,_, HKn A" with H/‘in = é"&j) for all n > j and m > 1 such that
<Y fnonFs)
m>1

We need to show that

o<y vm=v,
m21

(and, hence, can and will assume that V' < o). Recall that

N(S.j)={S € #s | (S.k) is an arbitrage node and S, # S for some k > j}.

IfSe S o \ N(S, ), then, for every k > j, (S8, k) is an up-down node or Sk+1 = S’k. Hence, by the Aggregation Lemma 6.4, for
every § € .75 \ N(S,j)and n>j

n—1
> n;f:’””’(s*) =V + Y H(SAS,
m>1 i=j

for the non-anticipative sequence
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. © gm$), if convergent in R, N
H,-(S)={Zm:l i ( ) verg iZj, Seey'(s,j)-

R otherwise,

Then, by Fatou’s lemma, for every S € LS.

n—1
J <liminf D S < v+ lim inf Y H($)AS + 0ol s (S),
m>1 i=j

which we may rearrange into
n—1
0 . ~ & A A
< . . .
VO <V +liminf ; H/($)AS + colys,,(S)
where H, = H; — H? for i <n and H, = H, otherwise.
Thus, it is enough to show the following: for every § > 0 there is an S € A5,y \ N(S,j) such that

n—1
liminf Z H(SA,S <. (32)
n—oo [:/
To this end, we construct a sequence (S") in .7 as follows: S” =S for n < j and, inductively for n > j in the following way, which
guarantees that (5", n) is a good node for every n > j. Assume .S” has already been constructed for some n > j and (5", n) is a good
node.

If (8", n) is a flat node or an arbitrage node of type I, then choose S"*! € S (snn such that S;’Ll = S,. We argue that (S™n+1)
is good in the type I case (the flat case being similar and easier). Suppose to the contrary that (S”*!,n + 1) is bad. Then, for every
Se Fismtt pi1y € Fsm0) there is an i > n + 1 such that (S,i) is an arbitrage node and S',-H #+ S’[ — hence, § € N(S",n). Moreover,
any Se Fismn) \CY’(S,,H’,,H) belongs to N(S",n) because (S",n) is a type I arbitrage node. Thus, .*(sn ,, = N(S,n) — a contradiction.

If (8", n) is an up-down node, then, by (Hp,,4), one can choose a sufficiently small £ > 0 and sl e LS m) such that

H,(S")(SIH = S0 <|H,(S")|e < 627D (33)

and (S"*!,n+ 1) is a good node.

Note that (S",n) cannot be an arbitrage node of type II, because it is good by the inductive hypothesis. Hence, the construction
of S"*! is finished.

By (TCpaq)» S= lim,_ 8" = (Si’),-eNO € .7. Then, by construction, Se L8.)) and either (S, n) = (8", n) is an up-down node (and
then (33) holds) or S’,,H =gl = S = S',,, whenever n > j. Hence, by construction, S ¢& N(S,j) and

n+1
n—1 0
liminf Y H,($)A,$<6 Y 27+ <5,
Nn—co demd b
=j i=j

which establishes (32). Consequently, (L( s. j)) holds. [
A.4. Proofs for Section 4

Proof of Lemma 4.1. Notice that

weQeVneNIS" e s : (so,wl,...,a)n)z(S",...,S;’)

S3ISMenC St (VnEN: 8P =S i=0.m A lim S" = (5,010, )] S (0, 01,05, €. O

Proof of Lemma 4.3. Case 1: The node associated to s = (s, ..., s j)ESisan up-down-node:

then, there are y;,y, € &, such that y; <s; <y,. If || = +oo, then either A(y, —s;) = —0c0 or A(y, — 5;) = —co, which violates the
condition h(y—s;) > —oo for every y € #,. If |h| < +oo, then, the condition A(y—s;) > —oo for every y € %] is automatically satisfied.
Hence,

h € (=00, +00) & h(y—s;)> —oo for every y € 7.
Case 2: The node associated to s = (s, ... ,$;)ESis flat:
then %, = {sj} and, hence, h(y — s;)= h-0=0 for every y€ %, and h € [—c0, +0].
Case 3: The node associated to s = (s, ..., s;) €S is an arbitrage node of type I:

we assume that the arbitrage node is of up-type, i.e., s; € %; and y > s, for every y € % \ {s5;}. Take h* = +c0. Then, for every y € &,
and h € [—o0, +00]
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Hence,
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Go={fs : % —[~0,00] :VyEH 1 h*-(y—s5;)—f,(3) 20} ={f, : % — [-00,00] : f,(s;) <0}.
If the arbitrage node is of down type, the same argument works with 4* = —cc.
Case 4: The node associated to s = (s, ..., s;) €S is an arbitrage node of type II:

again, we only spell out the proof for an up-type arbitrage node, i.e., y > s; for every y € #;. Taking h* = +co again, we obtain
h*(y — 5;) = +oo for every y € %, which completes the proof. []

Proof of Items a)-d) in Example 1. Write .+ = {S™" : n € N} and note that all trajectories in .+ pass through an arbitrage node
of type II at time j = 1.

a) Fix f : .7 — (—c0,+00). Then, one can easily check that / = anff H for VI = £(S9), nf =3, Hy=(f(5°) = £(S~)/2,

2(£SOA+ D= FSTOE = F(SE), S =5h
H(S)=10, S =59 ,
£SO = £(57), Se(s0,5, 5
and H,(S) =2/ (S™9) = f(S77) = f(S™ )1 5-+(S). Thus, 5(f) = V/ = f(S°) by Proposition 3.3.

b) Suppose Q' is a martingale measure (see Remark 2.14). As in Example 4, we conclude that Q'(.#*) = 0, because all trajectories
in .#* pass through an arbitrage node of type II. This in turn implies 7} < T;, Q’-a.s. and the classical martingale property then
results into T} = T;, Q’-a.s. This shows that Q' must be the Dirac mass on S0, Conversely, if Q' is the Dirac mass on S°, then T,=T,
Q’-almost surely for every j > 0, which implies that (T});» is a classical martingale under Q.

c) Let f :.¥ - (—0,+). We define the non-anticipative sequence (g;.‘) >0 Via

g () =g/ ($)=max{f(S™°).f(S")), Se€.7

+00, Sest . +o0, SesSTu{S"} .
()= . g(S)= .23
%2 {g;m G (S) = [(SNS, -85, Sgst O {g;<S), se(st,s-,s-0p 7

Noting that (.S, 1) is an arbitrage node of type II for .S € .* and (S*7,2) is an arbitrage node of type II (and that all other nodes
are either up-down or flat), one can easily check by Lemma 4.3 that (g;‘) is a ¢¥-supermartingale sequence. Moreover, (g;.‘) obviously

is bounded from below (uniformly in j and S). Since gj’.‘(S) > f(S) for every j >3 and S € .7, we conclude that E( f) < g(’; =
max{f(S~9), £(5%)].

For the converse inequality suppose that (g;);»( is any ¢-supermartingale sequence, which is bounded from below and satisfies
liminf;_,,, g; > f on .. Since the nodes (S 0,j) are flat for every j > 1 and the nodes (S0, j) are flat for every j > 2, the sequences
(g j(SO)) i>1 and (gj(S‘~0)) j>2 are nonincreasing by Lemma 4.3 and the ¢¥-supermartingale property. Therefore,

81892 (S, &(S™0) 2 (57 34
The ¢-supermartingale property at the node (S, 1) implies (by Lemma 4.3) that

g™ >inflacR: IheRVS e (S™7,8570, 8571} g(S) —a <h(S, —2)}.
Since S2_’0 =2, we observe that gl(S_’O) > gz(S_’O), which, in view of (34), yields

5182 (8%, &™) 2 (S50, (35)
Now, the ¢-supermartingale property at the initial node (5, 0) implies (by Lemma 4.3, again) that

g>infla€R: IRERVSE.Y : g,(S)—a<h(S; —Sp)}.

Note that for every @ € R and 4 <0, inf oy (a + h(SlJ”" - S(:' ")) = —c0. Hence, the requirement that g, is bounded from below leads
to

go2inflaeR: Ih>0VS e g(S)—a<h(S— Sy}
Then, by (35),

go2inflaeR: IA>0VS e {S°,570): £(S)—a<h(S| -y}
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Noting that A(S; — Sy) <0 for every >0 and S € {S°, 570}, we conclude that g, > max{ f(S™°), (S°)}. Since g was arbitrary,
this in turn implies E(f) > max{ f(S™°), £(S0)}.

d) Fix some f : . — [0, o). We first prove Y(f) > max{ %f(S‘*‘), £(S™0), £(59)} and, hence, assume that Yf < 00. Suppose we are
given portfolios (V™, H™),,» such that H(I;:’H " s non-negative for every m > 1 and n >0, vy = an":l V,, < oo (this is possible as

Tf<o)and f < Yo liminf,_ ,TI""H#" on .. Applying the aggregation lemma (Lemma 6.4) to the initial node (S,0) and to the
node (S~9, 1), we find real numbers hgy, h| € R such that

Vo = (S, vy —2hg = F(S™0), vy =2k — hy = f(S™7), vy = 2hg + hy 2 0.

Here, the first three inequalities arise from superhedging on the trajectories S, S~ and S~ (noting that these trajectories become
constant after times j =0, j =1, and j = 2, respectively). The last inequality is implied by the nonnegativity of the portfolio wealth
at time j =2 on the trajectory S™*. Adding the last two inequalities, we get vy — 2k, > % f(S™7). Now the nonnegativity of the
portfolio wealth at time j = 1 on the trajectories S*", n € N, implies i > 0. Hence, v, > max{ %f(S"‘), £(5=0), £(5%)}. By passing
to the infimum in v, > 0, we obtain I(f) > max{ % F(S™7), (ST, £(SO).

For the converse inequality, consider the portfolio (V, H) defined via V' = max{ % F(S™), £(S™0), £(59)} and

0, i#1lorS¢&.7 .,
ms= % o TS s
—5f(877), j=land S € S50y
Then, one easily observes that H(I; ;H (8) >0 for every n >0 and S € . and that liminf,_, H(I)/,;IH = f1{50 50 g--} on 7. Noting
that all trajectories .S € .7 \ {§°,5~0, 57~} pass through an arbitrage node of type II and, thus, .& \ {$°, 50, 5=} is an I-null
set by Lemma A.1.3, we conclude from Proposition 2.9-1. that

I() ST 50 520 5--) + T 1o (50,520 5--1) = I(f 150 50 s-—}) <V =max{ %f(S"‘), F8™0, 89 O

Proof of Proposition 4.4. We fix some time index j > 0 and some trajectory .S € .. We may and do assume without loss of generality
that g ;(S) < +o0, since otherwise the inequality Ej gi+1(8)<g;(S)is obviously satisfied. We distinguish the following cases:

(S.J) is an arbitrage node of type II: then, 5,g;,,(S) = —oco by Lemma A.1.1; and the inequality ¢,g;,,(S) < g;(.5) trivially holds.
(S, ) is an arbitrage node of type I or flat: we consider the case that S j+1 2 S for every Se s, and fix a trajectory Se LS.
such that .S +1 =5;. Then, applying the same portfolio as in the proof of Lemma A.1.1, we obtain

(o]

.. ym gm
liminf IT; °
n—oo Jon

m=0

S = Vo4 o lgm#sj, for every Se y(s.j)’

which is bigger than or equal to gj+1(5‘) for every S € Ss.j)» if and only if Vo> gj+1(5‘). Passing to the infimum in V" € R, we
obtain that 5;g;,(S) < g4 (S) (which, in fact, can easily be seen to be an equality). Moreover, by the ¢-supermartingale property
and Lemma 4.3, we observe that

gj+1(5')=inf{ae R: gj+1(5')—a§0} <g;(S).
Combining both inequalities, we arrive at & 18j+1(8) < g,(9).

(S, /) is an up-down node: if g;(.5) € R, then we conclude by the ¢-supermartingale property and Lemma 4.3: for every £ > 0 there
is an 4 € R such that

gj+1(‘§)s(gj(s)+£)+h(§j+l _Sj)z(gj(5)+6)+h(§j+l _Sj)

for every S € L) Defining yo =g;(S)+¢e V"=0 form>1, H}Q(S) =h and Hi’" =0for (m>1 and i > j) and for (m =0 and
i > j), we observe that Ejng(S) <g;(S). If g;(S) = —oo, we may replace gi(S)+e by —e~! in the above argument and obtain
0,841(S)=—0c0=g;(5). O
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