Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-46019
Titel: | Probing Rate-Dependent Liquid Shear Viscosity Using Combined Machine Learning and Nonequilibrium Molecular Dynamics |
VerfasserIn: | Gao, Hongyu Zhu, Minghe Ma, Jia Honecker, Marc Li, Kexian |
Sprache: | Englisch |
Titel: | Journal of Chemical Theory and Computation |
Bandnummer: | 21 |
Heft: | 12 |
Seiten: | 5838-5844 |
Verlag/Plattform: | ACS |
Erscheinungsjahr: | 2025 |
Freie Schlagwörter: | Liquids Machine learning Molecular dynamics Molecules Viscosity |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Accurately measuring liquid dynamic viscosity across a wide range of shear rates, from the linear-response to shear-thinning regimes, presents significant experimental challenges due to limitations in resolving high shear rates and controlling thermal effects. In this study, we integrated machine learning (ML) with nonequilibrium molecular dynamics (NEMD) simulations to address these challenges. A supervised artificial neural network (ANN) model was developed to predict viscosity as a function of shear rate, normal pressure, and temperature, effectively capturing the complex interplay among these variables. The model reveals distinct trends in shear viscosity, characterized by the shear-thinning exponent, and highlights nonmonotonic behavior in the radius of gyration components, reflecting molecular morphological changes driven by rate-dependent volume expansion. Notably, temperature effects diminish at higher shear rates, where molecular alignment and spacing dominate the response to shear. By implementing the ‘fix npt/sllod’ command in LAMMPS, we achieve precise constant-pressure control in NEMD simulations, ensuring accurate representation of system dynamics. This study demonstrates the potential of ML-enhanced NEMD for efficient and accurate viscosity prediction, providing a robust framework for future research in complex fluid dynamics and material design. |
DOI der Erstveröffentlichung: | 10.1021/acs.jctc.5c00293 |
URL der Erstveröffentlichung: | https://pubs.acs.org/doi/10.1021/acs.jctc.5c00293 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-460192 hdl:20.500.11880/40388 http://dx.doi.org/10.22028/D291-46019 |
ISSN: | 1549-9626 1549-9618 |
Datum des Eintrags: | 13-Aug-2025 |
Bezeichnung des in Beziehung stehenden Objekts: | Supporting Information |
In Beziehung stehendes Objekt: | https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00293/suppl_file/ct5c00293_si_001.zip https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00293/suppl_file/ct5c00293_si_002.pdf |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Materialwissenschaft und Werkstofftechnik |
Professur: | NT - Prof. Dr. Martin Müser |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
gao-et-al-2025-probing-rate-dependent-liquid-shear-viscosity-using-combined-machine-learning-and-nonequilibrium.pdf | 1,64 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons