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ABSTRACT: Accurately measuring liquid dynamic viscosity
across a wide range of shear rates, from the linear-response to
shear-thinning regimes, presents significant experimental chal-
lenges due to limitations in resolving high shear rates and
controlling thermal effects. In this study, we integrated machine
learning (ML) with nonequilibrium molecular dynamics (NEMD)
simulations to address these challenges. A supervised artificial
neural network (ANN) model was developed to predict viscosity
as a function of shear rate, normal pressure, and temperature,
effectively capturing the complex interplay among these variables.
The model reveals distinct trends in shear viscosity, characterized
by the shear-thinning exponent, and highlights nonmonotonic
behavior in the radius of gyration components, reflecting molecular
morphological changes driven by rate-dependent volume expansion. Notably, temperature effects diminish at higher shear rates,
where molecular alignment and spacing dominate the response to shear. By implementing the ‘fix npt/sllod’ command in LAMMPS,
we achieve precise constant-pressure control in NEMD simulations, ensuring accurate representation of system dynamics. This study
demonstrates the potential of ML-enhanced NEMD for efficient and accurate viscosity prediction, providing a robust framework for
future research in complex fluid dynamics and material design.

■ INTRODUCTION
Dynamic viscosity (η), defined as the ratio of shear stress (τ)
to shear rate (γ̇): η = τ/γ̇, quantifies a fluid’s resistance to
deformation under shear. In the linear-response regime at low
γ̇, shear stress is proportional to the shear rate (τ ∝γ̇), resulting
in constant viscosity known as Newtonian viscosity (η0).
Beyond a critical shear rate (γ̇0), many liquids, including
colloidal suspensions and polymer melts, exhibit shear-thinning
behavior,1 where viscosity decreases with increasing γ̇. The
functional form of this transition�whether logarithmic (as
described by the Eyring theory2) or following a power-law (as
in the Carreau model3)�and its sensitivity to measurement
protocols have been long debated.4−7 These models offer
valuable frameworks but also underscore the importance of the
experimental context when interpreting flow behavior. Shear-
thinning occurs when the deformation time scale (1/γ̇)
approaches or surpasses the fluid’s structural relaxation times.
In polymers, this often reflects chain alignment and
disentanglement, while in colloidal systems it arises from
flow-induced microstructure changes.8−10 This leads to a
reduced resistance to flow and a corresponding drop in
viscosity.
Probing the viscosity across a wide range of γ̇ presents

significant challenges in both experiments and simulations.
Experimental techniques, such as tribometry and viscometry,4

struggle at high γ̇ due to thermal heating effects,11 which cause

volume expansion12 and potential underestimation of η.
Nonequilibrium molecular dynamics (NEMD) simulations10

offer precise control over parameters like temperature (T),
normal pressure (Pzz), and shear rate, providing an alternative
for studying viscosity. However, NEMD simulations face
limitations, including long runtimes required to achieve
sufficient signal-to-noise ratios at low γ̇, thereby making it
difficult to accurately predict Newtonian viscosity for highly
viscous systems. Additionally, the accuracy of NEMD
predictions depends on factors such as the choice of molecular
model (explicit or coarse-grained), force field reliability,13 and
thermostatting methods.14 Reconciling experimental and
simulation results across overlapping γ̇ regimes remains
challenging, particularly for liquids with complex molecular
structures or under extreme conditions.
Data-driven machine learning (ML) approaches have

emerged as powerful tools for predicting material properties
and accelerating material design.15−17 For instance, physics-
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informed quantitative structure−property relationship (QSPR)
models,18,19 utilizing descriptor-based or graph-based neural
networks, have successfully predicted kinematic viscosity,
reducing experimental costs. When integrated with molecular
dynamics (MD) simulations,20,21 these models achieved
enhanced predictive accuracy. However, ML models for
dynamic viscosity remain scarce20,22,23 due to limited data
sets encompassing diverse liquid types and conditions, as well
as challenges in extrapolating beyond training data. Exper-
imental acquisition of domain-specific knowledge is often
resource-intensive, highlighting the importance of computa-
tional simulations with physical interpretability. Dynamic
viscosity, η(γ̇), under varying T and Pzz conditions often
fol lows time−temperature−pressure superposit ion
(TTPS),24,25 which enables data normalization onto a master
curve.1,5 However, implementing TTPS requires prior knowl-
edge of η0 and γ̇0, which are themselves often targets of
prediction, adding complexity to the process.
In this work, we developed an ML model to predict the rate-

dependent dynamic viscosity of n-hexadecane, a representative
liquid, by integrating all-atom NEMD simulations. Our model,
based on an artificial neural network (ANN), is trained on
NEMD simulation data and validated for bulk-phase liquids,
distinguishing it from studies of confined fluids in nanoscale
slits,26,27 where oscillatory density profiles typically arise. By
emphasizing the importance of constant-pressure control, we
systematically explored the dependence of η on T and Pzz in
the shear-thinning regime, capturing the interplay between
molecular dynamics and macroscopic flow behavior. Despite
challenges posed by limited training data, our approach
demonstrates robust predictive accuracy and computational
efficiency, providing a scalable framework for dynamic viscosity
prediction. This work is expected to advance the under-
standing of fluids’ shear-thinning behavior and to establish a
foundation for extending ML-driven approaches to more
intricate systems and extreme conditions.

■ METHODOLOGY
Molecular Dynamics. Both nonequilibrium molecular

dynamics (NEMD) and equilibrium molecular dynamics
(EMD) simulations were conducted using the open-source
code LAMMPS,28 with n-hexadecane selected as the model
system due to prior experience10,29 and computational
efficiency. The simulation cell contained 100 n-hexadecane
molecules, with dimensions (∼4 nm minimum length)
validated in advance to exceed 30× the persistence length
(∼0.13 nm) and 10× the maximum radius of gyration (Rg,max
≈ 0.37 nm). Finite-size effects were confirmed to be negligible
by comparing with simulations using 200 molecules, which
showed <2% variation in both η and Rg. An all-atom
representation was employed to ensure accurate shear stress
calculations, as preliminary tests using the united-atom TraPPE
force field30 revealed a ∼20% underestimation. Interatomic
interactions were described using the L-OPLS31,32 force field,
which is optimized for long-chain alkanes, incorporating
bonded (bond stretching, angle bending, and torsion) and
nonbonded (van der Waals, Coulombic) terms. EMD
simulations primarily validated Newtonian viscosity via the
Green−Kubo method33,34 (see the Supporting Information for
details), while references to “simulation results” default to
NEMD unless otherwise specified.
Shear viscosity was calculated as the ratio of shear stress (τ)

to shear rate (γ̇) under linear planar (Couette) flow conditions,

where the velocity gradient perpendicular to the shear plane
remains constant. This approach avoids the molecular layering
effects associated with solid wall-induced boundary-driven
shear,26 thereby providing a true representation of bulk liquid
viscosity. Lees−Edwards35 equivalent periodic boundary
conditions (PBC) were applied to remap atom positions and
velocities crossing the simulation boundaries, while the
standard SLLOD algorithm36 was employed to model both
conservative and dissipative forces. Simulations were per-
formed under the NPT ensemble, regulated by the Nose−́
Hoover37,38 thermostat and barostat to maintain system
temperature and pressure. The choice of NPT/SLLOD over
NVT/SLLOD is justified in the Results section. Shear rate,
temperature, and normal pressure (Pzz) were varied across
ranges of 108−1012 1/s, 300−400 K, and 100−300 MPa,
respectively, with a simulation time step of 1 fs. Error bars were
calculated from uncorrelated data achieved, with the dump
frequency optimized via the time-autocorrelation function (t-
ACF) analysis.

Machine Learning. A machine learning (ML) model was
developed using an artificial neural network (ANN) regressor
trained on data derived from nonequilibrium molecular
dynamics (NEMD) simulations. The input features included
applied conditions: shear rate (γ̇), temperature (T), and
normal pressure (Pzz), with the target output being liquid shear
viscosity (η). The ANN was selected as the final regression
algorithm due to its superior performance compared to other
tested models, including linear regression, random forest, extra
trees, gradient boosting, support vector machines, and k-
nearest neighbors. Performance metrics for various regression
algorithms are provided in the SI (Table S1), demonstrating
that the ANN achieves the best overall predictive accuracy.
Ensemble methods such as voting and stacking regressors were
also evaluated but did not outperform the ANN. To capture
rate-dependent structural and thermodynamic factors, addi-
tional variables such as density (ρ) and radius of gyration
components (Rg

x, Rgy, and Rgz) were incorporated into the input
features. However, their contributions to prediction accuracy
were found to be marginal, suggesting that the primary input
features (γ̇, T, and Pzz) were sufficient for accurate viscosity
prediction.
The data set was randomly split into 80% for training and

20% for validation to ensure unbiased evaluation of model
performance. To address limited data dimensionality, five
replicate results from parallel simulation runs were included for
each unique set of conditions (γ̇, T, Pzz), enhancing the
model’s ability to capture variability and improve general-
ization. In total, 50 distinct combinations of conditions were
sampled, resulting in 250 sets of training inputs. Logarithmic
transformations were applied to γ̇ and η to account for their
broad value ranges and inherent nonlinear relationships. The
models were implemented by using the scikit-learn and Keras
libraries. The ANN architecture consisted of a feed-forward
network with two hidden layers (64 and 32 neurons,
respectively), utilizing the ReLU activation function and the
Adam optimizer for efficient training convergence. Hyper-
parameter optimization was conducted via randomized search
combined with 5-fold cross-validation to ensure robust
parameter selection. The validity of the ML model was
benchmarked against the NEMD results under identical
conditions. Model performance was comprehensively eval-
uated using metrics such as mean squared error (MSE), mean
absolute error (MAE), R-squared (R2), and root mean squared
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error (RMSE), proving a thorough evaluation across the
varying scales of η. Further validation, including fitting to the
Carreau−Yasuda model, is detailed in the Results section.

■ RESULTS AND DISCUSSION
Running NEMD under an NPT Ensemble. In the shear-

thinning regime, molecules moving rapidly along the streaming
direction lack sufficient time to relax and dissipate energy,
arising from intense atomic collisions and internal friction.
Although excess heat can be removed via velocity rescaling,
molecular morphological changes under constant normal
pressure (Pzz) result in system volume expansion and a
corresponding drop in density (ρ), as illustrated in the inset of
Figure 1b. This phenomenon leads to an overestimation of τ at
high γ̇ under constant density (const.-ρ) control due to
elevated hydrostatic pressure. To address this, we modified the
LAMMPS source code to implement a new command, ’fix npt/
sllod‘, which enables barostat control exclusively in the normal
direction while incorporating the SLLOD algorithm to handle
in-plane cell deformation. By regulating only Pzz, this approach
avoids conflicts with imposed in-plane domain deformation,
where atom positions and velocities are remapped based on the
Lees-Edwards periodic boundary conditions (PBC).39 This
modification enhances physical fidelity, maintains system
stability during nonequilibrium dynamics, and significantly
improves modeling efficiency compared to pressure inter-
polation methods (see SI for details). The modified C++
source code is provided in the Supporting Information.
Predictions from const.-ρ (NVT control) and const.-Pzz

(NPT control) are compared through intermediate scaling

plots,10 where data are fitted using the Carreau−Yasuda (CY)
model:3,40
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where η∞ represents the second Newtonian viscosity, and a
and n are fitting parameters defining the crossover curvature
and shear-thinning exponent, respectively. As shown in Figure
1a, predictions in the linear response regime are comparable;
however, differences grow beyond the crossover and become
more pronounced at higher γ̇. Consistent with the findings of
Daivis and Evans,12 η∞ is only necessary for const.-ρ
predictions, serving as an artificial adjustment. The CY
model demonstrates superior performance over the Eyring
theory2 (as detailed in ref 10.), achieving a lower normalized
logarithmic relative standard deviation, even when accounting
for the parameter count (NCY = 4 versus NEyring = 2).
In the Newtonian regime, the diagonal pressure tensor

components (Pii, i = x, y, z) remain comparable to the isotropic
hydrostatic pressure observed in bulk equilibrium in the
absence of shear. However, as the strain rate increases and the
system enters the shear-thinning regime, these pressures
diverge, with Pzz exhibiting an exponential rise under const.-
ρ conditions. Consequently, the relationship between pressure
and density cannot be adequately described by traditional
equations of state (EOS), such as the Tait41 or Murnaghan42

equations, due to shear-induced anisotropy.10 As shown in
Figure 1b, the variation in normal pressure (P̃zz) under const.-ρ
is proportional to the variation in density (ρ̃) under const.-Pzz:

Figure 1. (a) Intermediate scaling plot of shear viscosity (η) as a function of shear rate (γ̇) from constant-density (ρ) and constant-normal-pressure
(Pzz = 100 MPa) simulations at temperature T = 300 K. (b) Collapse of the normalized density (ρ̃) onto the normalized P̃zz curve as a function of γ̇
with a proportionality constant α = 2.5. The inset shows the variation of ρ with γ̇ under const.-Pzz control.

Figure 2. Comparison of shear viscosity (η) predicted by NEMD modeling and machine learning (ML) for (a) 20% validation data set and (b)
additional untrained data at temperatures T ∈ {300, 350, 400 K} and normal pressures Pzz ∈ {100, 200, 300 MPa}. In (b), solid symbols denote
NEMD predictions, hollow symbols represent ML predictions, and dashed lines indicate Carreau−Yasuda (CY) fits to the NEMD data. ML
predictions are made with 95% confidence intervals.
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Pzz = (2)

where P̃zz = Pzz
NVT/Pzz

NPT − 1, ρ̃ = 1 − ρNPT/ρNVT, and α is a
proportionality constant. Nevertheless, the crossover observed
in the γ̇ − ρ (or γ̇ − Pzz) curves does not align with those in
the γ̇ − η plots, indicating that changes in density (or normal
pressure) do not fully explain the shear-thinning behavior. This
highlights the need for further investigation into molecular
morphology and microstructural changes under shear flow to
better understand variations in shear stress.

ML-Predicted Shear Viscosity. The NEMD data set,
though limited in size, provides high-quality data derived from
simulations averaged over sufficiently long times with a high
signal-to-noise ratio. Using three input features, i.e., γ̇, T, and
Pzz, the ANN model demonstrates exceptional performance in
reproducing the NEMD-predicted η across a wide range of γ̇
values and moderate variations in T and Pzz. The {T, Pzz, and
γ̇} conditions used for training correspond directly to the solid
symbols shown in Figure 2b. The model achieved an
impressive MSE of 4.8 × 10−4, MAE of 1.6 × 10−2, and an
R2 score of 0.9991 on the training set, using a fixed random
seed of 42. Training employed the Adam optimizer with a
learning rate of 0.001, a batch size of 16, and 3000 epochs
(these batch size and epoch values were selected as the best-
performing configuration from a series of tests via hyper-
parameter tuning using a pipeline). Validation loss closely
tracked the training loss, with both decaying exponentially with
epochs, indicating effective and consistent learning. More
details about the model performance are included in the SI.
The small batch size may have introduced noise into the
gradient updates, potentially helping the model explore the loss
landscape more effectively and improving generalization
performance. Alternative optimization algorithms, such as
root-mean-square propagation (RMSProp) and Levenberg−
Marquardt43 (LM), produced comparable results when tuned
to their respective optimal hyperparameters.
The ML model demonstrates excellent predictive capability

with validation results showing close agreement between
predicted and NEMD-calculated viscosities (Figure 2a),
confirming its reliability across the parameter space. Interpret-
ability analysis confirms that the model captures physically
meaningful trends. Permutation importance identified the
logarithm of shear rate as the dominant predictor (importance
score: 0.047 ± 0.003), consistent with its critical role in
controlling non-Newtonian viscosity behavior. Normal pres-

sure (0.012 ± 0.001) and temperature (0.008 ± 0.001) also
contributed significantly, in line with known rheological
dependencies. SHAP analysis reinforced these findings: shear
rate displaced strong nonlinear influence reflecting shear-
thinning, while temperature exhibited a negative correlation
characteristic of Arrhenius-type behavior (SHAP: −2.97 ±
0.42). Normal pressure had a relatively modest impact (SHAP:
−0.44 ± 0.12), consistent with its limited variation across the
studied regime. Further analysis in the SI explores how feature
importance shifts across shear- and thermally dominated
regimes, and evaluates interaction effects between input
variables.
To assess model confidence, we incorporated uncertainty

quantification using Monte Carlo dropout with conservatively
chosen rates (5−10%). This approach preserved high
predictive accuracy (R2 = 0.996) and provided physically
meaningful uncertainty estimates, with a mean 95% confidence
interval (CI) width of 0.19 log(η) units. As detailed in the SI,
uncertainty was elevated in regions of greater rheological
complexity−namely, the shear-thinning crossover, low temper-
atures, and high normal pressures− demonstrating the model’s
ability to recognize its own predictive limitations.
To further evaluate the model, predictions were performed

under (T, Pzz) conditions consistent with NEMD simulations,
enabling direct comparisons through CY fitting. As shown in
Figure 2b, the ANN model predictions (hollow symbols) not
only reproduced the NEMD results (solid symbols) but also
extended seamlessly along the CY fitting curves (dashed lines),
achieving an R2 of 0.99. Notably, the NEMD data in Figure 2b
was not part of the training set, highlighting the model’s ability
to generalize beyond the training data. We emphasize that the
predictive accuracy of the model is largely influenced by the
quality of the input data, particularly in the crossover region,
which plays a crucial role in determining the zero-shear
viscosity (η0). Compared to other regression algorithms tested,
the ANN model exhibits superior interpolation capabilities.
However, accurate extrapolation to the Newtonian regime
depends heavily on the quality and availability of the training
input data, highlighting the need for further optimization in
scenarios requiring precise extrapolation, particularly in high-
viscosity systems.
Predictions were extended to conditions beyond those

covered by the NEMD results, with CY fitting serving as a
reference to rationalize prediction trends. Due to n-
hexadecane’s crystallization tendency at certain conditions44

Figure 3. Intermediate scaling plot of machine learing (ML) predictions under interpolated conditions for (a) normal pressure (Pzz) and (b)
temperature (T), represented by hollow triangles. Dashed lines in (a, b) correspond to Carreau−Yasuda (CY) fits to the NEMD data for reference.
(c) Collapse of all ML-predicted results (hollow symbols) and NEMD data (solid symbols) onto a master curve, expressed in terms of normalized
viscosity (η̃) and normalized shear rate ( ). The dashed line represents CY fitting with η̃0 = 1 and 10 = . Error bars smaller than the symbol sizes
are not shown.
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(e.g., 300 K and 300 MPa), the validity of our predictions may
be restricted to conditions where thermodynamic forces
dominate. Although indirect, the CY fitting method reliably
captured the rate-dependent η, particularly the shear-thinning
behavior at high γ̇ under specific T and Pzz conditions.

10 To
further validate the representation of CY fittings within the
linear-response regime, particularly when the NEMD data are
sparse near the crossover, zero-shear η0 derived from EMD
simulations was used as a benchmark. As detailed in the SI, η0
from EMD simulations closely matched those obtained from
CY fitting, affirming the latter’s validity as a reference.
Leveraging these benchmarks, additional interpolated ML
predictions were generated for new (η, T, Pzz) conditions
(Figure 3a,b, solid triangles), which adhere well to expected
trends based on uniform intervals of condition variations.
Beyond visual inspection, ML-predicted data effectively
collapse onto a master curve (Figure 3c) when normalized as
η̃ = η/η0 and / 0= , where η0 and γ̇0 were obtained from
respective CY fittings, further demonstrating the consistency
and reliability of the predictions.
Our supervised ANN model demonstrated exceptional

performance in directly mapping physical parameters (γ̇, T,
and Pzz) to viscosity the target outputs, providing significant
advantages in scalability and efficiency. Unlike unsupervised
local dynamics ensemble (LDE)-based methods, this direct
prediction (DP) approach requires less memory, eliminates
molecular-type-specific adjustments, and simplifies implemen-
tation. While computationally efficient, the DP approach relies
heavily on the quality and diversity of the training data set,
posing potential challenges when extrapolating to conditions or
molecular systems beyond the training range. The model’s
predictions are grounded in well-defined physical parameters
(γ̇, T, and Pzz), making its behavior more transparent and
easier to validate against known physical principles. Per our
tests, incorporating additional input features, such as density
(ρ) and radius of gyration (Rg), did not significantly improve
the prediction accuracy. However, these parameters could be
valuable as output features, providing insights into molecular
dynamics and temporal trends.

Roles of T and Pzz. The dependences of equilibrium
viscosity η0 in the linear-response regime on T and Pzz have
been explored in our previous work10 for the same linear
alkane system. Notably, as T decreases, a transition from non-
Arrhenius to Arrhenius behavior is observed, corresponding to
a fragile-to-strong transition. Meanwhile, the dependence of η0
on Pzz follows a generalized hybrid function, where a power-
law term dominates at low-to-negative Pzz, while an
exponential term governs at moderate-to-high Pzz. However,
in the shear-thinning regime at high γ̇, the dependences of η(γ̇)
on T and Pzz exhibit distinct trends: parallel for T (Figure 3a)
and converging for Pzz (Figure 3b). The rate at which η(T)
and η(Pzz) decrease with increasing γ̇ is quantified by the
shear-thinning exponent n, obtained from CY fitting. As
illustrated in Figure 4, n remains nearly constant across
different Pzz values but increases linearly with T. This
highlights distinct dynamical behaviors and suggests that
assuming a constant n or simply setting n to 0.5 under various
conditions can lead to significant fitting errors.
The trends observed in Figure 4 contrast with those

predicted by the Carreau model,45 where n increases with T
but decreases with Pzz. Generally, increasing the temperature
leads to larger vibrational amplitudes and thermally induced

volumetric expansion, which weakens intermolecular inter-
actions and facilitates molecular alignment under shear. In
contrast, pressure primarily affects molecular proximity by
increasing the density and modulating the corrugation barrier
during shear. In the Newtonian regime, temperature effects
typically dominate, as thermally induced volume change occurs
more readily than those caused by external pressure due to the
low compressibility of liquids. While T and Pzz influence η in a
generally comparable manner,10 both often exhibit exponential
or stretched-exponential behavior. At high γ̇ in the shear-
thinning regime, externally applied forces induce intense
atomic collisions, leading to a significant temperature rise.
However, in molecular simulations, temperature is regulated
via velocity rescaling, which artificially alters system dynamics
while ensuring that the intrinsic response to shear remains
dominant. Although removing thermal heating effects would
clarify the individual contributions of T and Pzz, this is
practically impossible due to the limited thermal conductivity
of solid counterfaces. This convergence persists in the shear-
thinning regime as long as the system maintains consistent
structural or phase responses, ensuring smooth variations in
shear stress.10

In the shear-thinning regime, as γ̇ increases, liquid molecules
tend to stretch in response to shear stresses, aligning their
longitudinal direction parallel to the streaming direction. This
morphological change facilitates sliding and can be charac-
terized using the radius of gyration components:

R
M

m r r1
( )g

i
i i

2
cm

2=
(3)

where M represents the total mass of a molecule, ri and rcm
denote the positions of the ith monomer and the center of
mass of the molecule, respectively. Unlike the layering-like
structure observed in liquids confined to nanometer-scale
slits,26 the spatially resolved density of bulk-phase liquid
Couette flow remains constant even under relatively high
normal pressure. As shown in Figure 5, structural anisotropy
emerges when the system enters the shear-thinning regime,
varying nonmonotonically with γ̇. The alignment of molecules
parallel to the streaming direction (indicated by higher Rg,x

2)
reduces the number of atomic collisions, leading to a lower
τ(γ̇) that deviates from the trend. At high γ̇, the rapid
expansion of molecular spacing, evidenced by the significant
density drop shown in Figure 1b, causes molecules to coil up
again. Further increasing γ̇ can induce a liquid-to-gas phase
transition, where the three Rg

2 components converge and

Figure 4. Variations of the shear-thinning exponent (n) obtained
from Carreau−Yasuda (CY) fitting as functions of temperature (T,
red) and normal pressure (Pzz, black).
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become comparable. While the dependences of Rg(γ̇) on Pzz
and 1/T appear similar at low γ̇, the temperature effect
becomes less significant when Rg2 exceeds the extreme values as
γ̇ increases.

■ CONCLUSIONS
This work establishes a comprehensive computational frame-
work for predicting liquid shear viscosity (η) under coupled
thermomechanical conditions (shear rate γ̇, temperature T, and
normal pressure Pzz) through the integration of nonequili-
brium molecular dynamics (NEMD) and machine learning.
The developed supervised artificial neural network (ANN)
accurately predicts η(γ̇, T, Pzz) using exclusively NEMD-
generated training data, effectively capturing the complex
interrelationships between these variables without requiring
supplementary molecular descriptors such as density or radius
of gyration. While demonstrating robust performance within
the studied parameter space, this implementation serves as a
foundation for future enhancements: extension to more
extreme thermodynamic conditions, generalization to diverse
molecular systems (including branched alkanes and polar
solvents), and improved accuracy across expanded parameter
spaces. These developments will advance the framework into a
versatile predictive tool for complex fluid behavior.
We highlight the importance of constant-pressure control in

NEMD simulations, achieved through the implementation of a
modified LAMMPS command, ‘fix npt/sllod’. This
ensures an accurate representation of system dynamics under
varying pressure conditions. Our results reveal distinct
influences of T and Pzz on the shear-thinning regime: the
shear-thinning exponent (n) from Carreau−Yasuda fitting
remains constant across different Pzz but increases linearly with
1/T within the studied range. Additionally, the radius of
gyration components exhibits nonmonotonic trends as a
function of γ̇, reflecting molecular morphological changes
driven by shear-induced alignment and volume expansion.
Notably, temperature effects become less significant at higher
γ̇, where shear-driven dynamics dominate the system’s
response.
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