Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46019
Titel: Probing Rate-Dependent Liquid Shear Viscosity Using Combined Machine Learning and Nonequilibrium Molecular Dynamics
VerfasserIn: Gao, Hongyu
Zhu, Minghe
Ma, Jia
Honecker, Marc
Li, Kexian
Sprache: Englisch
Titel: Journal of Chemical Theory and Computation
Bandnummer: 21
Heft: 12
Seiten: 5838-5844
Verlag/Plattform: ACS
Erscheinungsjahr: 2025
Freie Schlagwörter: Liquids
Machine learning
Molecular dynamics
Molecules
Viscosity
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Accurately measuring liquid dynamic viscosity across a wide range of shear rates, from the linear-response to shear-thinning regimes, presents significant experimental challenges due to limitations in resolving high shear rates and controlling thermal effects. In this study, we integrated machine learning (ML) with nonequilibrium molecular dynamics (NEMD) simulations to address these challenges. A supervised artificial neural network (ANN) model was developed to predict viscosity as a function of shear rate, normal pressure, and temperature, effectively capturing the complex interplay among these variables. The model reveals distinct trends in shear viscosity, characterized by the shear-thinning exponent, and highlights nonmonotonic behavior in the radius of gyration components, reflecting molecular morphological changes driven by rate-dependent volume expansion. Notably, temperature effects diminish at higher shear rates, where molecular alignment and spacing dominate the response to shear. By implementing the ‘fix npt/sllod’ command in LAMMPS, we achieve precise constant-pressure control in NEMD simulations, ensuring accurate representation of system dynamics. This study demonstrates the potential of ML-enhanced NEMD for efficient and accurate viscosity prediction, providing a robust framework for future research in complex fluid dynamics and material design.
DOI der Erstveröffentlichung: 10.1021/acs.jctc.5c00293
URL der Erstveröffentlichung: https://pubs.acs.org/doi/10.1021/acs.jctc.5c00293
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-460192
hdl:20.500.11880/40388
http://dx.doi.org/10.22028/D291-46019
ISSN: 1549-9626
1549-9618
Datum des Eintrags: 13-Aug-2025
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00293/suppl_file/ct5c00293_si_001.zip
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00293/suppl_file/ct5c00293_si_002.pdf
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Martin Müser
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons