Please use this identifier to cite or link to this item: doi:10.22028/D291-45988
Title: Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis
Author(s): Chouaib, Abed Alrahman
Chang, Hsin-Fang
Khamis, Omnia M.
Alawar, Nadia
Echeverry, Santiago
Demeersseman, Lucie
Elizarova, Sofia
Daniel, James A.
Tian, Qinghai
Lipp, Peter
Fornasiero, Eugenio F.
Valitutti, Salvatore
Barg, Sebastian
Pape, Constantin
Shaib, Ali H.
Becherer, Ute
Language: English
Title: Nature Communications
Volume: 16
Issue: 1
Publisher/Platform: Springer Nature
Year of Publication: 2025
Free key words: Cell signalling
Cellular imaging
Machine learning
Software
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.
DOI of the first publication: 10.1038/s41467-025-61579-3
URL of the first publication: https://doi.org/10.1038/s41467-025-61579-3
Link to this record: urn:nbn:de:bsz:291--ds-459889
hdl:20.500.11880/40355
http://dx.doi.org/10.22028/D291-45988
ISSN: 2041-1723
Date of registration: 7-Aug-2025
Description of the related object: Supplementary information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM3_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM6_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM7_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM8_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM9_ESM.pdf
Faculty: M - Medizinische Fakultät
Department: M - Anatomie und Zellbiologie
M - Physiologie
Professorship: M - Prof. Dr. Peter Lipp
M - Prof. Dr. Jens Rettig
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41467-025-61579-3.pdf6,65 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons