Please use this identifier to cite or link to this item:
doi:10.22028/D291-45988
Title: | Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis |
Author(s): | Chouaib, Abed Alrahman Chang, Hsin-Fang Khamis, Omnia M. Alawar, Nadia Echeverry, Santiago Demeersseman, Lucie Elizarova, Sofia Daniel, James A. Tian, Qinghai Lipp, Peter Fornasiero, Eugenio F. Valitutti, Salvatore Barg, Sebastian Pape, Constantin Shaib, Ali H. Becherer, Ute |
Language: | English |
Title: | Nature Communications |
Volume: | 16 |
Issue: | 1 |
Publisher/Platform: | Springer Nature |
Year of Publication: | 2025 |
Free key words: | Cell signalling Cellular imaging Machine learning Software |
DDC notations: | 610 Medicine and health |
Publikation type: | Journal Article |
Abstract: | Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes. |
DOI of the first publication: | 10.1038/s41467-025-61579-3 |
URL of the first publication: | https://doi.org/10.1038/s41467-025-61579-3 |
Link to this record: | urn:nbn:de:bsz:291--ds-459889 hdl:20.500.11880/40355 http://dx.doi.org/10.22028/D291-45988 |
ISSN: | 2041-1723 |
Date of registration: | 7-Aug-2025 |
Description of the related object: | Supplementary information |
Related object: | https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM1_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM2_ESM.docx https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM3_ESM.mp4 https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM4_ESM.mp4 https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM5_ESM.mp4 https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM6_ESM.mp4 https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM7_ESM.mp4 https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM8_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM9_ESM.pdf |
Faculty: | M - Medizinische Fakultät |
Department: | M - Anatomie und Zellbiologie M - Physiologie |
Professorship: | M - Prof. Dr. Peter Lipp M - Prof. Dr. Jens Rettig |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
s41467-025-61579-3.pdf | 6,65 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License