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Highly adaptable deep-learning platform for
automated detection and analysis of vesicle
exocytosis

Abed Alrahman Chouaib1, Hsin-Fang Chang 1, Omnia M. Khamis 1,
Nadia Alawar 1, Santiago Echeverry 2, Lucie Demeersseman3, Sofia Elizarova4,
James A. Daniel 4, Qinghai Tian5, Peter Lipp 5, Eugenio F. Fornasiero 6,7,
Salvatore Valitutti 3, Sebastian Barg 2, Constantin Pape 8,9,
Ali H. Shaib 6 & Ute Becherer 1

Activity recognition in live-cell imaging is labor-intensive and requires sig-
nificant human effort. Existing automated analysis tools are largely limited in
versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) plat-
form, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled
vesicle fusion events and other burst-like activity. IVEA includes three specia-
lized modules for detecting: (1) synaptic transmission in neurons, (2) single-
vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis.
Each module uses distinct techniques, including deep learning, allowing the
detection of rare events often missed by humans at a speed estimated to be
approximately 60 times faster than manual analysis. IVEA’s versatility can be
expanded by refining or training newmodels via an integrated interface. With
its impressive speed and remarkable accuracy, IVEA represents a seminal
advancement in exocytosis image analysis and other burst-like fluorescence
fluctuations applicable to a wide range of microscope types and fluor-
escent dyes.

Live cell fluorescence microscopy plays a central role in the analysis of
cellular dynamics including organelle and protein motion, as well as
biosensor-based measurements of cellular activity, such as fluctua-
tions in ion concentration or exocytosis events1–3. Upon expression of
fluorescent sensors or incubation with specific probes, cellular activity
can typically be observed as a sudden change in fluorescence intensity
in recorded videos. While more sensitive and faster systems are being
developed to acquire larger (terabytes) amounts of data at a faster

rate, fluorescence signal analysis is usually a challenging endeavor that
requires extensive manual effort and becomes a bottleneck. An
obvious challenge is to develop automatic detection methods for
cellular activity that are sufficiently versatile and reliable enough to be
easily implemented and applicable to batch analysis.

Regulated exocytosis, which is essential for cells to secrete sub-
stances, is a prime example of a rapid dynamic cellular event that is
challenging to detect and measure. This difficulty arises from the
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considerable diversity of fluorescent signals that can be observed, for
example, during synaptic transmission, release of hormones and
cytokines, or targeted release of cytotoxic proteins by immune cells4,5.
A commonly used approach to follow exocytic events occurring dur-
ing neuronal synaptic transmission in live imaging relies on the
expression of vesicular proteins taggedwith pH sensitive fluorophores
such as the super ecliptic pHluorin (SEP)6–8 or on other types of mar-
kers such as the lipophilic FMdyes9–11. These can be imaged indifferent
modalities including epifluorescence and confocal microscopy. To
observe individual vesicle/granule exocytosis in endocrine or immune
cells with high temporal and spatial resolution in real time, total
internal reflection fluorescence (TIRF) microscopy12–14 in combination
with pH dependent and independent sensors is the method of choice.
TIRF microscopy enabled the deciphering of trafficking and attach-
ment of granules to the plasmamembrane9,15,16, and to follow precisely
their fusion with the plasma membrane17–20.

The development of rapid and reliable systems for the detection
of exocytic events in the recorded videos should facilitate the devel-
opment of therapies for mental disorders21–23, diabetes24 or immuno-
logical deficiencies such as hemophagocytic lymphohistiocytosis25.
While several automated methods for exocytosis have been
developed26–32, their practical implementation has been limited either
by their complexity or by their lack of versatility for a diverse range of
datasets. Oneway to circumvent these limitations is theuseofmachine
learning, particularly deep learning, which shines for its reliability and
effectiveness. Deep learning is applied in different areas such as image
segmentation, data analysis, or 3D model prediction33–35. Unlike
mathematical models, which typically can only detect specific events,
the appropriate use of deep learning can be leveraged to distinguish
multiple types of events. In addition, deep learning can be used to

develop systems that adapt to a wide variety of data, enabling batch
data analysis with minimal or no human input. Here we introduce an
adaptive automatic vesicle fusion detection program named IVEA
(Intelligent Vesicle Exocytosis Analysis; pronounced [ˈʌɪvi]), which uses
deep learning to analyze a wide array of vesicle fusion events. IVEA is a
trainable, modular tool that uses a hybrid approach based on the
combination of computer vision and AI. The program is easily acces-
sible as an ImageJ plugin (https://github.com/AbedChouaib/IVEA), and
contains three completely independent detection/recognition mod-
ules that are optimized for analyzing the most common types of
exocytosis events (Supplementary Fig. 1).

The first two techniques involve discriminator neural networks to
detect the described burst events occurring during the exocytosis of
fluorescently labeled vesicles. Module one is based on a vision trans-
former network (ViT)36 (Fig. 1b) to visualize and classify exocytosis of
individual vesicles/granules in any type of cells (Supplementary
Fig. 1a–c). Module two is based on a long short-term memory (LSTM)
network37 due to its comparatively low computational resource
demands (Fig. 1c). It is used to detect exocytosis that occurs during
synaptic transmission in neurons (Supplementary Fig. 1d,e). Module
three is designed to extract areas with fluorescent intensity variation
using k-means clustering, and iterative thresholding (Supplementary
Fig. 1f, g).

Due to its modular structure, IVEA has proven to be exceptionally
versatile and reliable in the detection and classification of exocytosis
events. It enables batchprocessing of datawith a speed about 60 times
faster than human experts. Finally, an additional user-friendly training
platform allows users either to generate a new training model or to
refine an existing pre-trained model, thus extending its application to
other activity recognition tasks.
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Fig. 1 | Overview of our neural networks and the feature extraction process.
a Flow of the two distinct methodologies employed to prepare the data prior to
classification. LM coordinate matrix W 0

i 2 N2 ×d represents the selected region.
Methodology 1 (top) is used for randomburst events. The regions are extracted and
then fed into a shared encoder network. A total of 26 patches, each 32 × 32 pixel,
were extracted for every selected region. Methodology 2 (bottom) is applied to
stationary burst events, where feature extraction is performed. Feature vectors
comprise 13 regions centered on the event’s local maxima ðR1, R2 . . .R13Þ. The black
regions in the “13 Small regions” scheme represent buffer zones. The feature
extraction output for stationary burst events is organized by event count, region,

and time series dimension. b Vision transformer network architecture.
c Multivariate LSTM network architecture. d LSTM network recognizes each data
package as a graph of 13 curves representing the regions normalized mean-
intensity variations over time. The LSTMmodel is available for random burst event
analysis as well. Event pattern graphs illustrate: 1. single T cell lytic granule fusion in
which the fluorescent cargo was either pH-sensitive (left) or 2. pH-insensitive
(middle left); 3. fusion at neuron synapse in which the vesicles are stained with pH-
sensitive membrane protein (middle right); 4. fusion of a single moving gran-
ule (right).
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Results
Classification of exocytic events for automated analysis
To develop an automatic analysis of exocytosis, it is necessary to first
identify categories of events and then create software tools capable of
recognizing them. In general, exocytic events can be classified into
three main categories (Supplementary Fig. 1). The first two categories
pertain to the measurement of vesicle exocytosis (Supplementary
Fig. 1a–e), viewed as a transient change of fluorescence intensity on
discrete spots. Therefore, we call these events, fluorescent burst
events or burst events. When measuring the exocytosis of individual
vesicles/granules, they often move towards the fusion site before
exocytosis occurs (Supplementary Fig. 1a–c). This site canbe anywhere
on the plasma membrane, making multiple fusions at the same site
unlikely. We termed this first type of event “random burst event”. In
contrast, synaptic transmission in neurons occurs exclusively at
synapses and encompasses the fusion of multiple vesicles within a
brief period, resulting in a change in fluorescence intensity at static
positions. This is observed during spontaneous exocytosis as well as
during repetitive stimulation (Supplementary Fig. 1d, e). Thus, the
analysis can be conducted without considering moving fluorescent
objects. This second type of events are referred to as “stationary burst
events”. Finally, a third category of events arise from themeasurement
of secreted transmitters using, for example, near-infrared fluorescent
dopamine nanosensor ‘paint’ AndromeDA38,39, and other composite
nanofilms40,41. When the released neurotransmitter binds to the
nanosensors around the synapse they emit a spreading fluorescent
signal in a concentration-dependent manner (Supplementary Fig. 1f,
g). We call these events “hotspot area” events. The detection of all
these three different types of events requires different analytical
approaches (Module 1 −3), involving the use of specific models (Sup-
plementary Table 1). They are all included in IVEA, which runs in the
widely used and open source Fiji program as a multi-purpose plugin
with different applications in a comprehensive GUI (Supplementary
Fig. 2). While IVEA is fully automated, users are offered the option to

fine-tune the plugin’s advanced settings (Supplementary Fig. 3) or train
the models to accommodate specific experimental paradigms.

Event detection and classification paradigm
The IVEA software detects burst event activity in two phases. First, it
automatically identifies intensity fluctuation and generates spatio-
temporal coordinates (x, y, t) at the local maxima. Around each coor-
dinates, IVEA defines a region of interest (ROI) and extracts a small
image section (e.g., 32 × 32 pixels), along with frames captured before
and after the identifiedpeak (e.g., 10 frames on each side) (Fig. 1a). This
yields a set of image patches that focuses on each ROI. In the second
phase, IVEA classifies these image patches using neural networks that
differ depending on whether the burst events are stationary or ran-
dom. For random burst events (module 1), an encoder Vision Trans-
former (eViT) processes these image sequences to determine whether
an exocytosis event has occurred (Fig. 1b). Due to the computational
demands of the eViT when handling large numbers of image patches
and extended sequences, we implemented an LSTM network for ana-
lyzing stationary burst events (module 2, Fig. 1c). Prior to their inte-
gration into the LSTM network, image patches undergo a reduction in
dimensionality and a flattening process (Fig. 1a, d). This procedure
enables the analysis of extended activity sequences while concurrently
reducing the computational and memory overhead (see Methods
section).

Detection and accurate prediction are two critical factors for
analyzing fusion events. To evaluate our software, we compared the
IVEA predictions with human experts’ (HE) manual detection of dif-
ferent sets of videos acquired using different techniques. The videos
employed in our results were devoid of events within the initial four
frames of the acquisition (see Methods).

Event simulation validation for random burst events (module 1)
The initial evaluation of the software’s performance was conducted by
the creation of simulated videos (Fig. 2b), employing a ground truth of
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analysis. aAlgorithmflowchart.X i denotes the image sequence.ΔIF andΔIB are the
forward and backward subtraction images (ΔI). Δμi, σi, Ci and ti are the event Ei

mean intensity, FWHM, center coordinate and the time for which Ei was detected,
respectively. Δμ and σ are the automated parameters for detection. θ, R and T
denote the detection sensitivity, a search radius of three pixels, and a time interval
of four frames, respectively. Image patches are the 32 × 32 pixels crops extracted
over time for each selected region: The network scheme is an encoder-vision-
transformer network (eViT). The centerofmass step refines the centroidof each true
positive event. The final step applies a Gaussian spatiotemporal function used for
non-maximum suppression. b Effect of Poisson noise added to simulated videos.
Left: simulated video with Poisson noise scaling factor λ =0.1 with an ideal

exocytosis event in a cytotoxic T-lymphocyte. Middle: same video with λ = 1. Right:
same video with λ equal 10 times the signal. c Graph in the middle presents the
evaluation of our eViT performance following the analysis of simulated videos with
a noise scaling factor that varied between 0.1 and 10. The graph shows the average
recall (blue), precision (orange), and F1 score values (yellow) with SEM (n = 5). d 3D
ellipsoid representing the Gaussian spatiotemporal search equation gðxj , yj , tjÞ for
event Ej . The color bar ranging from 0 to 1 corresponds to the mean gray value at
point (x, y, t). Point A and B are two true positive events occurring close in time and
space to Ej . At point A the mean gray value at ðxA, yA, tAÞ exceeds gðxj , yj , tjÞ, indi-
cating that A is a separate event. While, at point B themean gray value at ðxB, yB, tBÞ
is below gðxj , yj , tjÞ, meaning Ej = B. Source data are provided as a Source Data file.
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vesicles with an average radius of 2.7 ± 0.36 non-dimensional pixels.
With this approach we emulated random burst events, as observed
during the fusion of lytic granules in cytotoxic T lymphocytes (CTL)
(see Methods). Subsequently, the aforementioned videos were ana-
lyzed with IVEA random burst event module (Fig. 2a) using average
computerswithout relyingonGPU (seeMethods).Weemployed IVEA’s
default parameters with the exception of the neural network radius,
which was set to 16 non-dimensional pixels. All simulated fusion
occurrenceswere successfully identifiedwithout any falsepositive (FP)
detection. To ascertain the limitations of IVEA accuracy, we have
introduced white noise and Poisson noise over the videos (Fig. 2b)
using Eq. (17) (see Method section).

The Poisson noise scaling factor λwas increased from0.1 up to 10
times the signal. We ran IVEA on our simulated noise enriched videos
and achieved recall of 99.71 ± 0.29%, a precision of 94.49 ± 3.23% and
F1 score of 96.71 ± 1.91% for λ =0.1 up to λ = 1, which corresponds to a
rather low SNR (Fig. 2c). When λ was increased further, IVEA began to
lose some of the small vesicles, due to the added Poisson noise that
surpassed the signal strength. For λ = 1 up to λ = 10, the recall was
96.86 ± 2.55%, the precision was 79.22 ± 4.68% and F1 score was
86.51 ± 3.27%. However, these are noise levels exceeding experimental
TIRFmicroscopy videos, which would be analyzed by the scientist. Our
results show that IVEA is ready to analyze real data, acquired with a
challenging signal-to-noise ratio.

Random burst events analysis (module 1)
We have analyzed several videos in which CTL secreted lytic granules
(Fig. 3a, b and Supplementary Movie 1-4). In CTLs, lytic granules were
stained via expression of granzyme B, a cargo protein, that was tagged
with a fluorescent protein. This fluorescent protein was either the pH
sensitive pHuji (Fig. 3a), theweakly sensitive eGFP or the pH insensitive
tdTomato (Fig. 3b) generating very distinct event signatures as dis-
played in Supplementary Fig. 1b, c. The videos were recorded at 10Hz
over a duration of 10min and encompassed 1 to 33 CTLs. In these
videos the total number of fusion events detected by the HE was
around 245 (Fig. 3a, b, SupplementaryMovie 1–4). The time that theHE
required to analyze one cell was 10min for lytic granules labeled with
pH-insensitive fluorescent protein and 5min for lytic granules labeled
with a pH-sensitive fluorescent protein. This amounts to 300min of
analysis for videos containing 30 cells. IVEA required less than aminute
per cell with a video size of ~256 × 256 pixels and 3000 frames. On a
computer equipped with an Intel Core i9 10th generation, this sums up
to about 15min for the entire video with 30 cells irrespective of the
fluorescent marker protein. The performance of IVEA platform was
further evaluated on CTL datasets acquired with different marker
proteins (Fig. 3c) or using the small fluorescent label LysoTracker Red
(Supplementary Fig. 4) that display very different fusion kinetics. The
latter dataset was acquired in a separate laboratory equipped with a
different TIRF microscope. To increase signal diversity, we also ana-
lyzed random burst events in chromaffin cells (Fig. 3d) and INS-1 cells
(Fig. 3e) that secrete dense core granules. In these cells the vesicles are
smaller than in CTLs and they are often more packed. The granules
were stained via the over-expression of NPY attached to a fluorescent
marker that are weakly pH sensitive like mGFP or mNeonGreen or pH
insensitive such as mCherry.

The eViT network for random burst events was trained with 10
distinct categories. The event categories encompass three distinct
types of exocytosis events: fusion with a cloud of spreading
fluorophore, fusion without a cloud (sudden disappearance), and
latent granule fusion (abrupt fusion onset); and 8 other types of
events, such as fast drift or focus change, granule movement, random
noise, random noise with intensity fluctuation, granules with noise,
and granule docking and undocking. Analyzing the videos by HE
identified 770 fusion events in all videos, across all cells and labels.
IVEA detection routine registered around 156k ROIs for later

classification, out of which 2418 were identified as true events by our
eViT network. If a random burst event exhibits a spatial spreading of
fluorescence (Supplementary Fig. 1b, c, Supplementary Movie 1–4),
then a single event can be detected multiple times (duplicates). To
address this problem, we have devised a newmethod that implements
3D Gaussian spread over time to eliminate the redundant detections
(Fig. 2d, Eq. 10). After applying our non-max suppression algorithm
(Eqs. 10, 11), 1025 TP events were selected while 1393 duplicates were
discarded. Therefore, IVEA detected 255 additional events from those
originally identified by the HE. All TP events were again manually
validated by the HE to evaluate the network performance (Supple-
mentary Table 2). The events originally missed by the HE were either
small andweak events difficult to visually detect or simply overlooked,
possibly due to the HE’s limited attention span.

We evaluated two neural network architectures, eViT and LSTM,
for detecting exocytosis in random burst events analysis (Fig. 1a,
Supplementary Table 1). All TP events identified by the eViT, and
the LSTM were verified by the HE. The analysis was conducted on the
described videos. The results were divided according to the cell type
and granule label. Themodel utilizedwas the GranuVision2, except for
the CD63-pHuji, for which the GranuVision3 was used (Fig. 3). The
GranuVision2 model was trained to differentiate between fusion with
and without a cloud, while the GranuVision3 was trained on both
phenomena, incorporating the latent granule fusion. The vision radius
surrounding an event was adjusted according to the granule and its
fusion size (see Supplementary Fig. 5). For instance, a radius between
14 and 16 pixels was used with videos that had a pixel size of 110 nm
(Fig. 3a–c), while a radius between 7 and 12 nm was used for videos
with a pixel size of 130 or 160 nm (Fig. 3d, e). A summary of recall,
precision, F1 scores, and the number of events detectedby eViT, LSTM,
and human experts (HE) is provided Supplementary Table 3 (see
Supplementary Table 4 for statistics).

The first set represents CTL with pH-sensitive staining (Fig. 3a).
The results yielded a total of 85 TP events identified by the eViT and 70
by the LSTM, in comparison to 77 events identified by HE. The eViT
achieved the best F1 score of 97.81 ± 0.98% (Supplementary Table 3, 4).

For set two, which represent CTLs with pH-insensitive staining
(Fig. 3b), the eViT detected 219 TP events, while the LSTM identified
172, in comparison to 168 events found by a HE. The eViT achieved an
F1 score of 89.31 ± 2.12% (Supplementary Table 3, 4). The eViT also
detected proficiently the exocytosis of lytic granules stained with
LysoTracker Red (Supplementary Fig. 4).

The third set is for latent granule fusion (Fig. 3c), where the CTL
were stained with pH-sensitive CD63-pHuji or CD9-SEP. The eViT
detected96TPevents, the LSTMdetected 78 comparedwith 86events
identified by a HE. The eViT demonstrated an F1 score of 98.16 ± 1.30%.

The fourth set comprising chromaffin cells and INS-1 cells for
smaller granuleswith challenging exocytosis features, stainedwith pH-
insensitive probes (Fig. 3d, Supplementary Fig. 6). The eViT performed
significantly better than the LSTM (Supplementary Table 3, 4). The
eViT detected 412 TP events, the LSTM detected 110 compared with
292 events identified by a HE. The eViT demonstrated by far the
highest F1 score of 86.58± 9.81%.

For the last set, which represents INS-1 cells stained using NPY-
mNeonGreen or NPY-mGFP (Fig. 3e) the eViT identified 214 TP events,
in comparison to 66 by the LSTM, while the HE detected 147 events.
The eViT recorded an excellent F1 score of 93.18 ± 2.06%which ismore
than twice as good as the F1 score of the LSTM (Fig. 3e, Supplementary
Table 3, 4).

Overall, the average results across all sets show that the eViT
outperforms the LSTM network, as the eViT achieved an average recall
of 98.95 ± 0.40%, with average precision of 88.94 ± 3.64% and average
F1 score of 93.13 ± 2.05%. In contrast, the LSTMhadan average recall of
64.87 ± 13.18%, an average precision of 86.87 ± 3.05% and an average
F1 score of 68.58 ± 10.16%. Therefore, we opt to choose the eViTmodel
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as the main model for the IVEA software for the random burst events
analysis.

In addition, we down-sampled 10Hz videos to 1 Hz to test IVEA
performance at low image acquisition frequency. IVEA remains

capable of detecting exocytosis at lower frequencies, but as the
acquisition rate decreases, fast fusion events are naturally eliminated
due to reduced temporal resolution, making them undetectable both
manually and computationally (Supplementary Fig. 7a–c).
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Fig. 3 | Random burst event analysis. Detection process compared to the human
expert (HE) displayed from left to right; ROIs are shown as an overlay. Panel (a–e)
from left to right, the first column shows TIRF-microscopy raw images of cytotoxic
T cells, chromaffin cells, and INS-1 cells. The second column shows ROIs of the
detected events byHE. The third column shows the raw imageswith all the selected
regions prior to classification. The fourth column shows the classified events by our
eViTnetworkusing themodel indicated above.Bar graphs displays: total numberof
events identified by HE (purple), selected regions (SR, gray), events classified by
eViT (blue), LSTM (green), and ExoJ (orange). The line plot column shows fluor-
escence intensity profiles of the true positive events detected by IVEA. The events
profiles are aligned to their respective detection times. The fluorescence peaks at
2 sec corresponds to the exocytosis of the detected events. a CTL expressing pH-
sensitive granzyme B-pHuji with thirteen movies of individual cells were analyzed

(ncell = 13). b CTL expressing pH-insensitive granzyme B-tdTomato. Seven videos,
each containing 1–11 cells, were analyzed (ncell = 33). c Shown are CTLs transfected
with CD63-pHuji. The analysis was performed on five of the same typeofmovie and
one movie of HeLa cell expressing CD9-SEP found in Zenodo30. d Chromaffin cells
expressing NPY-mCherry (pH-insensitive fluorescent protein). Five videos were
analyzed and pooled with five videos of INS-1 cells expressing NPY-mCherry
(ncell = 10). e INS-1 cells expressingNPY-mNeonGreen. Nine videos of individual INS-
1 cells expressing NPY-mGFP or NPY-mNeonGreen were pooled (both weakly pH-
sensitive yet displays distinct cloud release) (ncell = 9). INS-1 cell videos were
acquired at the Medical Cell Biology, Uppsala University, Sweden. The exocytosis-
stimulation protocol is provided in the Methods section (acquisition protocol).
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-61579-3

Nature Communications |         (2025) 16:6450 5

www.nature.com/naturecommunications


IVEA was compared to an existing ImageJ open-source plugin
called ExoJ42. ExoJ was originally developed and validated on data that
included CD63-pHuji and CD9-SEP labeling, among other stains, as
published by Liu et al.42. When we tested ExoJ on our CD63-pHuji
dataset and dataset from Liu et al., ExoJ achieved an F1 score of
88.92 ± 7.28%, which was comparable to the score of GranuVision3,
albeit slightly lower (Fig. 3c). However, when tested on probes that
have little or no sensitivity to pH (Fig. 3b, d, and e), ExoJ did not
effectively detect exocytosis events, demonstrating its limited applic-
ability beyond pH-sensitive labeled burst events (Fig. 3b, d, e). Even for
GzmB-pHuji, a pH-sensitive probe (Fig. 3a), ExoJ struggled due to dif-
ferences in intensity profiles. We tested it using default parameters,
followed by a subsequent optimization process, but the results didn’t
improve much (Supplementary Tables 3–5). This indicates that ExoJ’s
rule-based approach is constrained by predefined detection criteria.
Additionally, we tested pHusion, another program based on mathe-
matical model43. This program did not yield better results than ExoJ
(see Supplementary Table 6).

ExoJ demonstrated an excellent performance comparable to that
of IVEA on a specific type of exocytosis (latent granule fusion), while
failing to detect other types. In contrast, IVEA’s deep learning-based
approach, powered by eViT, successfully demonstrated a capacity to
detect exocytosis events across both pH-sensitive and pH-insensitive
datasets. By learning complex spatiotemporal patterns via new train-
ing or by adapting pre-trained models via a refinement process, eViT
adapts todiversefluorescence signals (Supplementary Fig. 8). Through
the refinement of the model GranuVision3 on only 30 calcium sparks
events measured with Fluo4 in cardiomyocytes44, we were able to
detect 298 TP and 2 FP events in comparison to 200 prior to refine-
ment. This makes IVEA an extremely versatile and robust detection
framework suited for a broader range of experimental conditions.

IVEA’s output consists of two files sets: an ImageJ ROI zip file
and two analysis CSV files. Each ROI is labeled and positioned on the
center of mass at the peak of the fluorescence intensity of the event to
which it corresponds. The CSV file contains measurements of the
fluorescent intensity of each event over fixed time intervals, with their
x and y center of mass coordinates, their full width at half maximum
(FWHM), and the fluorescence intensity kinetics (rise time, decay and
temporal FWHM).

Stationary burst events analysis (module 2)
Stationary burst events were analyzed using the second branch of our
platform (Fig. 4a), which employs the LSTM neural network for clas-
sification (Fig. 1a, c, Supplementary Table 1). The rationale behind this
choice was conservation of memory and computational power. Our
eViT for random burst events requires an input sequence of 26 image
patches with a size of 32 × 32 pixels. This necessitates high memory
and computational power both during the training phase and classi-
fication task. In the case of stationary burst events, the number of
frames per sequence required to analyze an exocytosis event would
need to be significantly higher than for random burst events due to
different signal kinetics. A reasonable number of frames to study them
would be between 41−100 frames. Furthermore, the number of selec-
ted regions to extract the image patches is high, with up to 14,000
ROIs in a single video. This would result in huge memory demands,
necessitating the use of high-end computational resources to analyze
stationary burst events with our current eViT.

We analyzed DRG neurons videos expressing SypHy that were
derived from Shaib et al.45 and Staudt et al.46. These videos display a
variety of synapse count, intensity, vesiclemovement, andbackground
activity. In our data set, stationary burst events were characterized by
fast rise (within 4.1 s, i.e. 41 frames acquired at 10Hz, Supplementary
Fig. 9d) of thefluorescence intensity in a spot like area (Supplementary
Fig. 10a).Our neural network input layer for the stationary burst events
was adapted for the input vectorP x tð Þ, fð Þ 2 RT × f, wherex tð Þ 2 RT as f

is the number of regions and t is the time series for 0 < t ≤T =41 with
t 2N. Thus, the LSTM network discards the majority of the selected
events stored whithin matrix W0 (i.e. the selected regions, Fig. 1a)
resulting in the classification of highly probable true events. For events
in which the rise time was longer than 41 frames, the LSTM network
sorted the events into the “intensity rise” category (Supplementary
Fig. 9c) thereby discarding them fromthe collection of true events. For
experimental conditions inwhich long lasting eventswith slowkinetics
are the result of long stimulation paradigms or very high acquisition
frequency (Supplementary Fig. 10), we adapted an “add frame” option
that allows the user to adjust the event’s timewindowby increasing the
number of frames by tn (see method section). The videos that were
analyzed, were acquired at 10Hz and comprised 3000 frames, each
measuring either 512 by 512 pixels45 or 512 by 256 pixel46. The DRG
neurons were stimulated electrically for 1 min45 or they were stimu-
lated twice for 30 s and 1min with 10 s recovery phase in between46.
The human analysis of these videos was a challenging task that
required an average of 60min per video. Detected events had pre-
dominantly a high fluorescence intensity variation or lasted for rela-
tively long periods of time. IVEA reduces the time of analysis of the
same videos to under 1min per video. Furthermore, batch analysis
capabilities exclude the need formanual parameter adjustment, as the
tool automatically adapt to the input video’s characteristics.

The results of the analyzed videos show that the neural network
was able to classify virtually all the human labeled regions (Fig. 4b, c).
Additionally, the neural network was able to detect more true fusion
events than HE had originally detected by double checking and vali-
dating themas real events. TheHEwas able to detect overall 356 fusion
events, while IVEA detection routine registered 84k ROIs for later
classification. Most of these events were identified by the neural net-
work as false events. A total of 2049 events were classified as true
events, while only 70 eventswere identified as FP (Fig. 4c). The average
recall, precision and F1 score were 88.12 ± 2.70%, 96.37 ± 0.45%, and
91.83 ± 1.61% respectively. Importantly, in comparison to the HE
approaches, the LSTM network for stationary burst events could
detect weak events or events with fast kinetics (Supplementary Fig. 9e,
f; Supplementary Movie 5). Conversely, the HE was able to detect
events with very slow kinetics (Fig. 4b) (Supplementary Fig. 10b). Due
to the “intensity rise” category (Supplementary Fig. 9c) these slow
events (i.e. longer than 41 frames) were missed by IVEA in the videos
from Staudt et al.46, in which long stimulation paradigms were applied
to the cells, yielding more long-lasting events. However, they were
detected when applying the “add frame” option that extends the time
interval by adding 60 frames for correct classification (Supplementary
Fig. 10, Supplementary Movie 5). Overall, IVEA identified about
5.4 times asmany true events as HE. We compared IVEA to the existing
open source software SynActJ32 that was devised to analyze synaptic
activity in neurons stained with the overexpression of synaptobrevin-
SEP or alike proteins. First, we compared the result of IVEA and SynActJ
on the provided test movie. SynActJ and IVEA were able to identify
most of the active synapses but missed one and yielded one FP event
(Supplementary Fig. 11a). Then,wecomparedbothprogramsononeof
our movies in which synaptic activity was clearly detectable by HE.
While IVEA detected all events without any FP events, SynActJ was able
to detect only a very limited number of active synapses and showed a
significant number of FP events (Supplementary Fig. 11b). Thus, IVEA is
by far superior to SynActJ.

For advanced analysis, IVEA distinguishes between various event
types and categorize them based on their timing in respect of the
experimental stimulation paradigms. The events can be classified as
synchronized to the stimulus or unsynchronized (Fig. 4c). This feature
was implemented as both types of events might show differences in
kinetics. Stimulation time can be set manually, but to ease usability we
also implemented an automatic stimulation detection. Our neural
network was trained on nc =9 distinct events categories. These
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categories include: four types of events (fusion, short time fusion � 4
frames (0.4 sec at 10Hz), electrical or agonist stimulation, and NH4

+

treatment) andfive types of artifacts (fluorescence intensity rising, out-
of-focus artifacts, vesicle motion, white noise, and fluorescence
intensity fluctuations).

While events are sorted and labeled, spatial recognition task is
performed to locate and unify the event’s spatial identity while
counting how many times the same synapse was active. Finally, the
output for the stationary burst events are ROIs files whereby each ROIs
is positioned at the event’s maximum intensity temporal occurrence.
The ROIs are labeled with an ID, frame number and event status.
Additional outputs are the summary for each event and the measure-
ments, such as intensity over a specified time interval and over the full
video length.

Hotspot area extraction (module 3)
For the third analysis conducted using IVEA, we employed distinct
techniques from thosementioned earlier. In this analysis, we assumed

that the sensor arraywas in a fixed position, awaiting the occurrenceof
hotspots. Due to the limited availability of training data and the sim-
pler features compared to the stationary and random burst events, we
opted not to implement a neural network. Instead, we utilized k-means
clustering and iterative thresholding for detection, and employed
spatial search with mean intensity tracking over time for event
recognition (Fig. 5a). Before applying the foreground detection
method, we perform intensity fluctuation correction. The challenge
while correcting the intensity fluctuation is to avoid altering and dis-
torting the event as much as possible. To address this, we have
developed a newmethodutilizing k-means combinedwith simple ratio
for pixels value grouping and adjustment (see Methods). We call it
“Multilayer Intensity Correction” (MIC) (Supplementary Fig. 12). The
main idea of ourmethod is to performpixel value correction based on
the variation of the average value of each cluster of pixels. To preserve
the signal intensity, the signal should be a small range of pixels regis-
tered in a cluster, otherwise the signal is affected by the average value
adjustment. MIC algorithm is performed through segmenting a given
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Fig. 4 | Detection and analysis of exocytosis in neurons with stationary burst
event algorithm. a This panel displays the stationary burst event algorithm flow-
chart. Defining parameters: X i denotes the raw images; ΔIF is the forward-
subtracted image. Δμi, σi, Ci and ti are the event Ei mean gray value, full width at
half maximum (FWHM), center coordinate, and event occurrence time; Δμ and σ

are the mean gray values and FWHM thresholds. θ, R and T denote the detection
sensitivity, search radius and the event time-interval, respectively. T ns , f, t

� �
represents the extracted data in 3D tensor form. b Left, raw image of dorsal root
ganglion (DRG) neurons over-expressing SypHy forming synapses on spinal cord
neurons. Exocytosis stimulation protocol is given in theMethods under acquisition
protocol. Right, depicts the area within the dashed gray box on the raw image
overlaid with four different ROIs. Displayed, from left to right, top to bottom, are

the human expert (HE) ROIs, the selected regions (SR) ROIs, the neural network
ROIs, and a composite overlay of HE (Magenta) with neural network (Yellow) ROIs.
c Bar graph representing the total number of events analyzed in 11 DRG neurons
videos. IVEA parameters for the analysis were set to default. d Overall mean
intensity profile of the combinedROI areas, comparingdifferent event types shown
in different colors as indicated. eMean intensity profile over time representing the
events detected at the stimulation time (synchronized events, left), and before or
after stimulation (non-synchronized, right). fMean intensity profile for short event
category, whether synchronized or non-synchronized. The event intensity profiles
are aligned on their respective detection time (e & f). Colored lines represent
different events, while the thick black line shows their average. Source data are
provided as a Source Data file.
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image into k layers using the k-mean clustering algorithm47 after per-
forming Gaussian filter of sigma equal to 1. After performing fore-
ground detection, we extracted the hotspots from the processed
image ΔI by converting it to a binary image using a global threshold
(Fig. 5b). Since ΔI is the resulting matrix of intensity variation between
two images, applying different types of threshold algorithms specially
those found in Fiji, lead to unpredictable results. Therefore, we
implemented our own iterative global threshold (Fig. 5c). The iterative
threshold is not dependent on the statistical information calculated
from the image. Instead, it is iterated over the noise level ΔI, with the
objective of eliminating it (Fig. 5b). This allows us to determine the
global threshold for the fluorescence intensity value (see Methods).
After detection of the possible hotspot, the fluorescence intensity of
each event is temporally tracked (Fig. 5d). When the fluorescence
intensity of the event falls below the mid intensity, the event signal is

considered to have disappeared and the tracking stops (Fig. 5e). The
IVEA software, which uses advanced algorithms and automated para-
meters, reduced the need for users to iteratively adjust the parameters
for analysis. Furthermore, it enhances precision compared to the
previously used DART software with default parameters (Fig. 5f).

Discussion
IVEA is a robust, pre-trained plugin for activity recognition, dedicated
to the detection and analysis of vesicle exocytosis. It seamlessly inte-
grates into the Fiji platform for open-source accessibility. IVEA
achieves an impressive performance with F1 scores as high as 98 ± 1%
for the eViT (random burst events, Fig. 4) and 94 ± 1% for the LSTM
neural network (stationary burst events, Fig. 5). Furthermore, IVEA is
proficient in distinguishing real events from artifacts such as photon
shot noise or fast transient focus change (Supplementary Fig. 9a).
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parameter automation, multilayer intensity correction (MIC) (see Supplementary
Fig. 12), and temporal tracking. c Detection process displays (left to right): raw
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evident; iterative threshold steps over a cropped region of the intensity variation
image; and the segmented image used to determine the events ROIs. d Event
activity (left to right): raw image of dopaminergic neuron; intensity variation

composite with the raw image; sequence of zoomed snapshots that display the
hotspot over time. e Graph representing the intensity variation over time for ROI’s
mean intensity of the original image sequence (IðeÞ, blue line) and for the intensity
variation processed image sequence (ΔIiðeÞ, red line). The right-hand graph mag-
nifies IðeÞ around the hotspot occurrencewindow. It displays the temporal intensity
tracking period. f Images comparing IVEA hotspot area extraction with DART. The
yellow ROIs denotes the hotspot; red ROIs indicates probably false hotspots; and
the cyan ROIs are true hotspots detected by one algorithm but not by the other.
This figure displays images from two representative videos out of 8.
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Three different algorithms can be selected by the user, making IVEA
highly compatible with a range of exocytotic events displaying varying
fluorescence intensity profiles (Supplementary Table 1). Additionally,
IVEA’s high adaptability results from its machine learning foundation,
particularly, leveraging deep learning ViT36, CNN and sequential
models48. This enables IVEA to not only identify a wide range of exo-
cytosis events, but also to learn and recognize new patterns, thereby
expanding the scope of its capabilities.

Other Fiji-based exocytosis analysis plugins such as PTrackII31

SynAct32 or ExoJ30 have been developed. Their algorithms rely on fixed
mathematical and/or morphological models that are proficient at
detecting a limited range of events as these algorithms cannot adapt
and learnby themselves. Thedetectionparameters canbe adapted to a
certain degree by adjusting complex input parameters that can be
overwhelming for users with limited programming skills. This also
precludes easy implementation of batch analysis when the analyzed
videos have different characteristics, such as varying noise levels or
fusion kinetics. Other programs like pHusion, have been developed
but are only available in MATLAB, Python, or other proprietary plat-
forms, making them less accessible27–29,43. Finally, an algorithm has
been developed with the variability of the signal in mind, using con-
volutional neural network (CNN)26, which is not made available as a
software. In contrast, IVEA – a “plug and play” plugin, distinguishes
itself by the adaptability of the detection and classification capabilities
that is based on multivariate LSTM49 and ViT36 models. For stationary
burst events, we chose LSTM network for the analysis, as it requires
less memory usage when compared to eViT. This is particularly
important as the number of extracted sequence patches and the
number of frames analyzed per sequence is high. An analysis of all
these sequences by eViT would require huge computational resources
that cannot be provided by CPU computation and a reasonable RAM
size (about 64 GB). In contrast, for random burst events, the presence
of motion and other variables makes the classification of the events
complex. This necessitates the use ofmore sophisticatedmodels, such
as the ViT network. To support this model, an encoder network was
adapted and implemented to extract features prior to the ViT network.
The added layers to the ViT model36 was demonstrated using an
ablation study (Supplementary Fig. 15) (see Method).

To assess IVEA’s versatility, we extensively trained and evaluated it
on exocytotic events in CTL, chromaffin cells, INS-1 cell and DRG
neurons. Consequently, we were able to detect exocytotic events with
higheffectiveness, achieving a recall of 98 ± 4%andF1 scoreof 90 ± 6%,
even in videos with low SNR and events presenting minimal features
(dense core granules in INS-1 cells labeled with the pH-insensitive NPY-
mCherry). Additional challenges such as granule clustering do not
impair IVEA’s capability to identify weak exocytotic events (Supple-
mentary Fig. 6). Finally, IVEA successfully detected exocytotic events
with different signatures than those used for training, albeit with some
additional FP (Supplementary Fig. 4). However, IVEA is not designed to
detect non-burst events such as those recorded in hippocampal neu-
rons labeled with Synaptobrevin-SEP, FM1-43 or CypHer5E. In the case
of Synaptobrevin-SEP stimulated exocytosis at synapses results in
long-lasting increased fluorescence spreading out of the synapse50,51,
while with FM1-4352 and CypHer5E9, it produces only a very slow decay
of fluorescence. In the future, adapting the eViT capability and
retraining the new neural network may enable this type of analysis.
However, this will require advanced computational capabilities and
different dataset labeling. In contrast, we foresee that IVEAwould have
minimal difficulty of detecting synaptic transmission measured via
iGluSnFR353. While IVEA is virtually universal for detecting burst exo-
cytosis in a wide array of experimental paradigms with the current
trained models, users might still encounter specific needs. Therefore,
we provide Python scripts with a simple GUI for training purposes,
along with a configuration JSON file for parameter adjustments. The
choice to use Python was motivated by challenges related to

vectorized computations, alongside variations in the versions of C++
jar files across Fiji, Google TensorFlow, and the deeplearning4J library.
These scripts facilitate the training of a new model and the imple-
mentation of transfer learning by freezing the majority of neural net-
work layers and retaining the last two Dense layers of the eViT54. This
refinement of an existing eViT model reduces the time required for
training and the labeling of data34. Additionally, it can be trained on a
central processing unit (CPU) rather than a graphics processing
units (GPU).

IVEA shows robust analysis capability even when the noise power
is equal to that of true events by extracting spatiotemporal features of
the signal (Fig. 2c). Additionally, IVEA is capable of discarding artifacts
such as short focus changes resulting in transient signal variation.
However, slow focus drift cannot be compensated as well as lateral
drift in the case of stationary burst events. Upondrift an active synapse
is detected at different locations and is assigned to several coordi-
nates. Therefore, drift should be corrected using free plugins such as
but not limited to NanoJ core55 prior to IVEA analysis. Random burst
event does not require drift correction as the algorithm does not
require fixed spatial coordinates. Finally, to detect exocytosis events,
the IVEA algorithm requires analyzing the first four frames from each
video. This step is important for the automation process, so that IVEA
can learn from the images that are devoid of events (see method
section “stationary and random burst events algorithm”). In rare cases
in which videos contain events within these frames, IVEA can generate
learningparameters that enable thedetection of high SNReventswhile
events with low SNRmay be overlooked. However, manually reducing
the detection threshold to 1 or less can enhance the sensitivity of event
selection. The neural network can classify these increased detections
correctly, while eliminating most of the FP events. As a result, a
heightened computational time requirement may arise. This can be
mitigated by extracting more than four frames that are devoid of
events and adding them to the beginning of the movie.

In conclusion, IVEA reduces analysis time by >90%, requiring
minimal to no human input, and significantly decreases analysis bias.
Furthermore, the number of fusion events detected by IVEA is higher
than those detected by the human expert, especially when it comes to
visualizing rare, i.e. low brightness, events in low-SNR conditions. This
allows us to generate large datasets with meaningful statistical power.
In addition, IVEA unlike the human expert readily detects short events,
which not only increases the number of detected events but also
promotes the understanding of biological processes. The earlier
application of hotspot area extraction module for AndromeDA
revealed not only discrete dopamine (DA) release and extracellular DA
diffusion, but it also enabled the discovery of heterogeneous release
hotspots - albeit using a less-advanced algorithm at the time. The trove
of information collected from individual events allowed to elucidate
the role of key proteins in the molecular machinery of exocytosis in
dopaminergic neurons39.

We foresee that our program will be adaptable to analyze exocy-
tosis in many other systems and to extend its use to other burst-like
events. For instance, the eViT method with additional training was
proficient at analyzing transient localized calcium signals with low
SNR, such as calcium sparks. The “hotspot area extraction” should be
capable of analyzing calcium waves in cell clusters, brain slices or
in vivo measurements. Using IVEA for detecting exocytosis events has
the potential to rapidly advance research in the neuroscience, immu-
nology, and endocrinology.

Methods
Stationary and random burst events algorithm
Our approach to detecting burst events involves two main parts:
automatic region selection and neural network classification. The first
part is detecting the potential ROIs. The event detection algorithm
used by IVEA employs the grayscale image foreground detection
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method, which leverages a bidirectional image subtraction technique.
This involves subtracting the intensity values in a 16-bit image stack of
a reference frame Ii from an offset frame Ii +n in both directions—
forward ðΔIF = Ii+n � IiÞ and backward ðΔIB = Ii � Ii+nÞ. This approach
simplifies the handling of 32-bit matrices, reducing potential com-
plexities with straightforward data processing. Backward subtraction
is employed only with random burst events to detect fusion events
visualized with a pH-insensitive stain. In the absence of fluctuations or
foreground variations, the subtraction results in an image with pixel
values of zero. However, the presence of noise and/or artifactual
fluctuations during image acquisitionmakes it difficult to differentiate
real events from artifacts. To distinguish real events from noise, we
detect local maxima (LM) in the subtracted images, representing
potential exocytic hotspots. Subsequently, an ROI is generated around
each identified LM. These ROIs are then employed to generate image
patches, which correspond to cropped sections of video frames. This
approach captures localized activities over time, thereby enabling the
isolation of specific events for classification rather than analyzing the
entire video frame-by-frame with the neural network. The LM detec-
tion and ROI extraction process is fully automated, incorporating a
global thresholding step that learns from the first four frames of the
processed video. This ensures that noise and spurious maxima are
filtered out, leaving onlymeaningful events for classification. The local
minimaprominencep approximation algorithm iterates over the noisy
images; each iteration increments the value pn until the number of LM
coordinates (ln) equals 0. If, instead, four successive iterations yield
the same number of maxima (e.g., ln = ln�4), the program sets p=pn
where “n” is the iteration number. These four images are also utilized
to estimate the full width at halfmaximum (FWHM) σ of the noise LMs,
and to measure Δμ, which is the average of the mean intensities Δμj at
LM Cj with radius r expressed as:

Δμj =
1

4r2 + 1

XCðxÞ
j + r

CðxÞ
j �r

XCðyÞ
j + r

CðyÞ
j �r

ΔIiðxj, yjÞwith r 2N ð1Þ

The region selection procedure is similar to parameter automa-
tion.WedetermineΔμj and σj for each event Ej atCj . To designate Ej as
a selected region we employ the following condition:

Ej Δμj >Δμ � θ
� �

^ σj > σ
� �

with σ,θ2R
��� ð2Þ

Here, θ denotes the sensitivity parameter, which can be adjusted by
the user.

After detection, IVEA performs spatiotemporal tracking for ROI
recognition and labeling. This is applied for each detected ROI coor-
dinate over a certain radius and period. For burst events exhibiting
temporal dynamics (e.g., lytic granule fusion), a sequence of image
patches is extracted, encompassing frames both preceding and fol-
lowing the time point of the event. Each sequence is fed to a shared
encoder layer attached to theViT architecture for image recognitionas
described in Dosovitskiy et al.36. We designated the modified archi-
tecture as eViT. The imagepatches’ spatial dimensions are variable, but
they are scaled to fit the encoder input layer of 32 × 32 dimensions.
Each patch represents the extracted area centered at the LM, while the
sequence is centered on the fluorescence intensity peak time (Fig. 1a).
The encoder network automatically extracts features from each
sequence and forwards the encoded data to a multi-layered percep-
tron (MLP),which in turn forwards the data to the ViT network. TheViT
network then performs positional encoding on the extracted features
and classifies each sequence as a true event or not (Fig. 1b).

For stationaryburst events, we employed a straightforwardmodel
architecture comprising an LSTM network37 for exocytosis classifica-
tion. Our LSTM architecture is designed for multivariate time series
classification49 (Fig. 1c). In this case, the imagepatches undergo feature

extraction preprocessing to convert them into one-dimensional time-
series vectors (Fig. 1a). These feature vectors are subsequently fed into
the LSTM network for classification (Fig. 1d). An additional optional
method is implemented in the stationary burst events for detecting
and tracking agonist/electric and NH4

+ stimulations. This algorithm is
utilized to recognize and sort events based on their occurrenceperiod.
Stimulus detection is expressed as:

Ri =
Δμi + 1

Δμi
> θs ð3Þ

Where Ri is the mean ratio; θs is the default threshold, is 1.1;Δμi and
Δμi + 1 are the mean gray value of image ΔIi and ΔIi+ 1 respectively.

To avoid an increase in the number of detected events due to high
fluorescence intensity during the stimulus period, we adjust the
detection sensitivity by increasing the detection sensitivity θi, such
as θi =θ �Ri.

Feature extraction
Feature extraction is performed by extracting a sequence of image
patches around Cj over a time interval. This patch is subdivided into
smaller regions. Subsequently, we determine the mean intensity of
each region (Fig. 1a). For each selected regiondenoted as Ej, we extract
the spatial neighboring pixels around Cj as a 2D matrix M j 2 Rk × k ,
where k is the kernel defined by the user. The spatiotemporal data
Vj 2 Rk × k ×T , which represents event Ej that occurred at time tj , is
extracted over several frames T expressed as (3).

Vj x, y, tð Þ := Mj
t x, yð Þ t 2 tj � nb, tj +na

h i���n o
ð4Þ

Whereas nb is the number of frames before tj and na is the number of
frames after tj . The spatial coordinates of eachmatrixM j are split into
13 small regions f ϵN (see Supplementary Fig. 13a), which yield the
feature matrix Pj ϵR

T × f for event Ej such as (4):

Pj x tð Þ, fð Þ := 1
nf

Xnf

f = 1

Vj xf , yf , t
� �

j f 2 1, f½ �
8<
:

9=
; ð5Þ

Whereas nf is the number of pixels in each region f .
This approach forms time series data P, represented as

P 2 Rns ×T × f, where ns is the total number of nominated events. Each
element Pj in P represents 13 distinct signals that capture the fluor-
escence intensity profile of different regions plotted on a single graph
(Fig. 1d, Supplementary Fig. 9). The choice of small, symmetrical
regions over circular masks enhances feature preservation of the
spatiotemporal signal (Supplementary Fig. 13a, c). Additionally, we
opted for 13 regions over 9 regions due to their higher sensitivity in
capturing slow granule movements (Supplementary Fig. 13a, b).

If the number of frames increases by tn, such as x0 tð Þ 2 Rt with
t=T + tn. P x tð Þ, fð Þ 2 RT × f is then determined by using windowing
mean-sampling expressed as:

x tð Þi =
1
w

Xw
k = 1

x0 tð Þw i�1ð Þ+ k

( �����w=
t

T
withw2N ð6Þ

Where, x tð Þi is the i� th element of the sampled vector x tð Þ, and x0 tð Þj
as j = w i� 1ð Þ+ k is the j � th element of vector x0ðtÞ.

For stationary burst events, we used nb = 10 and na =30 time
samples, resulting in a total of T =41 time samples. For random burst
events, the implemented LSTM model used a total number of time
samples T =21 (nb = 10 and na = 10). The time series data P is first
normalized within the range of 0 to 1 before being converted to ten-
sors. For stationary burst events analysis, P is converted into 3D
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tensors T 2 Rns × f×T as follows:

P j,x tð Þ, fð Þ ! T j, f,x tð Þð Þ j j 2 1,ns

� �
withns , j 2N ð7Þ

Multivariate LSTM neural network architecture
Our LSTMnetwork comprises four different layers. It serves as a robust
framework for multivariate temporal data analysis. The first input
layer, defined by the input-shape specification, establishes the
dimensions of the incoming multivariate time series data. This initial
stage isn’t a distinct processing layer but rather a configuration step to
align the network with the input data’s structure. The subsequent
architecture unfolds with a 1D convolution layer employing Rectified
Linear Unit (ReLU) activation function. The subsequent layer incor-
porates a LSTM, designed to recognize sequential patterns. To pro-
mote stable training dynamics, a batch-normalization layer is added.
The last layer is the fully-connected Dense layer that employs the
softmax activation function, rendering the architecture adept for
multiclass classification.

ŷi =h zð Þ= eziPnc
j = 1e

zj
ð8Þ

Here, h zð Þ is the softmax function, zi represents the raw score (logit)
for a specific class i and nc is the number of classes. This arrangement
encapsulates both localized and temporal patterns inherent to multi-
variate sequential data, combining convolution, recurrent, and nor-
malization mechanisms. The network is structured to accommodate
categorical cross-entropy as the loss function L (Eq. 9), tailored for
multiclass categorization, while optimization leverages the Adam
optimizer with a learning rate of 3 × 10�4.

L=
1
ns

Xns

j = 1

L ŷðjÞ� �
, with L ŷðjÞ� �

= �
Xnc

i= 1

y
jð Þ

i � log ŷ
jð Þ

i

� �
ð9Þ

Where L ŷðjÞ� �
is the loss for a single data point (sample), ns is the

number of data points, yi 2 0, 1f g is the true label for class i and ŷi is
the predicted probability.

Encoder-ViT network architecture
Our eViT network consists of two components: a CNN as the encoder
for feature extraction from image patches and a ViT for classification.
The encoder is shared CNN. It comprises seven layers, including a 2D
spatial convolution layer that is followed by a sequence of 3D con-
volution layers and 3D max pooling operations (Supplementary
Fig. 14a, b).

We have two pre-trained models available with IVEA, namely
GranuVision2 and GranuVision3. The model’s encoder input layer
accepts time series image patches of length 26 for GranuVision2 and
28 for GranuVision3. The width, height and channel of each patch is
32 × 32 × 1, denoted as X 2 Rt ×w ×h× c. If the dimensions of the image
patches change, we use bilinear interpolation to resize the images to
32 × 32. The initial stage of the sharedCNN involves the application of a
3D convolution layer with 16 filters and ReLU activation, which is fol-
lowed by a 3D max pooling layer. Subsequently, another 3D convolu-
tion layer with 32 filters and ReLU activation is applied, followed by a
3Dmaxpooling layer. Finally, a 3D convolution layer with 64 filters and
ReLU activation is applied, followed by a 3D max pooling layer. The
output of the encoder is passed through a Flatten layer and a 64-unit
Dense layer. Positional embeddings are added before the sequence
enters the transformer block, which includes anMLP. The transformer
block consists of multi-head self-attention and an MLP, each with a
residual connection (Fig. 1b). The transformer block operates on an
input sequence of length equal to the time series dimension, with a key
dimension representing the output size of the previous Dense layer.

The MLP inside the transformer block consists of two Dense layers,
where the first layer has a dimension twice the key dimension, and the
second layer projects it back to the key dimension. The final MLP
comprises twoDense layers: thefirst layerwithGELUnon-linearity, and
the second with SoftMax activation, classifying 10 (2 fusion + 8 arti-
facts) or 11 (3 fusion + 8 artifacts) classes for GranuVision2 or Granu-
Vision3, respectively. The eViT architecture underwent ablation to
study the impact of layers onmodel performance. This study involved
probing the model on an evaluation dataset by eliminating layers and
retraining. The evaluation dataset was divided into two categories:
exocytosis (positive labels) or non-exocytosis (negative labels). We
performed the ablation study on the shared CNN layers and the
penultimateDense layer. The results show that progressively removing
these layers leads to a noticeable decline in performance. The final
configuration, with only one convolution layer, exhibited the strongest
performance drop. This study underscores the additive role of each
layer in our current eViT architecture (see Supplementary Fig. 15).

Gaussian non-max suppression
Various non-maximum suppression techniques are typically used to
address the multiple overlapping-detections problem, including the
classical intersection over union (IoU) method, weighted boxes fusion
(WBF), and others56. However, these methods cannot be implemented
with our data because exocytotic events cannot be limited to objects
with boundaries or boxes. Thus, we have developed a newmethod that
implements 3D Gaussian spread over time

g x, y, tð Þ=Δμ � exp � Δx2 +Δy2
� �
2 σ + SRð Þ2

 !
� exp �Δt2

2τ2

	 

with τ = v � σ ð10Þ

where Δμ is the fluorescence intensity of the event area in the sub-
tracted image; σ is the event’s cloud spread; SR = 1 is a user-controlled
spread radius; τ is the temporal cloud spread; and v is the image
acquisition frequency set to 10Hz.

To isolate prime events from redundant ones, we apply g x, y, tð Þ
to each pair of events as follows:

Ei = Ej if Δμi < gj xj, yj, tj
� �

Ei ≠Ej otherwise

8<
: ð11Þ

where Ei and Ej are two different true positive (TP) events.

Neural network training and evaluation
Python was utilized for developing and training the LSTM and eViT
networks, while Visual Studio Code was employed for coding. The
LSTM training data was processed and prepared in MATLAB, enabling
visualization of patterns in segmented regions of time series image
patches. In contrast, the eViT network’s data labeling was managed
using ImageJ. The initial data labeling and IVEA classification validation
were performed by the human experts listed in Supplementary
Table 2.

For the eViT, the videos were associated with their corresponding
ROI files. These files include ROI center coordinates, frame positions,
and radii. The IVEA software was used to export the labeled ROIs as zip
files, with the training datasets being tagged as _training_rois to dif-
ferentiate them from the evaluation data. The user can enable this
option in the IVEA graphical user interface (GUI) via the Select Model
dropdown list. Prior to integrating the neural network with IVEA, the
initial procedure involved exporting the selected regions identified by
the automation processes and manually labeling them. Subsequent to
the initial integration of the neural model, events in the training
datasetswere automatically labeledwith a uniformnaming convention
that includes the list number, event ID, frame number, and classifica-
tion category. For example, the third event in the ROI manager list,
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with an IDof 3, detected at frame 779 and initially classified as category
1, would be named: 3-event (3) | frame 779_class_1. To prepare the data
for the neural network training, we have developed a Python-based
scriptwith a simple interface and a JSON configuration file to extract or
load the training data. The process of extracting the training data
entails the following two steps. First, the ImageJ ROIs are read to
identify the events positions and their categories. Subsequently, the
times series patches are extracted at each ROI. These data are then
stored as Hierarchical Data Format (.h5) file format, organized into
dictionaries containing x_train and y_train data, facilitating efficient
loading and archiving of the training data.

During the training process, labels were refined through an
iterative process. Initially, the network was trained to distinguish
between exocytosis and not exocytosis. Later on, additional classes
were introduced to differentiate between exocytosis subtypes, as well
as motion or noise artifacts. Exocytosis classes received positive inte-
gers (e.g., 0, 1, 2), while non-exocytosis classes (such as noise or arti-
facts) were assigned negative integers (e.g., -1, -2). Whenever a
misclassification was noted (for instance, class_1 instead of class_2 or
-6), the labelwas correctedor a newonewasdefined, and thedatawere
fed back into the network for retraining. To accommodate the sub-
stantial volume of events predicted and labeled by IVEA, a significant
number of labels associatedwith non-exocytosis eventswere excluded
to enhance data management. For generating a new model, training
files and tools are available on our GitHub page for IVEA (see data
available section).

For the LSTM, the data were exported as CSV files in the form of
X 2 Rns × f× t for stationary burst events, and the labeled data as
Y 2 Rns ×nc , where, ns is the number of samples and nc is the number of
classes. Our LSTMnetwork for stationary burst eventswas trainedwith
39 videoswith 11,300data sampleswith dimensions of 13 ×41, while for
the random burst events the LSTM network was trained on 548 videos
with 12,600 data samples. As for the eViT network, the datawere saved
as videos with their associated ROI files both in zip and roi file con-
tainer. The input data for the eViT network is X 2 Rns × t ×w×h× c and
Y 2 Rns ×nc . The eViT network for random burst events was trained
with 608 videos and 7931 data samples augmented to reach
24,916 samples of 26 x 32 x 32 dimensions each (see Supplementary
Table 7). These videos were acquired at a rate of 10Hz. For videos in
which the eViT was tested and acquired at 50Hz, the videos were
reduced by a factor of five using the ImageJ “reduce” function,
resulting in a rate of 10Hz. We used an NVIDIA RTX 3070 to training
the neural network.

The final models were evaluated on videos unseen by the neural
network, rather than reserving part of the training data for validation.
A diverse array of datasets was utilized in the evaluation process,
acquired from multiple laboratories employing a variety of micro-
scopes. These included lytic granule exocytosis in T cells, dense-core
granules in INS-1 and chromaffin cells (both pH-sensitive and pH-
insensitive fluorescent markers), DRG neurons expressing Synapto-
physin-SEP, and dopaminergic neurons examined with dopamine
nanosensors (“AndromeDA”). The analysis showed strong con-
cordance with HE annotations. Most of the datasets were processed
using default IVEA settings and automated parameter estimation,
though users may override these defaults when necessary. For para-
meter estimation, these data sets are devoid of fusion events that
occurred within the initial four frames of the videos, enabling IVEA to
learn from. However, users have the option to disable automated
learning and opt formanual override by adjusting the sensitivity to 1 or
lower, thereby generating additional local maxima coordinates.

For each unseen video analyzed by IVEA, the resulting event ROIs
were examined for validation. HE labels every detected event as true
exocytosis (true positive, TP) or falsely predicted (false positive, FP).
Any missed exocytosis event that was previously observed by the HE
was labeled as a false negative (FN). Finally, precision, recall, and

F1 score were computed based on the TP, FP, and FN counts, with the
corresponding formulas:

Precision =
TP

TP + FP
ð12Þ

Recall =
TP

TP + FN
ð13Þ

F1 Score= 2 ×
Precision×Recall
Precision+Recall

ð14Þ

The IVEA analysiswas conducted on a range of computer systems,
with a baseline configuration of an Intel Core i5 processor and 32GBof
RAM without GPU.

Training on new data
Training the neural network on new data involves two steps: data
labeling and neural network training. To label the data, the user can
create an ROI over the event using the ImageJ “ROIManager” tool. The
user should then label the ROIs with a special tag and with their
associated category number, and save the ROI/s as a roi/zip file under
the same name as the video. Alternatively, users can employ the IVEA
“Data labeling” ImageJ plugin, which is provided with IVEA for easy
labeling. The next step involves training the neural network using
Python. Users should set up a Python development environment, such
as the Anaconda platform. To run the IVEA training GUI, users must
install the libraries associated with the Google TensorFlow platform.
The script launches a GUI that enables users to combine their labeled
data with an existing dataset, collect a new dataset, train a new neural
network, or refine an existing one. After training, the script generates a
trained Keras model and saves it to the designated directory with its
associated JSON configuration file. The IVEA plugin enables users to
import a custom model for subsequent predictions. If no custom
model is imported, IVEA uses its embedded models.

Google TensorFlow-Java implementation
IVEA’s LSTM and eViT networks were developed using the Python
v3.8.15 language and Google’s machine learning and artificial intelli-
gence framework TensorFlow v2.9.1 or v2.10 with the Keras library.
Using Python, we were able to train our neural network and export the
trainedmodel as a Protocol Buffer (.pb) file. To load and useourmodel
with ImageJ Fiji, weused theGoogleTensorFlow Java v1.15.0 library and
deeplearning4j core v1.0.0-M1.1 in our software. Integrating Google
TensorFlow with Java is a complex task, particularly within the context
of Fiji implementation. While Java offers versatility, it has limitations
compared to Python, particularly in providing user-friendly and
adaptable tools for machine learning applications. Notably, the Java
support for Google TensorFlow is constrained, and asof the year 2024,
faced issues with deprecated documentation. Additionally, the con-
solidation of all components into a single Java archive (jar) file poses
challenges within the Fiji environment. In an effort to simplify the
integration of the Google Deep Learning Framework with Java inside
Fiji, we provided a concise explanation of the TensorFlow Java imple-
mentation on https://github.com/AbedChouaib/IVEA.

Video simulation and noise control
To mimic the CTL’s lytic granules and simulate the fusion activity, we
first create the vesicles as small spheres with Gaussian intensity spread
with a cutoff at 2σ using equation:

g x, yð Þ=μ � exp �
x� xc
� �2 + y� yc

� �2� �
2 σð Þ2

0
@

1
A ð15Þ
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Whereas μ is the intensity of the spot and σ 2 1:1, 3½ �, σ 2R is the
standard deviations controlling the spatial spread distribution.

We then added some randomspatialmovement for the vesicles to
add motion variable. The vesicle’s fusion was more like fluorescence
intensity cloud that spreads and disappears. To simulate these phe-
nomena, we used Gaussian spread over time equation to control the
temporal presence of the fusion over time, then we added one more
variable for the radial spatial spreading dependent on the time varia-
tion. The overall equation expressed as:

h x, y, tð Þ = μ � exp �Ψ x, y, tð Þ
2σs

� �2
 !

� exp � T � tð Þ2
2τð Þ2

 !
ð16Þ

Ψ x, y, tð Þ= Δx2 +Δy2
� � � exp T � tð Þ2

2τð Þ2

 !
with σS, τ >0 ð17Þ

Whereas Ψ x, y, tð Þ simulate the radial dynamic dispersion of vesicle
cargo over time, t is the current frame, T is the frame where the fusion
occurs, τ is the fusion time interval, σS is the fusion radial spread and μ
is the fluorescence intensity magnitude.

For the noise control analysis, twenty videos with distinct SNRs
were generated usingMATLAB. Initially, a baseline video with no noise
was created. Artificial white noisewas then added to this baseline using
the built-in function imnoise(). Subsequently, the MATLAB built-in
poissrnd() functionwas utilized to generate randomphoton shot noise
commonly observed in microscopy. A Gaussian blur was applied to it
to replicate the point spread function seen in microscopy images.
Finally, the processed noise was added to the video to achieve the
desired noise characteristics. The Poissonnoisewasmodeled using the
following equation:

Inoise x, yð Þ: = Poisson λ � I x, yð Þð Þ ð18Þ

Where λ is the scaling factor that controls the relative level of noise.
To explore the impact of noise across a range of conditions, the

scaling factor λ was varied incrementally from 0.1 up to 10 times the
signal. Higher values of λ correspond to higher noise levels (lower
SNR), while lower values of λ reduce the noise relative to the signal
(higher SNR).

Hotspot area detection algorithm
The IVEA hotspot area extraction is based on DART algorithms, which
employ unsupervised learning to segment the image into different
layers. Following image segmentation, theMIC algorithm is performed
to address the non-uniform regional fluctuations in fluorescence
intensity, which is conducted prior to foreground subtraction. MIC is
an enhanced version of the simple ratio and the previousmethod used
with DART. MIC clusters the first image into a series of layers, wherein
each layer comprises a group of labeled pixels that exhibit a close
range of gray values, as determined by k-mean clustering. This process
can be expressed as I x, yð Þ ! I x, y, kð Þj k = N5 (Supplementary
Fig. 12). Conventional approach (DART) involves the addition of the
difference in gray values of clusters between two subsequent images.
In contrast, with MIC we employed a simple ratio equation for each
layer, assuming that the least cluster value represents the background.
In the event of uniform regionalfluctuations, the number of clusters of
MICcouldbe reduced to k = 1; thiswouldyield a result similar to thatof
the simple ratio. MIC is expressed as:

I 0i k, x, yð Þ := μi�n kð Þ
μi kð Þ � 1

	 

� θ+ 1

	 

� Ii k, x, yð Þ ð19Þ

Where i is the i-th frame, k is the number of layers, n is the frame
difference, and θ is a user input parameter added to control intensity
adjustment, default θ= 1.

The iterative threshold consists of two distinct parts: Initially we
capture two imageswhere no events have occurred. Next, we compute
ΔI and transform it into an 8-bit image to decrease computation time
by reducing the iterations to under 255 steps. Finally, we attempt to
clear ΔI repeatedly. The clearing process consists of three sequential
operations: threshold, erosion, and median filtering. In the iterative
process, the threshold starts at half the mean intensity of ΔI, then we
perform erosion with kernel Ke n,n½ � to eliminate lone pixels ΔI =ΔI �
Ke as n= 3. After erosion, amedian filter with a user-defined radius or a
preset default value is applied. The average mean gray value of the
processed image is calculated and checked to see if it is equal to zero. If
not, iteratively the threshold increments by one gray step until we
reach an average mean value of zero. The outcome of this process
delivers the first iterative threshold decision v1. The second threshold
decision v2 is performed for the remaining images, where this
threshold is determined to correct the first threshold. The second
threshold is like the previous process, except that a specific area of the
segmented background is selected from each image (Fig. 5b). The final
threshold decision vi is determined by vi = v2 � α where α is the
threshold sensitivity, if α was set as zero. The software takes twomore
frames to learn the sensitivity; it assumes no events had occurred and
tries to correct vi by tuning α automatically. This step adjusts the
difference between iterating over the entire image and iterating
exclusively over the image’s background. Regions surpassing the glo-
bal threshold vi are considered as detected occurrences. Subse-
quently, each contiguous region is isolated and assigned a distinctive
label designating it as an event. The fluorescence intensity of each
event is spatially and temporally tracked immediately after
detection. The mean intensity of each event μe tð Þ is temporally mea-
sured over a fixed area, then we determine the mid-intensity
μmid = 1

2 μe tmin

� �
+ μe tmax

� �� �
. When the fluorescence intensity of an

event falls below μmid , the event signal is considered to have dis-
appeared and the tracking stops (Fig. 5c,d).

Mice for T Cell, chromaffin cell and DRG neuron culture
WT mice with C57BL/6N background used in this study were pur-
chased from Charles River. Synaptobrevin2-mRFP knock-in (KI) mice
were generated asdescribed inMatti et al.14. GranzymeB-mTFPKImice
with C57BL/6 J background were generated as described previously57.
Granzyme B-tdTomato KI mice58 were purchased from the Transgen-
esis and Archiving of Animal Models (TAAM) (National Centre of Sci-
entific Research (CNRS), Orleans, France). Mice were housed in
individually ventilated cages under specific pathogen-free conditions
in a 12 h light-dark cycle with constant access to food and water. All
experimental procedures were approved and performed according to
the regulations by the state of Saarland (Landesamt für Ver-
braucherschutz, AZ.: 2.4.1.1).

Murine CD8+T cells
Culture. Splenocytes were isolated from 8–20week-old mice of either
sex as described before22. Briefly, naive CD8 T cells were positively
isolated from splenocytes using Dynabeads FlowComp Mouse CD8+
kit (Thermo Fisher Scientific, Cat# 11462D) as described by the man-
ufacturer. The isolated naive CD8 +T cells were stimulated with anti-
CD3ε /anti-CD28 activator beads (1:0.8 ratio, Thermo Fisher Scientific,
Cat# 11453D) and cultured for 5 days at 37 °C with 5% CO2. Cells were
cultured at a density of 1 × 106 cells/ml in 12 well plates with AIMV
medium(ThermoFisher Scientific, Cat# 12055083) containing 10%FCS
(Thermo Fisher Scientific, Cat# A5256901), 50 U/ml penicillin, 50μg/ml
streptomycin (Thermo Fisher Scientific, Cat# 15140163), 30 U/ml
recombinant IL-2 (Thermo Fisher Scientific, Cat# 212-12-100 µg) and
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50μM 2-mercaptoethanol (Sigma, Cat# M6250). Beads and IL-2 were
removed from T cell culture 1 day before experiments.

Transfection and constructs. Day 4 effector T cells were transfected
12 h prior to the experiment through electroporation of the Plasmid
DNA (Granzyme B-pHuji, Synaptobrevin2-pHuji, CD63-pHuji) using
Nucleofector™ 2bDevice (Lonza) and the nucleofection kit for primary
mouse T cells (Lonza, Cat# VPA-1006), according to the manu-
facturer’s protocol (Lonza). After nucleofection, cells were maintained
in a recovery medium as described by Alawar et al.59. 4 h prior to the
experiment the cells were washed with AIMV medium. The pMax_-
granzyme B-pHuji construct was generated by replacing the mTFP at
the C-terminus of pMax-granzyme-mTFP57 with pHuji using a forward
primer that included anAgeI restriction site 5′-ATGTAT ATCCACCGG
TCG CCA CCA TGG TGA GCA AGG GCG AGG AG-3′ and a reverse
primer that included a NheI restriction site 5′-ATG TAT AGC TAG CTT
ACT TGT ACA GCT C-3′. The size of this plasmid was 4.315 kb. The
pmax-CD63-pHuji was generated by subcloning from pCMV-CD63-
pHuji60, which was a generous gift from Frederik Verweij (Centre de
Psychiatrie et neurosciences, Amsterdam/Paris), into pMax with the
restriction sites EcoRI and XbaI. Its size was 4.282 kb. Synaptobrevin2-
pHuji plasmid was generated as described in ref. 61.

Acquisition conditions. Measurement of exocytosis was performed
via TIRFM as follows. We used day 5 bead activated CTLs isolated from
GzmB-mTFP KI, GzmB-tdTomato KI, Synaptobrevin2-mRFP KI or WT
mice. The latter were transfected with the above descripted con-
structs. 3 × 105 cells were resuspended in 30μl of extracellular
buffer (10mM glucose, 5mM HEPES, 155mM NaCl, 4.5mM KCl, and
2mM MgCl2) and allowed to settle for 1–2min on anti-CD3ε antibody
(30μg/ml, BD Pharmingen, clone 145-2C11) coated coverslips to allow
immunological synapse formation triggering lytic granule exocytosis.
Cells were then perfused with extracellular buffer containing calcium
(10mM glucose, 5mM HEPES, 140mMNaCl, 4.5mM KCl, 2mMMgCl2
and 10mM CaCl2) to stimulate CG secretion. Cells were recorded for
10min at 20± 2 °C.

Imaging. Live cell imagingwas donewith two setups. The experiments
performed with CTL (lytic granule staining with synaptobrevin-mRFP,
granzyme B-mTFP or granzyme B-tdTomato) were performed with
setup # 1 described previously22,26,45. Briefly, an Olympus IX70 micro-
scope (Olympus, Hamburg, Germany) was equipped with a 100x/1.45
NA Plan Apochromat Olympus objective (Olympus, Hamburg, Ger-
many), a TILL-total internal reflection fluorescence (TILL-TIRF) con-
denser (TILL Photonics, Kaufbeuren, Germany), and a QuantEM 512SC
camera (Photometrics, Tucson, AZ, USA) or Prime95B scientificCMOS
camera (Teledyne Photometrics, Tucson, AZ, USA). The final pixel size
was 160 nm and 110 nm, respectively. A multi-band argon laser
(Spectra-Physics, Stahnsdorf, Germany) emitting at 488 nm was used
to excite mTFP fluorescence, and a solid-state laser 85 YCA emitting at
561 nm (Melles Griot Laser Group, Carlsbad, CA, USA) was used to
excite mRFP and tdTomato. The setup was controlled by Visiview
software (Version:4.0.0.11, Visitron GmbH). The acquisition frequency
was 10Hz for all experiments.

The setup # 2 used to acquire CTL secretion, in which the lytic
granules were labeled by Synaptobrevin-pHuji, granzyme B-pHuji and
CD63-pHuji overexpression, was previously described57,61. Briefly the
setup from Visitron Systems GmbH (Puchheim, Germany) was based
on an IX83 (Olympus) equippedwith theOlympus autofocusmodule, a
UAPON100XOTIRF NA 1.49 objective (Olympus), a 445 nm laser
(100mW), a 488 nm laser (100mW) and a solid-state 561 nm laser
(100mW, Melles Griot Laser Group, Carlsbad, CA, USA). The TIRFM
angle was controlled by the iLAS2 illumination control system (Roper
Scientific SAS, France). Images were acquired with a QuantEM 512SC
camera (Photometrics, Tucson, AZ, USA) or Prime95B scientificCMOS

camera (Teledyne Photometrics, Tucson, AZ, USA). The final pixel size
was 160 nm and 110 nm, respectively. The setup was controlled by
Visiview software (Version 4.0.0.11, Visitron GmbH). The acquisition
frequency was 5 or 10Hz, and the acquisition time was 10 to 15min.

Murine DRG neurons
Culture and transfection. The training of the Stationary burst event
neural network and the automatic detection of neuronal exocytosis at
synapse was performed on data sets that were previously
published45,46. Shortly DRG neuron cultures from young adult
(1–4weeks old) WT of either sex was made as previously described26.
Lentivirus infection to transfect with SypHy was performed on DIV1.
The following day, the lentivirus was removed by washing before
adding the secondorder spinal cord (SC) interneurons (SC neurons) to
the culture to allow DRG neurons to form synapses. SC neurons were
prepared from WT P0-P2 pups of either sex using as previously
described45. DRG/SC co-culture wasmaintained in Neurobasal A (NBA)
medium (Cat#° 21103049) supplemented with fetal calf serum (5% v/v,
Cat# 11550356), penicillin and streptomycin (0.2% each, Cat#
11548876), B27 supplement (2%, Cat# 17504-044), GlutaMAX (1%, Cat#
35050-061, all products from Thermo Fisher Scientific, Waltham, MA,
USA), and human beta-nerve growth factor (0.2 µg/mL, Cat# N245,
Alomone Labs, Jerusalem, Israel) at 37 °C and 5% CO2.

Acquisitionconditions. Secretionwas evokedbyelectrical stimulation
via a bipolar platinum-iridium field electrode (Cat# PI2ST30.5B10,
MicroProbes, Gaithersburg, MD, USA) and a pulse stimulator (Isolated
Pulse Stimulator Model 2100, A-M Systems, Sequim, WA, USA). The
measurement protocol was 30 s without stimulus followed by a
biphasic 1ms long 4V stimulus train at 10Hz for 30 s to elicit exocy-
tosis of SVs. At the end of the measurement, NH4Cl was applied to
visualize the entire SV pool. During themeasurement, the temperature
was maintained at 32 °C by a perfusion system with an inline solution
heater (Warner Instruments, Holliston, MA, USA). The extracellular
solution contained 147mM NaCl, 2.4mM KCl, 2.5mM CaCl2, 1.2mM
MgCl2, 10mM HEPES, and 10mM glucose (pH 7.4; 300mOsm). The
NH4Cl solution had the samecomposition as the extracellular solution,
but the NaCl was replaced with 40mMNH4Cl. All products were from
Sigma-Aldrich/Merck.

Imaging. All experiments were performed on Setup # 1 described
above for the CTLs.

Chromaffin cells
Data showing bovine chromaffin cells exocytosis was from Becherer
et al.62 and Hugo et al.14. Culture condition was described by Ashery
et al.63. Briefly, chromaffin cells were dissociated from the bovine
adrenal gland by enzymatic dissociation (20min) with 129.5 units per
ml collagenase (Cat# C1-22, BiochromAG, Berlin Germany). They were
maintained for 3–5 days in culture in DMEM (Cat# 31966021) con-
taining ITS-X (1:100 dilution, Cat# 51500056), Penicillin/Streptavidin
(1:250, Cat# 15070063) all products from Thermo Fisher Scientific,
Waltham, MA, USA. They were electroporated with NPY-mRFP to label
the large dense core granules using the Gene Pulser II (Biorad, Her-
cules, Ca, USA, at 230V 1mF) or the Neon™ transfection system (Invi-
trogen, Karlsruhe, Germany, using one pulse at 1100 V for 30ms). Cells
were patch-clamped in whole cell recording modus using an EPC-9
patch-clamp amplifier controlled by the PULSE software (Heka Elek-
tronik, Lambrecht, Germany). The extracellular solution contained (in
mM): 146 NaCl, 2.4 KCl, 10 HEPES, 1.2 MgCl2, 2.5 CaCl2, 10 glucose and
10 NaHCO3 (pH 7.4, 310mOsm). Secretion was induced through either
depolarization trains62 or perfusion of the cells with 6μM Ca2+ con-
taining solution via the patch-clamp pipette14. The intracellular solu-
tion contained (inmM)either (experiment from ref. 14) 160Cs-aspartic
acid, 10HEPES, 1MgCl2, 2Mg-ATP, 0.3Na2-GTP (pH 7.2, 300mOsm) or
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(experiment from ref. 62) 110 Cs-glutamate, 10 HEPES, 2 Mg-ATP, 0.3
Na2-GTP, 5 CaCl2, 9 HEDTA (pH 7.2, 300mOsm). All products for the
solutions were from Sigma-Aldrich/Merck. The acquisition rate was
10Hz and the exposure time was 100ms. The camera was either a
Micromax 512BFT camera (Princeton Instruments Inc., Trenton, NJ,
USA) with 100 × /1.45 NA Plan Apochromat Olympus objective62, or a
QuantEM 512SC camera (Photometrics, Tucson, AZ, USA) with an
100 × /1.45 NA Fluar (Zeiss) objective14, giving a final pixel size of 130or
160 nm2 respectively.

INS-1 cells
Culture and transfection. Rat insulinoma cells64 (INS-1 cells, clone
832/13 provided byHendrikMulder, LundUniversity) weremaintained
in RPMI 1640 (Invitrogen, Cat#21870076) containing 10mM glucose
and supplemented with 10% fetal bovine serum(Sigma-Aldrich, Cat#
F7524), streptomycin (100 µg/ml) and penicillin (100 µg/ml, Biowest,
Cat# L0022), Na-pyruvate (1mM, Gibco, Cat# 11360-070) L-glutamine
(2mM, Biowest, Cat# X0550), HEPES (10mM, Gibco, Cat# 15630-080)
and 2-mercaptoethanol (50 µM,Gibco, Cat# 31350-010). The cells were
platedonpolylysine-coated coverslips (Sigma-Aldrich, Cat# P5899 and
Marienfeld, Cat# 112620), transfected using lipofectamine 2000
(Invitrogen, Cat#11668-019) with a ratio of 0.1 µg DNA:1 µl lipofecta-
min, and imaged 24-42 h later.

Acquisition conditions. The bath solution contained (in mM) 138
NaCl, 5.6 KCl, 1.2 MgCl2, 2.6 CaCl2, 10 D-glucose, 0.2 diazoxide (Sigma,
Cat# D9035), 0.2 forskolin (Merk, Cat# 93049), and 10 HEPES (Sigma,
Cat#H4034-1KG), pH 7.4 adjusted with NaOH. Individual cells were
stimulated by computer-controlled air pressure ejection of a solution
containing elevated K+ (75mM replacing Na+) through a pulled glass
pipette (similar to patch clamp electrode, Hilgenber, Cat# 1003027)
that was placed near the recorded cell. The bath solution temperature
was kept at 35 °C using a FCS13-A electronic heater (Shinho, Cat#
FCS11E7 2002.07).

Imaging. INS1 cells (clone 832/13) that transiently expressed NPY-
mGFP, NPY-mNeonGreen or NPY-mCherry were imaged using a
custom-built lens-type total internal reflection (TIRF) microscopes
based on AxioObserver D1 microscope with an x100/1.46 objective
(Carl Zeiss, Cat# 420792-9800-720). Excitation was from a diode laser
module at 473 nm, or a diode pumped laser at 561 nm, respectively
(Cobolt, Göteborg, Sweden, Cat# 0473-06-01-0300-100 & Cat# 0561-
06-91-0100-100), controlled by an acoustic-optical tunable filter
(AOTF, AA-Opto, France, Cat#AOTFnC-400 650-TN). Light passed
through a dichroic Di01-R488/561 (Semrock), and emission light was
separated onto the two halves of a sCMOS camera (Prime 95B, Pho-
tometrics, Tucson, AZ, USA, Cat# 01-PRIME-95B-R-M-16-C) using an
image splitter (Dual view, Photometrics) with a cutoff at 565 nm
(565dcxr, Chroma) and emission filters (FF01-523/610, Semrock; and
ET525/50m and 600EFLP, both fromChroma). Scaling was 110 nm per
pixel (sCMOS camera). The acquisition rate for NPY-mNeonGreen was
50Hz and 10Hz for NPY-mCherry. NPY-eGFP expressing INS1 cells
were imaged using a TIRF microscope that was based on an AxioOb-
server Z1 (Zeiss) with a diode pumped laser at 491 nm (Cobolt,
Stockholm, Sweden, Cat# DC-4915615050-300) that passed through a
cleanup filter and dicroic filter set (zet405/488/561/640x, Chroma).
Imaging was done with a 16-bit EMCCD camera (QuantEM 512SC,
Roper) with a final scale of 160 nm per pixel. The acquisition rate was
10Hz. Image acquisition was conducted with MetaMorph (V7.8.0.0,
Molecuar Devices).

Human CD8+T lymphocytes
Cells. Human CD8 +T cell clones were used as cellular model. Human
T cell clones were isolated and maintained as previously described65.

Briefly, cells were cultured in RPMI 1640 medium GlutaMAX (Gibco,
Cat# 61870036) supplemented with 5% heat inactivated human AB
serum (Institut de Biotechnologies Jacques Boy, Cat# 201021334),
50μM 2-mercaptoethanol (Gibco, Cat# 31350010), 10mM HEPES
(Gibco, Cat# 15630122), 1× MEM-Non-Essential Amino Acids (MEM-
NEAA) (Gibco, Cat# 11140035), 1× sodium pyruvate (Sigma-Aldrich,
Cat# S8636), ciprofloxacin (10μg/ml, Sigma-Aldrich Cat# 17850),
human recombinant interleukin-2 (rIL-2; 100 IU/ml, Miltenyi Biotec
Cat# 130-097-748), and human rIL-15 (50ng/ml, Miltenyi Biotec, Cat#
130-095-766). Blood samples were collected and processed following
standard ethical procedures after obtaining written informed consent
from each donor and approval by the FrenchMinistry of the Research
as described (Cortacero et al. 2023, authorization no. DC-2021-4673).

Acquisition conditions. Human CTLs were stained for 30min with
Lysotracker red (DND-99) dye (2 µM, Invitrogen Cat# L7528) at 37 °C/
5% CO2. The cells were washed 3 timeswith RPMI 1640medium (1X) w/
opHRed (Gibco,Cat# 11835063) supplementedwith 10mMGlutaMAX
(Gibco, Cat# 35050061) and 10mM of HEPES (Gibco, Cat# 15630122).
To induce immunological synapse formation followed by lytic granule
exocytosis µ-Slide 15 Well 3D glass bottom slides (Ibidi, Biovalley Cat#
81507) were coated with poly-D-lysine (1:10, Sigma-Aldrich Cat#
P6407), human monoclonal anti-CD3 antibody (TR66) (5 µg/mL or
10 µg/mL, Enzo Life Sciences Cat# ALX-804-822) and recombinant
human ICAM-1/CD54 Fc Chimera Protein (5 µg/mL or 10 µg/mL, R&D
Systems Cat# 720-IC) at 4 °C overnight. The chambered slides were
washed 3 times with PBS 1X (Sigma-Aldrich Cat# D8537) and mounted
on a heated stage within a temperature-controlled chamber main-
tained at 37 °C and constant 5% CO2. For each recording, 3 × 104 to
5 × 104 cells were seeded on the chambered slides. During acquisition,
the cells were in RPMI 1640 medium (1X) w/o pH Red supplemented
with 10mM GlutaMAX, 10m HEPES and 5% Fetal Bovine Serum (FBS,
Gibco, Cat# A5256701).

Imaging. The TIRFM set up acquisition was based on an Eclipse Ti2-E
inverted microscope (Nikon Instruments) equipped with a 100 × /1.45
NA Plan Apochromat LBDA objective (Nikon Instruments) and an iLAS
2 illumination control system (Roper Scientific SAS). A diode laser at
561 nm (150mW) (Coherent) band-passed using a ZET405/488/561/
647x filter (Chroma Technology) was used for excitation. The emis-
sions were separated using a ZT405/488/561/647rpc-UF1 dichroic
mirror (Chroma Technology) and optically filtered using ZET405/488/
561/647m filter (Chroma Technology). Images were recorded on a
Prime 95B Scientific CMOS Camera (Teledyne Photometrics, Tucson,
AZ, USA). The final pixel size was 110 nm. Image acquisition was con-
trolled using MetaMorph Software (Version 7.10.5.476, Molecular
Devices) and Modular V2.0 GATACA software. The acquisition fre-
quency was 9Hz for a duration of 20 to 30min.

Dopaminergic neurons
Data showing dopaminergic neuron exocytosis monitored by Andro-
meDA nanosensor paint technology were from Elizarova et al.39.
Briefly, ventral midbrain neurons were dissected from postnatal day 0
C57BL/6 mice and enzymatically dissociated using papain (Worthing-
ton, Cat# 9001-73-4). Cells were plated on glass coverslips pre-coated
with poly-L-lysine (Sigma-Aldrich, Cat# P4707-50ML) and maintained
in Neurobasal-A medium (Gibco, Cat# 11540366) supplemented with
B-27 (Gibco, Cat# 17504-044), GlutaMAX (Gibco, Cat# 35050-038), and
penicillin-streptomycin (Gibco, Cat# 15140-130). Neurons were cul-
tured at 37 °C in a humidified 5%CO₂ atmosphere and imaged between
DIV 21 and DIV 42. The imaging setup included a 100× oil-immersion
objective (UPLSAPO100XS, Olympus) and a Xenics Cheetah-640-TE1
InGaAs camera (Xenics), yielding a final pixel size of 150nm. Imaging
was performed at 15Hz.
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Cardiomyocytes from mouse
Data showing Fluo4 measured calcium sparks in mouse cardiomyo-
cytes were from Tian and Lipp44. Mouse ventricular myocytes were
isolated as previously described with full details66. All the procedures
concerning animal handling conformed to the guidelines from Direc-
tive 2010/63/EU of European Parliament. After isolatation, the cardi-
omyocytes were rinsed in equilibrium solution (in mM, 140 KCl, 0.75
MgCl2, 0.2 EGTA, 10 HEPES, pH 7.20; from Sigma-Aldrich/Merck) for
2 ~3min to let the cells settle. The cells were then rinsed with saponin
(ChemCruz, Cat# sc-280079, 15 pg/ml dissolved in equilibrium solu-
tion) for 40 s. After that the solution was completely removed and
exchanged with artificial internal solution (in mM, 100 K-Aspartate, 15
KCl, 5 KH2PO4, 0.5 EGTA, 10HEPES, 10 phosphocreatine (CalBioChem,
Cat# 2380), 8% ~40,000MW dextran (Sigma, Cat# 31389), 5 MgATP,
5 U/mL creatine phosphokinase (CalBioChem, Cat# 2380), 10μMFluo-
4 (Invitrogen, Cat# F14200)). pH was set to 7.2 and the free Ca2+ was
calibrated to 100nM. For more details, please refer to67. The data was
recorded with 2D-array scanning confocal microscope (Infinity4, Visi-
tech, Sunderland, UK) equipped with a NIKON 60x oil immersion
objective (NA = 1.40) and a sCMOS Flash4 V2 camera fromHamamatsu
(Hamamatsu Photonics Deutschland GmbH, Herrsching am Ammer-
see, Germany). In the camera settings, two by two binning
(0.217 × 0.217 μm/pixel) was used when the imaging was done with the
imaging software VolCell (v8.03.0.3, Visitech, Sunderland, UK). Sui-
table area of the camera chipwas selected such that afinal speed of 124
frames per second was achieved.

Statistical analysis and used programs and algorithms
All statistical analyses were performed with SigmaPlot (V14.5.0.101,
Systat Software, Inc.). P-values were calculated with two-tailed statis-
tical tests and 95% confidence intervals. ANOVA, ANOVA on ranks and
Student’s t-test were used as required. Data analysis and proces-
sing was performed with MATLAB (Mathworks 2024b) and Excel 2021
(Microsoft (V2108)).

IVEA was developed in Java 1.8.0_322 using Eclipse and the fol-
lowing Java libraries: ij (V1.54c), opencsv, bio-formats_plugins, loci_-
plugins, deeplearning4j core v1.0.0-M1.1, Google TensorFlow v1.15.0,
libtensorflow_jni v1.15.0.

IVEA for training was done in Python v3.8.15 language using with
the following libraries: Google TensorFlow v2.9.1 or v2.10, Keras,
Numpy, Scikit-image, Tkinter, shutil, pandas, h5py, and read_roi.

IVEA training platformwas codedwith visual studio code V1.100.2
We used deep learning long-short term memory network, vision

transformer network, convolution neural network, k-means clustering,
iterative thresholding, Gaussian non-maximum suppression and mul-
tilayer intensity correction algorithm for software development.

Imaging data were analyzed by the human expert with Fiji V1.54p.
The results were compared to ExoJ (V1.09), pHusion and SynActJ
V0.3 software.

Figures were prepared with CorelDraw V23.5.0.506 and Adobe
Illustrator V29.5.1.

Ethics statement
Micewere treated according to the regulations of the local authorities,
the state of Saarland (Landesamt für Verbraucherschutz) under the
license AZ.: 2.4.1.1 or the Niedersächsisches Landesamt für Ver-
braucherschutz und Lebensmittelsicherheit (LAVES, permit numbers
33.19-42502-04-19/3254, 33.19.42502-04-15/1817 and 33.19-42502-04-
18/2756). Animals were housed according to EuropeanUnion Directive
63/2010/EU and ETS 123 at 21 + /- 1 °C, 55% relative humidity, under a
12 h/12 h light/dark cycle, and received food and tap water ad libitum.
Human blood samples were collected and processed following stan-
dardethical procedures after obtainingwritten informedconsent from
each donor and approval by the French Ministry of the Research
(authorization no. DC-2021-4673).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All original datasets used in this study, including the Source Data file,
the labeled training data, and demonstration videos, have been
deposited on Zenodo: https://doi.org/10.5281/zenodo.13153017. Data
will bemade available without restriction upon request via the Zenodo
web interface. However, the underlying data for Fig. 3 and Supple-
mentary Data 4 will be provided without restriction only to pro-
grammerswho require access to a large amount of data for testing and
training new models. Source data are provided with this paper.

Code availability
The code used to develop the model, perform the analyses, and gen-
erate the results in this study is publicly available under the GPL v3.0
license at GitHub: https://github.com/AbedChouaib/IVEA. The version
of the code associated with this manuscript has been archived on
Zenodo at https://doi.org/10.5281/zenodo.1549813968.
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