Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45988
Titel: Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis
VerfasserIn: Chouaib, Abed Alrahman
Chang, Hsin-Fang
Khamis, Omnia M.
Alawar, Nadia
Echeverry, Santiago
Demeersseman, Lucie
Elizarova, Sofia
Daniel, James A.
Tian, Qinghai
Lipp, Peter
Fornasiero, Eugenio F.
Valitutti, Salvatore
Barg, Sebastian
Pape, Constantin
Shaib, Ali H.
Becherer, Ute
Sprache: Englisch
Titel: Nature Communications
Bandnummer: 16
Heft: 1
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2025
Freie Schlagwörter: Cell signalling
Cellular imaging
Machine learning
Software
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.
DOI der Erstveröffentlichung: 10.1038/s41467-025-61579-3
URL der Erstveröffentlichung: https://doi.org/10.1038/s41467-025-61579-3
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-459889
hdl:20.500.11880/40355
http://dx.doi.org/10.22028/D291-45988
ISSN: 2041-1723
Datum des Eintrags: 7-Aug-2025
Bezeichnung des in Beziehung stehenden Objekts: Supplementary information
In Beziehung stehendes Objekt: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM3_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM6_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM7_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM8_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-025-61579-3/MediaObjects/41467_2025_61579_MOESM9_ESM.pdf
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Anatomie und Zellbiologie
M - Physiologie
Professur: M - Prof. Dr. Peter Lipp
M - Prof. Dr. Jens Rettig
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s41467-025-61579-3.pdf6,65 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons