Please use this identifier to cite or link to this item: doi:10.22028/D291-44577
Title: Joint learn: A python package for task-specific weight sharing for sequence classification
Author(s): Khan, Shahrukh
Shahid, Mahnoor
Language: English
Title: Software impacts
Volume: 13
Publisher/Platform: Elsevier
Year of Publication: 2022
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Transfer Learning has enabled cutting-edge improvements in Deep Learning to attain state-of-the-art outcomes, notably in the domain of Natural Language Processing. Despite this, neural networks trained on the low-resource text classification corpora still face challenges because of the lack of pre-trained model checkpoints. In this paper, we introduce Joint Learn which is a PyTorch based comprehensive toolkit for weight sharing for text classification that leverages task-specific weight sharing to train a joint neural network for several sequence classification tasks and aids in the development of more generalized models while potentially eliminating the transfer learning issues that low-resource corpora encounter.
DOI of the first publication: 10.1016/j.simpa.2022.100317
URL of the first publication: https://www.sciencedirect.com/science/article/pii/S2665963822000513
Link to this record: urn:nbn:de:bsz:291--ds-445779
hdl:20.500.11880/39766
http://dx.doi.org/10.22028/D291-44577
ISSN: 2665-9638
Date of registration: 7-Mar-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S2665963822000513-main.pdf763,84 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons