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Transfer Learning has enabled cutting-edge improvements in Deep Learning to attain state-of-the-art outcomes,
notably in the domain of Natural Language Processing. Despite this, neural networks trained on the low-
resource text classification corpora still face challenges because of the lack of pre-trained model checkpoints.
In this paper, we introduce Joint Learn which is a PyTorch based comprehensive toolkit for weight sharing for
text classification that leverages task-specific weight sharing to train a joint neural network for several sequence

classification tasks and aids in the development of more generalized models while potentially eliminating the
transfer learning issues that low-resource corpora encounter.
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1. Introduction

There have been certain significant breakthroughs in the field of
the Natural Language Processing paradigm with the advent of atten-
tion mechanism and its use in transformer sequence-sequence models
coupled with different transfer-learning techniques have quickly be-
come state-of-the-art in multiple pervasive Natural Language Process-
ing tasks [1,2]. However, one potential problem arises from the lack
of pre-trained model checkpoints for low-resource text classification
corpora. Since training state-of-the-art neural networks require a sig-
nificant amount of data when training from scratch [3]. In this paper,
we propose Joint Learn which is an alternative solution for training
neural networks from scratch on low-resource languages. It enables
researchers to train a joint neural network instead of training separate
models for multiple text classification tasks in multiple languages. This

has multiple side benefits as weight-sharing allows to mitigate the com-
plexity of neural networks [4]. It also enables better generalization and
facilitates the robustness of the trained model. Joint learn is developed
to aid researchers dealing with low-resource text classification multi-
lingual corpora while bootstrapping their experiments with a minimal
amount of code thereby it will facilitate the state-of-the-art Natural
Language Processing research and development of novel and robust text
classification applications across a range of different languages.

2. Functionalities and key features

Joint-Learn currently supports four different types of deep neural
network topologies out of the box. Two of the model architectures, as
shown in Fig. 1, utilize layers of vanilla LSTM [5] for weight sharing.
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Fig. 1. Joint learning architecture with LSTM and linear/self attention.
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Fig. 2. Joint learning architecture with LSTM, transformer encoder and linear/self
attention.

However, for the last block, we can either have a linear layer that gen-
erates the output or it can be replaced by Self-Attention block [6] that
introduces sequence level attention mechanism to handle long-term
dependencies in texts.

Furthermore, the other two variants include the Transformers En-
coder [2] to attend to inputs using multi-head attention as depicted in
Fig. 2. Likewise, the last block following LSTM, can either be Linear
or Self Attention. These models can be trained directly after feeding in
the datasets belonging to any language. Joint Learn also allows to load
custom and pre-trained embeddings such as GloVe [7], FastText [8] and
Word2Vec [9] independent of source language.

3. Impact overview

The proposed framework can be used by researchers and developers
to train models on novel multi-lingual datasets and potentially build
strong baselines and has already been used in Hindi/Bengali Sentiment
Analysis Using Transfer Learning and Joint Dual Input Learning with Self
Attention [10]. Joint Learn also provides features to load and save pre-
trained checkpoints hence facilitating the opportunities to collaborate
while using it. Moreover, it provides an interface to train language-
agnostic models hence not limiting the users to specific languages.
Furthermore, Joint Learn has a highly configurable implementation
enabling the users to extend it to new neural architectures and other
natural language processing tasks i.e. multi-label classification. Joint
Learn is task agnostic for text classification tasks, which means the
joint network can be trained for diverse nature of tasks simultaneously.
For instance, the joint network can be used to train for sentiment,
hate-speech, and intent classification using the same model hence
resulting in models which are computationally efficient not only during
training but also at inference. Finally, it also provides generic text pre-
processing and PyTorch-based data-loader pipelines which facilitate
instantiating an arbitrary number of data-loaders and pre-processors
simultaneously which unifies and integrates well with the training of
the joint network.
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## init j1 lstm self-attention

jl_lstm = JLLSTMAttentionClassifier(
batch_size=batch_size,
hidden_size=hidden_size,
lstm_layers=1stm_layers,
embedding_size=embedding_size,
dataset_hyperparams=dataset_hyperparams,
bidirectional=bidirectional,
fc_hidden_size=fc_hidden_size,
self_attention_config=self_attention_config,
device=device,

## define optimizer and loss function
optimizer = torch.optim.Adam(params=j1_lstm.parameters())

train_model(

model=j1_1lstm,

optimizer=optimizer,

dataloaders=j1_dataloaders,

max_epochs=max_epochs,

config_dict={
"device": device,
"model_name": "j1_lstm_attention",
"self_attention_config": self_attention_config,

}I

Fig. 3. Example of training a joint self attention LSTM with PyTorch.

## init jl transformer lstm

j1_lstm = JLLSTMTransformerClassifier(
batch_size=batch_size,
hidden_size=hidden_size,
1stm_layers=1stm_layers,
embedding_size=embedding_size,
nhead=nhead,
transformer_hidden_size=transformer_hidden_size,
transformer_layers=transformer_layers,
dataset_hyperparams=dataset_hyperparams,
device=device,
max_seq_length=max_seq_length,

## define optimizer and loss function
optimizer = torch.optim.Adam(params=j1_lstm.parameters())

train_model(
model=j1_1lstm,
optimizer=optimizer,
dataloaders=j1_dataloaders,
max_epochs=max_epochs,
config_dict={"device": device, "model_name": "jl_lstm"},

Fig. 4. Example of training a joint transformer LSTM with PyTorch.

4. Usage

Joint Learn provides an intuitive interface for jointly training mod-
els from scratch in PyTorch. An example of training a joint self attention
LSTM with PyTorch is shown in Fig. 3 whereas Fig. 4 shows an example
of jointly training a transformer-based LSTM in the joint learn package.

5. Conclusion and future work

Joint Learn provides a flexible and intuitive interface for researchers
and users to train models with minimal boilerplate code. We intend to
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extend the capabilities of Joint Learn to include other state-of-the-art
neural architectures such as BERT [11]. Moreover, we also aim to add a
visualization feature for visualizing self attention mechanism and multi-
head attention from transformers. Lastly, we are also planning to make
the Joint Learn package accessible through PyPI in order to ensure ease
of use and installation.
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