Software Impacts 13 (2022) 100317

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

Original software publication

Joint learn: A python package for task-specific weight sharing for sequence M)

classification (&)
Shahrukh Khan *, Mahnoor Shahid

Saarland University, Germany

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Deep learning
Text classification
Weight sharing
Transformers

Transfer Learning has enabled cutting-edge improvements in Deep Learning to attain state-of-the-art outcomes,
notably in the domain of Natural Language Processing. Despite this, neural networks trained on the low-
resource text classification corpora still face challenges because of the lack of pre-trained model checkpoints.
In this paper, we introduce Joint Learn which is a PyTorch based comprehensive toolkit for weight sharing for
text classification that leverages task-specific weight sharing to train a joint neural network for several sequence

classification tasks and aids in the development of more generalized models while potentially eliminating the
transfer learning issues that low-resource corpora encounter.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v.1.0
https://github.com/Softwarelmpacts/SIMPAC-2022-36
https://codeocean.com/capsule/6910469/tree/v1

MIT License

git

Python

Pytorch

shkh00001 @stud.uni-saarland.de

1. Introduction

There have been certain significant breakthroughs in the field of
the Natural Language Processing paradigm with the advent of atten-
tion mechanism and its use in transformer sequence-sequence models
coupled with different transfer-learning techniques have quickly be-
come state-of-the-art in multiple pervasive Natural Language Process-
ing tasks [1,2]. However, one potential problem arises from the lack
of pre-trained model checkpoints for low-resource text classification
corpora. Since training state-of-the-art neural networks require a sig-
nificant amount of data when training from scratch [3]. In this paper,
we propose Joint Learn which is an alternative solution for training
neural networks from scratch on low-resource languages. It enables
researchers to train a joint neural network instead of training separate
models for multiple text classification tasks in multiple languages. This

has multiple side benefits as weight-sharing allows to mitigate the com-
plexity of neural networks [4]. It also enables better generalization and
facilitates the robustness of the trained model. Joint learn is developed
to aid researchers dealing with low-resource text classification multi-
lingual corpora while bootstrapping their experiments with a minimal
amount of code thereby it will facilitate the state-of-the-art Natural
Language Processing research and development of novel and robust text
classification applications across a range of different languages.

2. Functionalities and key features

Joint-Learn currently supports four different types of deep neural
network topologies out of the box. Two of the model architectures, as
shown in Fig. 1, utilize layers of vanilla LSTM [5] for weight sharing.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.

E-mail addresses: shkh00001@stud.uni-saarland.de (S. Khan), mash00001@stud.uni-saarland.de (M. Shahid).

https://doi.org/10.1016/j.simpa.2022.100317

Received 22 March 2022; Received in revised form 21 April 2022; Accepted 11 May 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100317
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100317&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-36
https://codeocean.com/capsule/6910469/tree/v1
mailto:shkh00001@stud.uni-saarland.de
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:shkh00001@stud.uni-saarland.de
mailto:mash00001@stud.uni-saarland.de
https://doi.org/10.1016/j.simpa.2022.100317
http://creativecommons.org/licenses/by/4.0/

S. Khan and M. Shahid

Embedding Layers

Embedding Layer 1

Embedding Layer 2

Output Layers

Output Layer 1

Output Layer 2

Linear
H OR —]
i Self-Attention :

Embedding Layer N

Output Layer N

Fig. 1. Joint learning architecture with LSTM and linear/self attention.

Embedding Layers Output Layers

Embedding Layer 1

Embedding Layer 2

Output Layer 1

Transformer
Encoder

Output Layer 2

Linear

Embedding Layer N

: OR 1 |
! Self-Attention :

Output Layer N

Fig. 2. Joint learning architecture with LSTM, transformer encoder and linear/self
attention.

However, for the last block, we can either have a linear layer that gen-
erates the output or it can be replaced by Self-Attention block [6] that
introduces sequence level attention mechanism to handle long-term
dependencies in texts.

Furthermore, the other two variants include the Transformers En-
coder [2] to attend to inputs using multi-head attention as depicted in
Fig. 2. Likewise, the last block following LSTM, can either be Linear
or Self Attention. These models can be trained directly after feeding in
the datasets belonging to any language. Joint Learn also allows to load
custom and pre-trained embeddings such as GloVe [7], FastText [8] and
Word2Vec [9] independent of source language.

3. Impact overview

The proposed framework can be used by researchers and developers
to train models on novel multi-lingual datasets and potentially build
strong baselines and has already been used in Hindi/Bengali Sentiment
Analysis Using Transfer Learning and Joint Dual Input Learning with Self
Attention [10]. Joint Learn also provides features to load and save pre-
trained checkpoints hence facilitating the opportunities to collaborate
while using it. Moreover, it provides an interface to train language-
agnostic models hence not limiting the users to specific languages.
Furthermore, Joint Learn has a highly configurable implementation
enabling the users to extend it to new neural architectures and other
natural language processing tasks i.e. multi-label classification. Joint
Learn is task agnostic for text classification tasks, which means the
joint network can be trained for diverse nature of tasks simultaneously.
For instance, the joint network can be used to train for sentiment,
hate-speech, and intent classification using the same model hence
resulting in models which are computationally efficient not only during
training but also at inference. Finally, it also provides generic text pre-
processing and PyTorch-based data-loader pipelines which facilitate
instantiating an arbitrary number of data-loaders and pre-processors
simultaneously which unifies and integrates well with the training of
the joint network.

Software Impacts 13 (2022) 100317

init j1 lstm self-attention

jl_lstm = JLLSTMAttentionClassifier(
batch_size=batch_size,
hidden_size=hidden_size,
lstm_layers=1stm_layers,
embedding_size=embedding_size,
dataset_hyperparams=dataset_hyperparams,
bidirectional=bidirectional,
fc_hidden_size=fc_hidden_size,
self_attention_config=self_attention_config,
device=device,

define optimizer and loss function
optimizer = torch.optim.Adam(params=j1_lstm.parameters())

train_model(

model=j1_1lstm,

optimizer=optimizer,

dataloaders=j1_dataloaders,

max_epochs=max_epochs,

config_dict={
"device": device,
"model_name": "j1_lstm_attention",
"self_attention_config": self_attention_config,

}I

Fig. 3. Example of training a joint self attention LSTM with PyTorch.

init jl transformer lstm

j1_lstm = JLLSTMTransformerClassifier(
batch_size=batch_size,
hidden_size=hidden_size,
1stm_layers=1stm_layers,
embedding_size=embedding_size,
nhead=nhead,
transformer_hidden_size=transformer_hidden_size,
transformer_layers=transformer_layers,
dataset_hyperparams=dataset_hyperparams,
device=device,
max_seq_length=max_seq_length,

define optimizer and loss function
optimizer = torch.optim.Adam(params=j1_lstm.parameters())

train_model(
model=j1_1lstm,
optimizer=optimizer,
dataloaders=j1_dataloaders,
max_epochs=max_epochs,
config_dict={"device": device, "model_name": "jl_lstm"},

Fig. 4. Example of training a joint transformer LSTM with PyTorch.

4. Usage

Joint Learn provides an intuitive interface for jointly training mod-
els from scratch in PyTorch. An example of training a joint self attention
LSTM with PyTorch is shown in Fig. 3 whereas Fig. 4 shows an example
of jointly training a transformer-based LSTM in the joint learn package.

5. Conclusion and future work

Joint Learn provides a flexible and intuitive interface for researchers
and users to train models with minimal boilerplate code. We intend to

S. Khan and M. Shahid

extend the capabilities of Joint Learn to include other state-of-the-art
neural architectures such as BERT [11]. Moreover, we also aim to add a
visualization feature for visualizing self attention mechanism and multi-
head attention from transformers. Lastly, we are also planning to make
the Joint Learn package accessible through PyPI in order to ensure ease
of use and installation.

CRediT authorship contribution statement

Shahrukh Khan: Conceptualization, Methodology, Software, Data
curation, Writing — original draft, Software, Validation. Mahnoor
Shahid: Visualization, Investigation, Reviewing and editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, Thomas Wolf,
Transfer learning in natural language processing, in: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Tutorials, Association for Computational Linguistics, Minneapolis,
Minnesota, 2019, pp. 15-18.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

Software Impacts 13 (2022) 100317

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention is all you need,
2017.

Aysu Ezen-Can,
2018.

Dejiao Zhang, Haozhu Wang, Mario A.T. Figueiredo, Laura Balzano, Learning
to share: simultaneous parameter tying and sparsification in deep learning, in:
ICLR, 2018.

Sepp Hochreiter, Jiirgen Schmidhuber, Long short-term memory, Neural Comput.
9 (1997) 1735-1780.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, Yoshua Bengio, A structured self-attentive sentence embedding,
2017.

Jeffrey Pennington, Richard Socher, Christopher Manning, GloVe: Global vectors
for word representation, in: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP, Association for Computational
Linguistics, Doha, Qatar, 2014, pp. 1532-1543.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
Tomas Mikolov, FastText.zip: Compressing text classification models, 2016, arXiv
preprint arXiv:1612.03651.

Tomas Mikolov, Kai Chen, G.s Corrado, Jeffrey Dean, Efficient estimation of
word representations in vector space, in: Proceedings of Workshop At ICLR, Vol.
2013, 2013.

Shahrukh Khan, Mahnoor Shahid, Hindi/bengali sentiment analysis using transfer
learning and joint dual input learning with self attention, BOHR Int. J. Res. Nat.
Lang. Comput. 2022 (2022).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-
training of deep bidirectional transformers for language understanding, in:
NAACL, 2019.

A comparison of LSTM and BERT for small Corpus,

http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb1
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb2
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb2
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb2
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb2
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb2
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb3
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb3
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb3
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb4
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb4
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb4
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb4
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb4
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb5
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb5
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb5
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb6
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb6
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb6
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb6
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb6
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb7
http://arxiv.org/abs/1612.03651
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb9
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb9
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb9
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb9
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb9
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb10
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb10
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb10
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb10
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb10
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb11
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb11
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb11
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb11
http://refhub.elsevier.com/S2665-9638(22)00051-3/sb11

	Joint learn: A python package for task-specific weight sharing for sequence classification
	Introduction
	Functionalities and key features
	Impact overview
	Usage
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References

