Please use this identifier to cite or link to this item: doi:10.22028/D291-43397
Title: On the Two-Dimensional Knapsack Problem for Convex Polygons
Author(s): Merino, Arturo
Wiese, Andreas
Language: English
Title: ACM transactions on algorithms : TALG
Volume: 20
Issue: 2
Publisher/Platform: ACM
Year of Publication: 2024
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: We study the two-dimensional geometric knapsack problem for convex polygons. Given a set of weighted convex polygons and a square knapsack, the goal is to select the most profitable subset of the given polygons that fits non-overlappingly into the knapsack. We allow to rotate the polygons by arbitrary angles. We present a quasi-polynomial time O(1)-approximation algorithm for the general case and a pseudopolynomial time O(1)-approximation algorithm if all input polygons are triangles, both assuming polynomially bounded integral input data. Additionally, we give a quasi-polynomial time algorithm that computes a solution of optimal weight under resource augmentation—that is, we allow to increase the size of the knapsack by a factor of 1+δ for some δ > 0 but compare ourselves with the optimal solution for the original knapsack. To the best of our knowledge, these are the first results for two-dimensional geometric knapsack in which the input objects are more general than axis-parallel rectangles or circles and in which the input polygons can be rotated by arbitrary angles.
DOI of the first publication: 10.1145/3644390
URL of the first publication: https://dl.acm.org/doi/10.1145/3644390
Link to this record: urn:nbn:de:bsz:291--ds-433975
hdl:20.500.11880/38914
http://dx.doi.org/10.22028/D291-43397
ISSN: 1549-6333
1549-6325
Date of registration: 7-Nov-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
3644390.pdf1,22 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons