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We study the two-dimensional geometric knapsack problem for convex polygons. Given a set of weighted

convex polygons and a square knapsack, the goal is to select the most profitable subset of the given poly-

gons that fits non-overlappingly into the knapsack. We allow to rotate the polygons by arbitrary angles. We

present a quasi-polynomial timeO(1)-approximation algorithm for the general case and a pseudopolynomial

timeO(1)-approximation algorithm if all input polygons are triangles, both assuming polynomially bounded

integral input data. Additionally, we give a quasi-polynomial time algorithm that computes a solution of opti-

mal weight under resource augmentation—that is, we allow to increase the size of the knapsack by a factor of

1+δ for some δ > 0 but compare ourselves with the optimal solution for the original knapsack. To the best of

our knowledge, these are the first results for two-dimensional geometric knapsack in which the input objects

are more general than axis-parallel rectangles or circles and in which the input polygons can be rotated by

arbitrary angles.
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1 INTRODUCTION

In the two-dimensional geometric knapsack problem (2DKP), we are given a square knapsack
K := [0,N ]×[0,N ] for some integer N and a set of n open convex polygons P where each polygon
Pi ∈ P has a weight wi > 0; we write w(P′) :=

∑
Pi ∈P′ wi for any set P′ ⊆ P. We assume that

each vertex of each polygon P ∈ P has integral coordinates. The goal is to select a subset P′ ⊆ P
of maximum total weight w(P′) such that the polygons in P′ fit non-overlappingly into K if we
translate and rotate them suitably (by arbitrary angles). Since the polygons are open sets, we allow
their boundaries to overlap in a feasible solution, but we do not allow their interiors to overlap.
2DKP is a natural packing problem. The reader may think of cutting items out of a piece of raw
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16:2 A. Merino and A. Wiese

Fig. 1. (a) An easy, a medium, and a hard polygon and their bounding boxes. (b) Triangles packed in a top-left

packing. (c) The geometric DP subdivides the knapsack along the dashed lines and then recurses within each

resulting area.

material like metal or wood, cutting cookies out of dough, or, in three dimensions, loading cargo
into a ship or a truck. In particular, in these applications, the respective items can have various
kinds of shapes. Also note that 2DKP is a natural geometric generalization of the classical one-
dimensional knapsack problem (see, e.g., other works [11, 15] for the classical one-dimensional
version).

Our understanding of 2DKP highly depends on the type and allowed orientation of the input
objects. If all polygons are axis-parallel squares, there is a (1 + ϵ)-approximation algorithm with a
running time of the formOϵ (1)nO (1) (i.e., an EPTAS) [6], and there can be no FPTAS (unless P = NP)
since the problem is strongly NP-hard [12]. For axis-parallel rectangles, there is a polynomial time
(17/9 + ϵ) < 1.89-approximation algorithm and a (3/2 + ϵ)-approximation algorithm if the items
can be rotated by exactly π/2 [5]. If the input data is quasi-polynomially bounded, there is a (1+ϵ)-
approximation algorithm in quasi-polynomial time [2], with and without the possibility to rotate
items by π/2. For circles, a (1+ϵ)-approximation algorithm is known under resource augmentation
in one dimension if the weight of each circle equals its area [13].

To the best of our knowledge, there is no result known for 2DKP for shapes different than axis-
parallel rectangles and circles. Additionally, there is no result known in which input polygons are
allowed to be rotated by angles different than π/2. However, in the applications of 2DKP, the items
might have shapes that are more complicated than rectangles or circles. Thus, it makes sense to
allow rotations by arbitrary angles, such as when cutting items out of some material. In this article,
we present the first results for 2DKP in these settings.

1.1 Our Contribution

We study 2DKP for arbitrary convex polygons, allowing to rotate them by arbitrary angles. Note
that due to the latter, it might be that some optimal solution places the vertices of the polygons on ir-
rational coordinates, even if all input numbers are integers. Our first results are a quasi-polynomial
time O(1)-approximation algorithm for general convex polygons and a (respectively) pseudopoly-
nomial time O(1)-approximation algorithm for triangles, assuming that N is quasi-polynomially
(respectively, polynomially) bounded in the input size.

By rotation, we can assume for each input polygon that the line segment defining its diameter is
horizontal. We identify three different types of polygons for which we employ different strategies
for packing them (Figure 1(a)). First, we consider the easy polygons, which are the polygons
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whose bounding boxes fit into the knapsack without rotation. We pack these polygons such that
their bounding boxes do not intersect. Using area arguments and Steinberg’s algorithm [14], we
obtain an O(1)-approximation for the easy polygons. Then, we consider the medium polygons
which are the polygons whose bounding boxes easily fit into the knapsack if we can rotate them
by π/4. We use a special type of packing in which the bounding boxes are rotated by π/4 and
then stacked on top of each other (Figure 2(b)). More precisely, we group the polygons by the
widths of their bounding boxes, and to each group we assign two rectangular containers in the
packing. We compute the essentially optimal solution of this type by solving a generalization of
one-dimensional knapsack for each group. Our key structural insight for medium polygons is
that such a solution is O(1)-approximate. Let OPT be an optimal solution for a given instance of
2DKP. We prove that in OPT the medium polygons of each group occupy an area that is by at
most a constant factor bigger than the corresponding containers, and that a constant fraction of
these polygons fit into the containers. In particular, we show that medium polygons with very
wide bounding boxes lie in a very small hexagonal area close to the diagonal of the knapsack. Our
routines for easy and medium polygons run in polynomial time.

It remains to pack the hard polygons whose bounding boxes just fit into the knapsack or do not
fit at all, even under rotation. Note that this does not imply that the polygon itself does not fit. Our
key insight is that there can be only O(logN ) such polygons in the optimal solution. Therefore,
we can guess these polygons in quasi-polynomial time, assuming that N is quasi-polynomially
bounded. However, in contrast to other packing problems, it is not trivial to check whether a set
of given polygons fits into the knapsack since we can rotate them by arbitrary angles and we
cannot enumerate all possibilities for the angles. Nevertheless, we show that by losing a constant
factor in the approximation guarantee, we can assume that the placement of each hard polygon
comes from a pre-computable polynomial size set and hence we can guess the placements of the
O(logN ) hard polygons in quasi-polynomial time.

Theorem 1. There is an O(1)-approximation algorithm for 2DKP with a running time of

(nN )(log nN )O (1)
.

If all hard polygons are triangles, we present a pseudopolynomial time O(1)-approximation al-
gorithm. We split the triangles in OPT into two types. For one type, we show that a constant
fraction of it can be packed in what we call top-left-packings (see Figure 1(b)). In these packings,
the triangles are sorted by the lengths of their longest edges and placed on top of each other in
a triangular area. We devise a Dynamic Program (DP) that essentially computes the most prof-
itable top-left-packing. For proving that this yields an O(1)-approximation, we need some careful
arguments for rearranging a subset of the triangles with large weight to obtain a packing that our
DP can compute. We observe that essentially all hard polygons in OPT must intersect the horizon-
tal line that contains the mid-point of the knapsack. Our key insight is that if we pack a triangle
in a top-left-packing, then it intersects this line to a similar extent as in OPT. Then we derive a
sufficient condition when a set of triangles fits in a top-left-packing, based on by how much they
overlap this line.

For the other type of triangles, we use a geometric DP. In this DP, we recursively subdivide the
knapsack into subareas in which we search for the optimal solution recursively (see Figure 1(c)).
In the process, we guess the placements of some triangles from OPT. Again, by losing a constant
factor, we can assume that for each triangle in OPT there are only a polynomial number of possible
placements. By exploiting structural properties of this type of triangles, we ensure that the number
of needed DP-cells is bounded by a polynomial. A key difficulty is that we sometimes split the
knapsack into two parts on which we recurse independently. Then we need to ensure that we do
not select some (possibly high weight) triangle in both parts. To this end, we globally select at most
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16:4 A. Merino and A. Wiese

one triangle from each of theO(logN ) groups (losing a constant factor), and when we recurse, we
guess for each subproblem from which of the O(logN ) groups it contains a triangle in OPT. This
yields only 2O (log N ) = NO (1) guesses.

Theorem 2. There is an O(1)-approximation algorithm for 2DKP with a (pseudopolynomial) run-

ning time of (nN )O (1) if all input polygons are triangles.

Then, we study the setting of resource augmentation—that is, we compute a solution that fits
into a larger knapsack of size (1+δ )N×(1+δ )N for some constantδ > 0 and compare ourselves with
a solution that fits into the original knapsack of size N ×N . We show that then the optimal solution
can contain only constantly many hard polygons, and hence we can guess them in polynomial time.

Theorem 3. There is an O(1)-approximation algorithm for 2DKP under (1 + δ )-resource augmen-

tation with a running time of nOδ (1).

Finally, we present a quasi-polynomial time algorithm that computes a solution of weight at
leastw(OPT) (i.e., we do not lose any factor in the approximation guarantee) that is feasible under
resource augmentation. This algorithm does not use the preceding classification of polygons into
easy, medium, and hard polygons. Instead, we prove that if we can increase the size of the knap-
sack slightly, we can ensure that for the input polygons there are only (logn)Oδ (1) different shapes
by enlarging the polygons suitably. Additionally, we show that we need to allow only a polyno-
mial number of possible placements and rotations for each input polygon, without sacrificing any
polygons from OPT. Then, we use a technique from Adamaszek and Wiese [1] implying that there
is a balanced separator for the polygons in OPT with only (logn)Oδ (1) edges and which intersects
polygons from OPT with only very small area. We guess the separator, guess how many polygons
of each type are placed inside and outside the separator, and then recurse on each of these parts.
Some polygons are intersected by the balanced separator. However, we ensure that they have very
small area in total, and hence we can place them into the additional space of the knapsack that we
gain due to the resource augmentation. This generalizes a result in another work by Adamaszek
and Wiese [2] for axis-parallel rectangles.

Theorem 4. There is an algorithm for 2DKP under (1 + δ )-resource augmentation with a running

time of nOδ (log n)O (1)
that computes a solution of weight at least w(OPT).

In our approximation algorithms, we focus on a clean exposition of our methodology for obtain-
ing O(1)-approximations, rather than on optimizing the actual approximation ratio.

1.2 Other Related Work

Prior to the results mentioned previously, polynomial time (2 + ϵ)-approximation algorithms for
2DKP for axis-parallel rectangles were presented by Jansen and Zhang [9, 10]. For the same setting,
a PTAS is known under resource augmentation in one dimension [7] and there is a polynomial
time algorithm computing a solution with optimum weight under resource augmentation in both
dimensions [6]. Additionally, there is a PTAS if the weight of each rectangle equals its area [3]. For
squares, Jansen and Solis-Oba [8] presented a PTAS.

2 CONSTANT FACTOR APPROXIMATION ALGORITHMS

In this section, we present our quasi-polynomial time O(1)-approximation algorithm for general
convex polygons and our polynomial time O(1)-approximation algorithm for triangles, assuming
polynomially bounded input data. Our strategy is to partition the input polygons P into three
classes, easy, medium, and hard polygons, and then to devise algorithms for each class separately.
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Let K := [0,N ] × [0,N ] denote the given knapsack. We assume that each input polygon is
described by the coordinates of its vertices which we assume to be integral. First, we rotate
each polygon in P such that a diametrical segment (i.e., a line segment which joins two of the
vertices which are farthest apart) is horizontal. Hence, when we refer to the diametrical seg-
ment in the following, we mean the diametrical segment which is horizontal. For each polygon
Pi ∈ P, denote by (xi,1,yi,1), . . . , (xi,ki

,yi,ki
) the new coordinates of its vertices. Observe that

due to the rotation, the resulting coordinates might not be integral, and possibly not even ratio-
nal. We will take this into account when we define our algorithms. For each Pi ∈ P, we define
its bounding box Bi to be the smallest axis-parallel rectangle that contains Pi . Formally, we define
Bi := [min� x i, �,max� x i, �]×[min� yi, �,max� yi, �]. For each polygon Pi , we define �i as the width of
its bounding box andhi as the height of its bounding box. More formally, �i := max� x i, �−min� x i, �

and hi := max� yi, � −min� yi, � . Note that �i is also the length of the diametrical segment of Pi (i.e.,
the diameter of Pi ). If necessary, we will work with suitable estimates of these values later, consid-
ering that they might be irrational and hence we may not compute them exactly.

We first distinguish the input polygons into easy, medium, and hard polygons. We say that a
polygon Pi is easy if Bi fits into K without rotation (i.e., such that �i ≤ N and hi ≤ N ). Denote by
PE ⊆ P the set of easy polygons. Note that the bounding box of a polygon in P \PE might still fit
into K if we rotate it suitably. Intuitively, we will define the medium polygons to be the polygons
Pi whose bounding box Bi fits into K with quite some slack if we rotate Bi properly and the hard
polygons are the remaining polygons (in particular, those polygons whose bounding box does not
fit at all into K ).

Formally, for each polygon Pi ∈ P \ PE , we define h′
i :=

√
2N − �i . The intuition for h′

i is that
a rectangle of width �i and height h′

i is the highest rectangle of width �i that still fits into K after
rotation.

Lemma 5. Let Pi ∈ P \PE . A rectangle of width �i and height h′
i fits into K (if we rotate it by π/4),

but a rectangle of width �i and of height larger than h′
i does not fit into K .

Proof. First observe that since Pi is not easy, we have that �i > N . A simple computation

shows that Ri = [0, �i ] × [0,h′
i ] fits into K when rotating by π/4 with new vertices at ( h′

i√
2
, 0),

(N , �i√
2
), (N − h′

i√
2
,N ), (0,N − �i√

2
).

We now prove the second part of the lemma. Suppose R∗
i = [0, �i ] × [0,h∗] is placed into the

knapsack after some rotation. We call the bottom edge of R∗
i (which has length �i ) the base of R∗

i .
W.l.o.g., we can assume that the base of R∗

i intersects the boundary of K at exactly two points p1

and p2 (otherwise, we shift the base of R∗
i toward the boundary of the knapsack). Since �i > N ,

we can split K along the base of R∗
i into two polygons and one of the polygons will be a triangle.

Let α > 0 be the smallest angle of this triangle. Define two parallel lines L1 and L2 that intersect
p1 and p2, respectively, and are perpendicular to the base of R∗

i . Note that R∗
i is contained entirely

between L1 and L2. Thus, the height of R∗
i is bounded by the minimum of the lengths of the line

segments of L1 and L2 that are contained within K . This minimum is maximized when both line
segments have equal length. Indeed, suppose for the sake of contradiction that L1 is smaller than
L2. Then, we rotate the base, making α larger such that L1 is still at most as large as L2, while the
length of L1 increases. Since both line segments have equal length when α = π/4, we obtain that
h∗ ≤ h′

i . �

Hence, if hi is much smaller than h′
i , then Bi fits into K with quite some slack. Therefore, we

define that a polygon Pi ∈ P \ PE is medium if hi ≤ h′
i/8 and hard otherwise. Denote by PM ⊆ P

and PH ⊆ P the medium and hard polygons, respectively. We will present O(1)-approximation
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16:6 A. Merino and A. Wiese

algorithms for each of the sets PE ,PM ,PH separately. The best of the computed sets will then
yield an O(1)-approximation overall.

For the easy polygons, we construct a polynomial timeO(1)-approximation algorithm in which
we select polygons such that we can pack their bounding boxes as non-overlapping rectangles
using Steinberg’s algorithm [4] (see Section 2.1). The approximation ratio follows from area
arguments.

Lemma 6. There is an algorithm with a running time of nO (1) that computes a solution P′
E ⊆ PE

with w(OPT ∩ PE ) = O(w(P′
E )).

For the medium polygons, we obtain anO(1)-approximation algorithm using a different packing
strategy (see Section 2.2).

Lemma 7. There is an algorithm with a running time of nO (1) that computes a solution P′
M ⊆ PM

with w(OPT ∩ PM ) = O(w(P′
M )).

The most difficult polygons are the hard polygons. First, we show that in quasi-polynomial time,
we can obtain an O(1)-approximation for them (see Section 2.3).

Lemma 8. There is an algorithm with a running time of (nN )(log nN )O (1)
that computes a solution

P′
H ⊆ PH with w(OPT ∩ PH ) = O(w(P′

H )).

Combining Lemmas 6 through 8 yields Theorem 1. Furthermore, if all polygons are triangles, we
obtain an O(1)-approximation in polynomial time. The following lemma is proved in Section 2.4
and together with Lemmas 6 and 7 implies Theorem 2.

Lemma 9. If all input polygons are triangles, then there is an algorithm with a running time of

(nN )O (1) that computes a solution P′
H ⊆ PH with w(OPT ∩ PH ) = O(w(P′

H )).

Orthogonal to the characterization into easy, medium, and hard polygons, we subdivide the
non-easy polygons further into classes according to their diameter. This will prove useful in the
development of our constant approximation algorithms. More precisely, we do this according to

their difference between �i and the diameter of K (i.e.,
√

2N ). Formally, we introduce the following
definition.

Definition 2.1 (Classification of Polygons by Diagonals). For each j ∈ Z, we define

Pj :=
{
Pi ∈ P \ PE | �i ∈

[√
2N − 2j ,

√
2N − 2j−1

)}
.

We note that every non-easy polygon belongs to some set Pj , except for the polygons with di-

ameter exactly
√

2N . For every packing of such a polygon P , the midpoint of the knapsack must
be contained in the boundary of P . Therefore, any feasible solution to 2DKP contains at most two
such polygons. Hence, if such polygons are contained in OPT and constitute a constant fraction of
the profit of OPT, we obtain anO(1)-approximate solution easily by simply guessing the most prof-
itable such polygon. Thus, in our approximation results, we assume that there are no polygons with

diameter exactly
√

2N and this loses only a constant factor in the approximation ratio. Addition-
ally, we note that only finitely many Pj are non-empty. To this end, we define jmin := − 
logN � −1

and jmax := 1 +
⌊
log((

√
2 − 1)N )

⌋
and show that these are the minimum and maximum values of j

such that Pj is non-empty.

Lemma 10. If Pj � ∅, then j ∈ {jmin, . . . , jmax}.

Proof. Assume that j is an integer with j > jmax = 1 +
⌊
log((

√
2 − 1)N )

⌋
. We want to show

that then Pj = ∅. In particular, then j ≥ 2 +
⌊
log((

√
2 − 1)N )

⌋
and thus

√
2N − 2j−1 ≤

√
2N −
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21+�log((
√

2−1)N )� ≤
√

2N − 2log((
√

2−1)N ) = N . Thus, for every polygon Pi ∈ Pj , we have �i ≤√
2N − 2j−1 ≤ N . We conclude that Pi ∈ PE and, therefore, Pi � Pj and Pj = ∅.
Assume now that j is an integer with j < jmin = − 
logN � − 1 and hence j ≤ − 
logN � − 2. We

want to argue that then Pj = ∅. Note that �2i must be a positive integer. Thus, it suffices to argue

that [(
√

2N − 2j )2, (
√

2N − 2j−1)2) ∩ Z = ∅. We prove that [(
√

2N − 2j )2, (
√

2N )2) ∩ Z = ∅, which
directly implies the result. This is the case since(√

2N
)2

−
(√

2N − 2j
)2
= 2j

(
2
√

2N − 2j
)
≤ 2j 2

√
2N ≤ 2−
log N �−22

√
2N < 1. �

Furthermore, for each polygon Pi ∈ P \PE , we can compute its group Pj even though �i might
be irrational.

2.1 Easy Polygons

We present an O(1)-approximation algorithm for the polygons in PE . First, we show that the area
of each polygon is at least half of the area of its bounding box. We will use this later for defining
lower bounds using area arguments. We also introduce the following notation: for a set S ⊆ K ,we
use conv(S) to denote the convex hull of S, and for a set O ⊆ R2, we denote its area by area(O).

Lemma 11. For each Pi ∈ P, it holds that area(Pi ) ≥ 1
2 area(Bi ).

Proof. Let D be the diametrical segment, and recall that we rotated Pi such that D was horizon-
tal. We split Pi into a polygon P which lies above D and a polygon Q which lies below D. Let pP

be a point with maximum y-coordinate in Pi and pQ be a point with minimum y-coordinate in Pi .
We defineTP andTQ as conv(D ∪ {pP }) and conv(D ∪ {pQ }), respectively. Note thatTP andTQ are
either triangles or line segments. Furthermore, by convexity, we know that TP ⊆ P and TQ ⊆ Q .

The lemma then follows by noting that 1
2 area(Bi ) = area

(
TP ∪TQ

)
≤ area(P ∪Q) = area(Pi ). �

However, it is known that we can pack any set of axis-parallel rectangles into K , as long as
their total area is at most area(K)/2 and each single rectangle fits into K without rotation. This is
implied by the following theorem.

Theorem 12 ( [14]). Let r1, . . . , rk be a set of axis-parallel rectangles such that
∑k

i=1 area(ri ) ≤
area(K)/2 and each individual rectangle ri fits into K . Then, there is a polynomial time algorithm

that packs r1, . . . , rk into K .

We first compute (essentially) the most profitable set of polygons from PE whose total area is
at most area(K) via a reduction to one-dimensional knapsack.

Lemma 13. In time (n
ϵ
)O (1), we can compute a set of polygons P′ ⊆ PE such that w(P′) ≥ (1 −

ϵ)w(OPT ∩ PE ) and
∑

Pi ∈P′ area(Pi ) ≤ area(K).

Proof. We define an instance of one-dimensional knapsack with a set of items I where we
introduce for each polygon Pi ∈ PE an item ai ∈ I with size si := area(Pi ) and profit wi and
define the size of the knapsack to be area(K). We invoke an arbitrary FPTAS for one-dimensional
knapsack to solve this instance (e.g., the recent algorithm of Jin [11]) and obtain a set of items
I ′ ⊆ I such that w(I ′) ≥ (1 − ϵ)OPT(I ), where OPT(I ) denotes the optimal solution for the set of
items I , given a knapsack of size area(K). We define P′ := {Pi ∈ PE | ai ∈ I ′} and note that it
fulfills the statement of the lemma. �

The idea is now to partition P′ into at most seven sets P′
1, . . . ,P′

7. Hence, one of these sets must
contain at least a profit of w(P′)/7. We will define this partition such that each set P′

j contains

only one polygon or its polygons have a total area of at most area(K)/4.
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16:8 A. Merino and A. Wiese

Lemma 14. Given a set P′ ⊆ PE with
∑

Pi ∈P′ area(Pi ) ≤ area(K). In polynomial time, we can

compute a set P′′ ⊆ P′ with w(P′′) ≥ 1
7w(P′) and additionally

∑
Pi ∈P′′ area(Pi ) ≤ area(K)/4 or

|P′′| = 1.

Proof. If |P′| ≤ 3, then the claim is trivial. Otherwise, we partition the items in P′ greedily
into four sets C1,C2,C3,C4 such that for each set Cj with j ∈ {1, 2, 3} there is a polygon Pj ∈ Cj

such that the polygons in Cj \{Pj } have a total area of at most area(K)/4. Furthermore, C4 contains
items with a total area of at most area(K)/4. To obtain these sets, we run a Next-Fit type algorithm
which inserts the polygons into bins and closes a bin once the area of the polygons in this bin
is strictly larger than area(K)/4. We start by inserting the polygons in P′ into C1 until the total
area of the polygons in C1 is strictly larger than area(K)/4. Then, we insert the following polygons
from P′ into C2 until the total area of the polygons in C2 is strictly larger than area(K)/4 and so
forth. Finally, one of the seven sets C1 \ {P1}, {P1},C2 \ {P2}, {P2},C3 \ {P3}, {P3},C4 fulfills the
claim. �

Note that any set of rectangles with total area at most 1
2 area(K) can be packed into the knapsack

by Theorem 12. Therefore, we can pack any set of easy polygons with total area at most 1
4 area(K) by

first putting each polygon into its bounding box, then packing these bounding boxes (having a total
area of at most 1

2 area(K)) using Theorem 12. Moreover, if the height and width of the bounding box
can be computed in polynomial time, this placement can also be computed in polynomial time. If
|P′′| = 1,we simply pack the single polygon in P′′ into the knapsack. Otherwise, using Lemmas 11
and 13 and Theorem 12, we know that we can pack the bounding boxes of the polygons in P′′

into K . Note that their heights and widths might be irrational. Therefore, we slightly increase
them such that these values become rational, before applying Theorem 12 to compute the actual
packing. If as a result the total area of the bounding boxes exceeds area(K)/2, we partition them
into two sets where each set satisfies that the total area of the bounding boxes is at most area(K)/2
or it contains only one polygon, and we keep the more profitable of these two sets (hence losing a
factor of 2 in the approximation ratio). This yields an O(1)-approximation algorithm for the easy
polygons and thus proves Lemma 6.

2.2 Medium Polygons

We describe an O(1)-approximation algorithm for the polygons in PM . Recall that Pj = {i ∈
P \ PE |�i ∈ [

√
2N − 2j ,

√
2N − 2j−1)}. Furthermore, by Lemma 10, Pj � ∅ implies that

j ∈ {jmin, . . . , jmax}. For each integer j ∈ {jmin, . . . , jmax}, we define a rectangular container R j

for polygons in PM ∩Pj , each container having width
√

2N −2j−1 and height 2j−3 (see Figure 2(a)).
Let R be the set of all containers (i.e., R := {R j : j ∈ {jmin, . . . , jmax}}). First, we show that we can
pack all containers in R into K (if we rotate them by π/4).

Lemma 15. The rectangles in R can be packed non-overlappingly into K .

Proof. We describe how we place the rectangles in R inside K . For each j ∈ {jmin, . . . , jmax},
we place a vertex at the top edge of K at the coordinate (N − 2j−1

√
2
,N ) and a vertex at the left edge

of K at the coordinate (0, 2j−1
√

2
). Then we connect the two vertices corresponding to each j by a line

segment. This yields containers with the shapes of trapezoids inside which we place the rectangles
in R. More formally, for each j ∈ {jmin, . . . , jmax}, we place a rectangle R j such that its vertices

are at the coordinates (N − 2j−1
√

2
,N ), (0, 2j−1

√
2
), ( 2j−3

√
2
, 3√

2
2j−3), (N − 3√

2
2j−3,N − 2j−3

√
2
). Hence, it has a

width of ‖(N − 2j−1
√

2
,N ) − (0, 2j−1

√
2
)‖ =

√
2N − 2j−1 and a height of ‖( 2j−3

√
2
, 3√

2
2j−3) − (0, 2j−1

√
2
)‖ = 2j−3,
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On the Two-Dimensional Knapsack Problem for Convex Polygons 16:9

Fig. 2. (a) The containers for the medium polygons of the different groups. Within each container, the poly-

gons are stacked on top of each other such that their respective bounding boxes do not intersect. (b) Assume

that the polygon (black line segments) is a medium polygon contained in the set Pj . Then, the diametrical

segment (dashed) must lie into the dark gray area and the whole polygon must be contained in the light

gray area.

as required. A simple angle computation then shows that these are the coordinates of the vertices
of Ri when rotated by π/4. �

For each j ∈ {jmin, . . . , jmax}, we will compute a set of polygons P′
j ⊆ PM ∩ Pj of large weight.

Within each container R j , we will stack the bounding boxes of the polygons in P′
j on top of each

other and then place the polygons in P′
j in their respective bounding boxes (see Figure 2(a)). In

particular, a set of items P′′
j ⊆ Pj fits intoR j using this strategy if and only ifh(P′′

j ) :=
∑

Pi ∈P′′
j
hi ≤

2j−3.1 We compute the essentially most profitable set of items P′
j that fits intoR j with the preceding

strategy. For this, we need to solve a one-dimensional knapsack problem that represents filling the
height of R j . The value hi for a polygon Pi might be irrational, so we work with a (1+ ϵ)-estimate
of hi instead. This costs only a factor O(1) in the approximation guarantee. Furthermore, since
these polygons are medium polygons, they still fit into the knapsack with some slack.

Lemma 16. Let ϵ > 0. For each j ∈ Z, there is an algorithm with a running time of
(

n
ϵ

)O (1)

that computes a set P′
j ⊆ Pj ∩ PM such that h(P′

j ) ≤ 2j−3 and w(P∗
j ) = O(w(P′

j )) for any set

P∗
j ⊆ Pj ∩ PM such that h(P∗

j ) ≤ 2j−3.

Proof. For each j,we need to solve an instance of the one-dimensional knapsack problem. Here,
we have a knapsack, each with capacity 2j−3, the set of objects to choose from are I := Pj ∩ PM ,
and each i ∈ I has size hi and profit wi . We invoke an arbitrary FPTAS for one-dimensional
knapsack to solve this instance (e.g., the recent algorithm of Jin [11]). �

For each j ∈ Z with Pj ∩ PM � ∅, we apply Lemma 16 and obtain a set P′
j . We pack P′

j into R j

using that h
(
P′

j

)
≤ h

(
R j

)
. Then, we pack all containers R j for each j ∈ Z into K , using Lemma 15.

Let P′
M :=

⋃
j P′

j denote the selected polygons. We want to show that P′
M has large weight.

More precisely, we want to show that w(OPT ∩ PM ) = O(w(P′
M )). First, for each j ∈ Z, we bound

the area of the polygons in Pj ∩ PM ∩ OPT. To this end, we show that they are contained inside

1Observe that for a polygon Pi ∈ Pj with Pi ∈ PH , it is not necessarily true that hi ≤ 2j−3. Hence, this strategy is not

suitable for hard polygons.

ACM Trans. Algor., Vol. 20, No. 2, Article 16. Publication date: April 2024.



16:10 A. Merino and A. Wiese

a certain (irregular) hexagon (see Figure 2) which has small area if the polygons Pi ∈ Pj are wide

(i.e., if �i is close to
√

2N ). The reason is that then Pi must be placed close to the diagonal of the
knapsack and otherwise hi is relatively small (since Pi is medium), which implies that all of Pi lies
close to the diagonal of the knapsack.

Lemma 17. For each j, it holds that area(Pj ∩ PM ∩ OPT) = O(area(R j )).

We defer the proof of Lemma 17 to Section 2.2.1. Using this, we can partition Pj ∩ PM ∩ OPT
into O(1) subsets such that for each subset P′ it holds that h(P′) ≤ 2j−3 and hence P′ fits into R j

using our preceding packing strategy. Here, we use that each medium polygon Pi ∈ Pj satisfies
that hi ≤ 2j−3.

Lemma 18. For each j ∈ {jmin . . . , jmax}, there is a set P∗
j ⊆ Pj ∩ PM ∩ OPT with w(Pj ∩ PM ∩

OPT) = O(w(P∗
j )) such that h(P∗

j ) ≤ 2j−3.

Proof. We follow a Next-Fit strategy, similarly to the Next-Fit algorithm for bin packing. We
begin by partitioning Pj ∩ PM ∩ OPT = {P ′

1, . . . , P
′
m} into groups such that each group fits into

R j . To do so, define a sequence s0, s1, . . . , sp recursively such that

s0 = 0,

s� = max

{
k ∈ {s�−1 + 1, . . . ,m}

�����
k∑

i=s�−1+1

h(P ′
i ) ≤ 2j−3

}
, if s�−1 < m.

Consider the partition of Pj ∩ PM ∩ OPT into p parts of the form C� = {P ′
s�+1, . . . , P

′
s�+1

}. For

1 ≤ � < p, we have
∑

Pi ∈C�
hi ≥

(
1 − 1

8

)
2j−3, since hi ≤

h′
i

8 ≤ 1
8 2j−3. Therefore,

∑
Pi ∈C�

area(Pi ) ≥
1

2

∑
Pi ∈C�

area(Bi ) =
1

2

∑
Pi ∈C�

hi�i ≥
1

2

(
1 − 1

8

)
2j−3

(√
2N − 2j

)
.

Moreover, as the polygons are not in PE , we get that
√

2N − 2j−1 > N . Thus,

√
2N − 2j >

(
2 −

√
2
)
N ≥

(
2 −

√
2
)
N

(
1 − 2j−1

√
2N

)
=

(√
2 − 1

) (√
2N − 2j−1

)
>

1

7

(√
2N − 2j−1

)
.

Using this, we obtain∑
Pi ∈C�

area(Pi ) ≥
7

16
2j−3

(√
2N − 2j

)
≥ 1

16
2j−3

(√
2N − 2j−1

)
=

1

16
area(R j ).

By Lemma 17, we deduce that there is a constant M > 0 such that area(Pj ∩ PM ∩ OPT ) ≤
M · area(R j ). Hence,

M · area(R j ) ≥ area(Pj ∩ PM ∩OPT ) ≥
p−1∑
�=1

∑
Pi ∈C�

area(Pi ) ≥
p − 1

16
area(R j ),

concluding that p ≤ 16M + 1 ≤ 17M . Call C∗ the most profitable set of our partition. Using our
bound on p, we conclude that

w(Pj ∩ PM ∩OPT ) ≤ p ·w(C∗) ≤ 17M ·w(C∗). �

By combining Lemmas 15, 16, and 18, we obtain the proof of Lemma 7.
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2.2.1 Area Bound for Medium Polygons. In this section, we prove Lemma 17. We show that for
every j ∈ {jmin, . . . , jmax},we can chooseCj , independent of i , such that if a polygon Pi ∈ Pj ∩PM

is placed in the knapsack, then it is contained in the (irregular) hexagon H1, j with vertices (0, 0),
(0,Cj ), (N ,N −Cj ), (N ,N ), (N −Cj ,N ), (Cj , 0), or in the (irregular) hexagon H2, j with vertices
(0,N −Cj ), (0,N ), (Cj ,N ), (N ,Cj ), (N , 0), (N −Cj , 0); Figure 2(b) presents an illustration of H2, j .
To prove this, we first show that in the placement of Pi insideK , the vertices of the diametrical seg-
ment of Pi essentially lie near opposite corners ofK . We then use this to show that this diametrical
segment of Pi lies inside one of two hexagons that are even smaller thanH1, j andH2, j , respectively
(see Figure 2(b)). If additionally Pi ∈ PM ,we conclude that Pi is placed completely withinH1, j∪H2, j

(whereas if Pi ∈ PH , the latter is not necessarily true). Given a value r ≥ 0, we define T1(r ) as the
union of the two triangles (0, r ), (r , 0), (0, 0) and (N − r ,N ), (N ,N − r ), (N ,N ). Similarly, we de-
fineT2(r ) as the union of the two triangles (0,N − r ), (0,N ), (r ,N ) and (N − r , 0), (N , 0), (N , r ). We
now define the following two hexagons H1(r ) := conv(T1(r )) and H2(r ) := conv(T2(r )). Note that
H1, j = H1(Cj ) and H2, j = H2(Cj ).

For any Pi ∈ P, we define ri := N −
√
�2i − N 2.

Claim 1. Consider a polygon Pi ∈ Pj . Let P be a placement of Pi inside K , and let D = v1v2 denote

the diametrical segment of P .

It holds that (1) {v1,v2} ⊆ T1(ri ) or {v1,v2} ⊆ T2(ri ), and (2) D ⊆ H1(ri ) or D ⊆ H2(ri ). If

additionally Pi ∈ PM , then P ⊆ H1(ri +
√

22j−3) or P ⊆ H2(ri +
√

2 · 2j−3).

Proof of claim. We define S as K \ (T1(ri )∪T2(ri )). We first show that diam(S) < �i . To do this,

we distinguish two cases: when N < �i ≤
√

5
2 N and when �i >

√
5

2 N . If N ≤ �i ≤
√

5
2 N , then

ri = N −
√
�2i − N 2 ≥ N − N /2 = N /2,

which implies that ri ≥ N − ri and consequently S is a square of diagonal 2(N − ri ) ≤ N < �i . We
conclude that in this case diam(S) < �i .

Suppose now that �i >
√

5
2 N (see Figure 3 for an illustration). This implies that

ri = N −
√
�2i − N 2 < N − N /2 = N /2,

and consequently ri < N −ri (Figure 3). In this case, S is an octagon with vertices (0, ri ), (ri , 0), (N −
ri ,N ), (N ,N − ri ), (0,N − ri ), (ri ,N ), (N − ri , 0), (N , ri ). Hence,

diam(S) =
√
N 2 + (N − ri )2 ≤

√
N 2 + (�2i − N 2) = �i .

Since diam(S) ≤ �i , we have that v1 ∈ T1(ri ) ∪T2(ri ) or v2 ∈ T1(ri ) ∪T2(ri ). Assume w.l.o.g. that
v1 ∈ T1(ri ) ∪ T2(ri ). Furthermore, assume w.l.o.g. that v1 ∈ T1(ri ) and that v1 is contained in the
triangle with vertices (0, ri ), (ri , 0), (0, 0). Furthermore, we have that v2 is not inside K \ T 1(ri ).
Otherwise, we have that

�i <
√
N 2 + (N − ri )2 = �i .

Therefore, v2 ∈ T1(ri ) and consequently D ⊆ H1(ri ). Assume now additionally that Pi ∈ PM . Let v

be a vertex of P with v1 � v � v2. The distance between v and D is at most hi ≤ 1
8 (
√

2N − �i ) ≤
2j−3. Therefore, v is contained in H1(ri +

√
2 · 2j−3) and hence P ⊆ H1(ri +

√
2 · 2j−3). The case

v1 ∈ T2(ri ) can be handled similarly, and in this case we conclude that v2 ∈ T2(ri ), D ⊆ H2(ri ), and

P ⊆ H2(ri +
√

2 · 2j−3). �
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16:12 A. Merino and A. Wiese

Fig. 3. Some of the elements that appear in the proof for the area bound of medium polygons. The white

area denotes S , which is an octagon if ri < N − ri . The dashed dark gray area is the hexagon H1(ri ). The two

light gray triangles are T1(ri ).

Since Pi ∈ Pj ∩ PM implies that j ∈ {jmin, . . . , jmax} by Lemma 10. We deal with j = jmax

separately. Here, we defineCjmax := N and note thatH1(Cj ) is the complete knapsack. Furthermore,

area(R j ) =
(√

2N − 2 �log(
√

2−1)N �
)

2 �log(
√

2−1)N �−2 ≥
√

2 − 1

8
N 2 =

√
2 − 1

8
area(H1(Cjmax)),

so the lemma holds for jmax.

Hence, we only deal with the case j ∈ {jmin, . . . , jmax−1}. In this case, it holds that
√

2N −2j ≥ N .
Thus, we define

Cj := N −
√(√

2N − 2j
)2

− N 2 +
√

2 · 2j−3.

Note that for every placement P of Pi , we have that P ⊆ H1(ri +
√

2 · 2j−3) ⊆ H1(Cj ) = H1, j or

P ⊆ H2(ri +
√

2 · 2j−3) ⊆ H2(Cj ) = H2, j as ri ≤ N −
√
(
√

2N − 2j )2 − N 2.

Note that we can compute area(H1(r )) by computing the area of half the hexagon and then
multiplying by 2—that is, by computing the area of the quadrilateral (0, 0), (N ,N ), (N −r ,N ), (0, r )
and then multiplying by 2. We now divide this quadrilateral into two isosceles right triangles with

hypotenuse r and a rectangle with sides
√

2N − 2r/
√

2 and r/
√

2, obtaining that

1

2
area(H1(r )) =

r 2

2
+

r
√

2

(√
2N −

√
2r

)
= (2N − r )r

2
. (1)

More generally, if r2 > r1, we can compute area(H1(r2) \ H1(r1)) by computing area(H1(r2)) −
area(H1(r1)). Thus,

1

2
area(H1(r2) \ H1(r1)) = (2N − r2)

r2

2
− (2N − r1)

r1

2
= (2N − r2 − r1)

r2 − r1

2
. (2)
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We now use Equations (1) and (2) to compute the area of H1, j as follows:

area(H1, j ) = area
(
H

(
Cj −

√
2 · 2j−3

))
+ area

(
H (Cj ) \ H

(
Cj −

√
2 · 2j−3

))
=

(
2N −Cj +

√
2 · 2j−3

) (
Cj −

√
2 · 2j−3

)
+
√

2 · 2j−3
(
2N − 2Cj +

√
2 · 2j−3

)
=

(
N +

√
(
√

2N − 2j )2 − N 2

) (
N −

√
(
√

2N − 2j )2 − N 2

)

+
√

2 · 2j−3

(
2

√
(
√

2N − 2j )2 − N 2 −
√

2 · 2j−3

)

≤
(
N +

√
(
√

2N − 2j )2 − N 2

) (
N −

√
(
√

2N − 2j )2 − N 2

)

+
√

2 · 2j−2

√
(
√

2N − 2j )2 − N 2. (3)

Note that (
√

2N − 2j )2 − (
√

2N − 2j−1)2 = (
√

2N − 2j +
√

2N − 2j−1)(2j−1 − 2j ) ≤ 0. Hence,

(
√

2N − 2j )2 − N 2 ≤ (
√

2N − 2j−1)2. Using this observation on (3), we obtain

area(H1, j ) ≤
(
N +

√
(
√

2N − 2j )2 − N 2

) (
N −

√
(
√

2N − 2j )2 − N 2

)
+
√

2 · 2j−2
(√

2N − 2j−1
)

= 2N 2 −
(√

2N − 2j
)2
+
√

2 · 2j−2
(√

2N − 2j−1
)

= 2j+1
(√

2N − 2j−1
)
+
√

2 · 2j−2
(√

2N − 2j−1
)

=

(
1 +

1

8
√

2

)
242j−3

(√
2N − 2j−1

)
(4)

=

(
1 +

1

8
√

2

)
24area

(
R j

)
.

This concludes the proof.

2.3 Hard Polygons

Recall that by Lemma 10, for onlyO(logN ) classes Pj it holds that Pj ∩PH � ∅. We first show that
for each class Pj , there are at most a constant number of polygons from Pj ∩PH in OPT (Figure 4).

Lemma 19. |Pj ∩ PH ∩ OPT| = O(1).

Proof. Recall that Pj := {i ∈ P | �i ∈ [
√

2N − 2j ,
√

2N − 2j−1)}. For i = 1, 2, we define Di, j as
the polygons in Pj such that their diagonal is contained in Hi (ri ) in OPT. By Claim 1, we have that
Pj = D1, j ∪ D2, j . Hence, it is sufficient to show that |Di, j ∩ Pj ∩ PH ∩ OPT| = O(1) for i = 1, 2.
We show the case i = 1, as the case i = 2 follows from symmetric arguments.

We prove the lemma by partitioning the polygons into two sets. Define F ⊆ Pj ∩ PH ∩OPT as

the polygons that fit completely into H1(Cj ) as defined in Claim 1, and F as (Pj ∩ PH ∩OPT) \ F .

We begin with the polygons in F . Recall that by Lemma 11, we know that area(Pi ) ≥ 1
2�ihi . Using

that Pi ∈ Pj ∩ PH , we obtain that

area(Pi ) ≥
1

2
�ihi >

1

16

(√
2N − 2j

) (√
2N − �i

)
≥ 1

16

(√
2N − 2j

)
2j−1.
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Fig. 4. Some of the elements that appear in the proof of Lemma 19.

Therefore,

area(F ) ≥ 1

8
|F |

(√
2N − 2j

)
2j−2.

Additionally, since all polygons in F completely fit into H1(Cj ), we have that

area(F ) ≤ area(H1(Cj )) ≤ 2j+2(
√

2N − 2j−1),

by using (4). We now combine these two facts and recall that, by Lemma 10, j ≤ log
(
(
√

2 − 1)N
)
+1

to obtain

|F | ≤ 27

(√
2N − 2j−1

√
2N − 2j

)
≤ 27

( √
2N

√
2N − 2j

)
≤ 27

( √
2N

√
2N − 2(

√
2 − 1)N

)
≤ 29.

We now deal with F (see Figure 4 for an illustration). Note that K \ H1(Cj ) has two connected
components: the triangle T ′ with vertices (0,N ), (N − Cj ,N ), (0,Cj ) and T ′′ with vertices (N , 0),
(N ,N − Cj ) and (Cj , 0). We want to show that for each of these triangles, there is at most one
polygon intersecting it.

Suppose, for the sake of contradiction, that there exist points p1,p2 ∈ T ′ belonging to some
polygons P1 and P2 , respectively. Let D1 = u1v1 and D2 = u2v2 be diametrical segments of P1 and
P2, respectively. Let r1 and r2 be as in Claim 1, and define s = max(r1, r2). By the same claim, we
get that w.l.o.g. {u1,v1,u2,v2} ⊆ H1(s). We now consider the rays for i = 1, 2; Ri :=

{
pi + (λ,−λ) |

λ ≥ 0
}
. Note that since s ≤ Cj , both R1 and R2 must intersect D1 and D2. Note that R1 intersects

first D1 and then D2 (otherwise, P1 and P2 would be intersecting) and R2 intersects first D2 and
then D1. Therefore, R1 and R2 intersect D1 and D2 in different order, which means that D1 and D2

must intersect, a contradiction. �

We describe now a quasi-polynomial time algorithm for hard polygons—that is, we want to
prove Lemma 8. Lemmas 10 and 19 imply that |PH ∩OPT|=O(logN ). Therefore, we can enumerate

all possibilities for PH ∩ OPT in time nO (log N ). For each enumerated set P′
H ⊆ PH , we need to

check whether it fits into K . We cannot try all possibilities for placing P′
H into K since we are

allowed to rotate the polygons in P′
H by arbitrary angles. To this end, we show that there is a

subset of PH ∩ OPT of large weight which contains only a single polygon or which does not
use the complete space of the knapsack but leaves some empty space. We use this empty space
to move the polygons slightly and rotate them such that each of them is placed in one out of
(nN )O (1) different positions that we can compute beforehand. Hence, we can guess all positions of
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these polygons in time (nN )O (log N ). We define that a placement of a polygon Pi ∈ P inside K is

a polygon P̃i such that d + rotα (Pi ) = P̃i ⊆ K , where d ∈ R2 and rotα (Pi ) is the polygon that we
obtain when we rotate Pi by an angle α clockwise around its first vertex (xi,1,yi,1).

Lemma 20. For each polygon Pi ∈ PH , we can compute a set of (nN )O (1) possible placements Li

in time (nN )O (1) such that there exists a set P′
H ⊆ PH ∩ OPT with w(PH ∩ OPT)=O(w(P′

H )) which

can be packed into K such that each polygon Pi is packed according to a placement in Li .

Before proving Lemma 20, we observe that the number of classes Pj containing polygons whose

respective values �i are at most (
√

2−ϵ)N isOϵ (1) for any given ϵ > 0; recall that
√

2N is the length
of the diagonal of K . We state this observation, and similar ones, in the following lemma. Recall

that ri = N −
√
�2i − N 2 for each polygon Pi (see Claim 1).

Lemma 21. For each ϵ > 0, there is a constant kϵ ∈ N such that each polygon Pi ∈
⋃jmax−kϵ

j=jmin
Pj

and its placement satisfies that

(1) �i ≥ (
√

2 − ϵ)N ,

(2) ri ≤ ϵN .

Let v1 and v2 be the points which define the diametrical segment and recall the definitions ofT1(r )
and T2(r ) as in Claim 1, then

(3) either {v1,v2} ⊆T1(ϵN ) or {v1,v2} ⊆T2(ϵN ).
Let α be the smallest angle between the diametrical segment and the bottom edge of the knapsack.

(4) π/4 − ϵ ≤ α ≤ π/4 + ϵ ,

(5)
√

2
2 − ϵ ≤ sinα ≤

√
2

2 + ϵ ,

(6)
√

2
2 − ϵ ≤ cosα ≤

√
2

2 + ϵ .

We remark that we will use Lemma 21 only for very small values of ϵ . Then, �i is close to
√

2N
and ri is close to 0.

Proof. Note that (3) is a direct consequence of (2) and Claim 1; (4) is a direct consequence of
(3); and (5) and (6) are direct consequences of (4). Consequently, we only prove (1) and (2). Note
that by choosing kϵ = jmax − log(ϵN ), we get that

�i ≥
√

2N − 2jmax−kϵ =
(√

2 − ϵ
)
N .

We now prove (2). Let ϵ ′ = ϵ

2
√

2
. By (1), we assume that �i ≥ (

√
2 − ϵ ′)N . Therefore,

ri ≤
(
1 −

√
(
√

2 − ϵ ′)2 − 1

)
N

≤
(
1 −

√
1 − 2

√
2ϵ ′

)
N

≤ 2
√

2ϵ ′N = ϵN . �

We now are ready to prove Lemma 20.

Proof of Lemma 20. Let ϵ > 0 be a sufficiently small constant. Recall that jmin = − 
logN � − 1

and jmax = 1 + �log((
√

2 − 1)N )�, as in Lemma 10. Due to Lemmas 10 and 19, there can be only

Oϵ (1) hard polygons in OPT∩
⋃jmax

j=jmax−kϵ+1
Pj . Since these are constantly many, we can output the

better among the following two solutions: the first solution consists of only one polygon which
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is the polygon in OPT ∩
⋃jmax

j=jmax−kϵ+1
Pj of highest weight, and the second solution is an O(1)-

approximate solution for the hard polygons in OPT′ := OPT ∩
⋃jmax−kϵ

j=jmin
Pj . This will yield a con-

stant approximation algorithm for hard polygons. Thus, it suffices to prove Lemma 20 for the

hard polygons in OPT′ := OPT ∩
⋃jmax−kϵ

j=jmin
Pj . Since for each polygon Pi ∈ OPT′ it holds that

�i ≥ (
√

2− ϵ)N , we have that in any placement of Pi inside K the diametrical segment has to have
essentially a π/4 angle between the diametrical segment with the edges of the knapsack. Further-
more, by losing a factor of 2, we can assume that the diametrical segment is oriented from the
top-left corner to the bottom-right corner. Here and in the following, “by losing a factor of α” for
some α > 1 means that for a considered set (e.g., the optimal solution) there exists a subset with
the claimed property, whose weight is by a factor of at most α smaller than the weight of the first
set.

Let L denote the line segment connecting pL := (0,N /2), and pR := (N ,N /2). Note that if
ϵ is sufficiently small, then every polygon in OPT′ intersects L. Let L1 denote the line segment
connecting pM := (N /2,N /2) and pR , and let L2 denote the line segment connecting pL and pM

(see Figure 6). Since every polygon intersecting L1 and L2 must also intersect the midpoint of the
knapsack, OPT′ can only contain one such polygon. Thus, by losing a factor 3, we can assume
that each polygon in OPT′ intersects L1 but not L2. We group the polygons in OPT′ into three

groups: OPT(1),OPT(2),OPT(3). We define that OPT(1) contains the polygons in OPT′ that have

empty intersection with [0, 1
nN

] × [0,N ]. We define that OPT(2) contains the polygons in OPT′ \
OPT(1) that have empty intersection with [0,N ] × [0, 1

nN
]. Finally, we define OPT(3) := OPT′ \

(OPT(1) ∪ OPT(2)).
Consider the group OPT(1). We sort the polygons in OPT′ in the order in which they intersect

L from left to right; let OPT′ = {Q1, . . . ,Qk } denote this ordering. For each i ∈ {1, . . . ,k}, we
translate each polygon Qi to the left by n−i+1

n2N
units. We argue that between any two consecutive

polygons Qi ,Qi+1, there is some empty space that intuitively we can use as slack. Since Qi ,Qi+1

are convex, for their original placement there is a line L′ that separates them. If ϵ is sufficiently
small, then the line segments defining �i and �′i have essentially a π/4 angle with the edges of the

knapsack. Since �i ≥ (
√

2 − ϵ)N and �′i ≥ (
√

2 − ϵ)N , this implies that also L′ essentially forms
a π/4 angle with the edges of the knapsack. After translating Qi and Qi+1, we can draw not only
a line separating them (like L′) but instead a strip separating them, defined via two lines L′′,L′′′

whose angle is identical to the angle of L′, and such that the distance between L′′ and L′′′ is at least
Ω( 1

n2N
). Next, we rotate Qi around one of its vertices until the angle of the diametrical segment

is a multiple of η 1
n2N

for some small constant η > 0 to be defined later, or one of the vertices of
Qi touches an edge of the knapsack. In the latter case, let v be a vertex of Qi that touches an edge
of the knapsack. We rotate Qi around v until the angle of the diametrical segment is a multiple of
η 1

n2N
or another vertex v ′ of Qi touches an edge of the knapsack. In the latter case, we observe

that two vertices of Qi touch an edge of the knapsack. Since Qi has at most O(N ) vertices, there
are at most O(N 2) such orientations for Qi . Otherwise, there are only n2N /η possibilities for the
angle of the diametrical segment which gives at most O(n2N /η) possible orientations for Qi in
total. Finally, we move Qi to the closest placement with the property that the first vertex v of Qi

is placed on a position in which both coordinates are multiples of η 1
n2N

. One can show that due to
the empty space between any two consecutive polygons Qi ,Qi+1, no two polygons overlap after

the movement, if η is chosen sufficiently small. This yields a placement for the polygons in OPT(1)

in which each polygon Qi is placed according to one out of (nN )O (1) positions.

We use a symmetric argumentation for the polygons in OPT(2). Finally, we want to argue that

|OPT(3) | = O(1). Observe that each polygon Pi ∈ OPT(3) intersects L1, the strip [0, 1
nN

] × [0,N ],
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and the strip [0,N ] × [0, 1
nN

], but has empty intersection with L2. Since the diametrical segment
is oriented from the top-left corner to the bottom-right corner, we conclude that the diametrical

segment must have length at least
√

2N − 2
√

2
nN

. Therefore, Pi ∈ Pj with 2j ≤ 2
√

2
nN

and then j ≤
log(2

√
2) − log(nN ). First assume that Pi ∈ Pj . If n is a sufficiently large constant, we have that

j < jmin which contradicts Lemma 10. However, if n = O(1), then the claim is trivially true since
then |OPT| = O(1). �

This yields the proof of Lemma 8.

2.4 Hard Triangles

In this section, we present anO(1)-approximation algorithm in polynomial time for hard polygons
assuming that they are all triangles (i.e., we prove Lemma 9). Slightly abusing notation, denote by
OPT the set P′

H obtained by applying Lemma 20. We distinguish the triangles in OPT into two
types: edge-facing triangles and corner-facing triangles. Let Pi ∈ OPT ∩ PH , let e1, e2 denote the

two longest edges of Pi , and letv∗
i denote the vertex of Pi adjacent to e1 and e2. Let R(1)

i and R(2)
i be

the two rays that originate at v∗
i and that contain e1 and e2, respectively, in the placement of Pi in

OPT. We have that R(1)
i \ {v∗

i } and R(2)
i \ {v∗

i } intersect at most one edge of the knapsack each. If

R(1)
i \{v∗

i } and R(2)
i \{v∗

i } intersect the same edge of the knapsack, then we say that Pi is edge-facing,

and if one of them intersects a horizontal edge and the other one intersects a vertical edge, we say
that Pi is corner-facing. The next lemma shows that there can be only O(1) triangles in OPT ∩ PH

that are neither edge- nor corner-facing, and therefore we compute an O(1)-approximation with
respect to the total profit of such triangles by simply selecting the input triangle with maximum
weight.

Lemma 22. The number of triangles in OPT ∩ PH that are neither edge-facing nor corner-facing

is O(1).

Proof. Let Pi ∈ OPT ∩ PH that is neither edge-facing nor corner-facing. Assume w.l.o.g. that

both R(1)
i \ {v∗

i } and R(2)
i \ {v∗

i } intersect a horizontal edge of the knapsack. Let e1, e2 denote the
two longest edges of Pi . Since Pi is hard, we know that one of these edges is longer than N and
therefore the other one is longer than N /2. Let α denote the angle between e1 and e2. It holds that

α cannot be arbitrarily small since otherwise it cannot be that R(1)
i \ {v∗

i } and R(2)
i \ {v∗

i } intersect
different horizontal edges of the knapsack. Formally, assume w.l.o.g. thatv∗

i lies in the upper half of

the knapsack and that R(1)
i \{v∗

i } intersects the bottom edge of the knapsack. Let β denote the angle

between the horizontal line and the line going through v∗
i and R(1)

i (note that α ≥ β). Let A be the

intersection of R(1)
i and the bottom edge of the knapsack and B the projection ofv∗

i onto the bottom
edge of the knapsack (i.e., B = ((v∗

i )x , 0)). Note that tan β is the quotient between the length of

the line segment v∗
i B and the length of the line segment AB, which implies that tan β ≥ N

2N
= 1/2.

Consequently, α ≥ β ≥ arctan(1/2) ≥ 0.4. Therefore, area(Pi ) ≥ Ω(N 2). Hence, there can be at
most O(1) triangles in Pi ∈ OPT ∩ PH that are neither edge-facing nor corner-facing. �

Let pT L , pT R , pBL , and pBR denote the top left, top right, bottom left, and bottom right corners
of K , respectively, and let pM := (N /2,N /2), pL := (0,N /2), and pR := (N ,N /2) (see Figure 6). By
losing a factor O(1), we assume from now on that OPT contains at most one hard triangle from
each group Pj , using Lemma 19.

Let OPTEF ⊆ OPT ∩ PH denote the edge-facing hard triangles in OPT and denote by OPTCF ⊆
OPT∩PH the corner-facing hard triangles in OPT. In the remainder of this section, we present an
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O(1)-approximation algorithms for edge-facing and for corner-facing triangles in PH . By selecting
the best solution among the two, we obtain the proof of Lemma 9.

2.4.1 Edge-Facing Triangles. We define a special type of solutions called top-left-packings that
our algorithm will compute. We will show later that there are solutions of this type whose profit
is at least a constant fraction of the profit of OPTEF.

For each t ∈ N, letpt := pM+( t
N 2 , 0). Let P′ = {Pi1 , . . . , Pik

} be a set of triangles that are ordered
according to the groups Pj —that is, such that for any Pi� , Pi�+1 ∈ P′ with Pi� ∈ Pj and Pi�+1 ∈ Pj′

for some j, j ′ it holds that j ≤ j ′. We define a placement of P′ that we call a top-left-packing. First,
we place Pi1 such that v∗

i1
coincides with pT L and one edge of Pi1 lies on the diagonal of K that

connects pT L and p0. Note that there is a unique way to place Pi1 in this way. Iteratively, suppose
that we have packed triangles {Pi1 , . . . , Pi� } such that for each triangle Pi�′ in this set its respective
vertex v∗

i�′
coincides with pT L (see Figure 1(b)). Intuitively, we pack Pi�+1 on top of Pi� such that

v∗
i�+1

coincides with pT L . Let t be the smallest integer such that the line segment connecting pt and

pR has empty intersection with each triangle Pi1 , . . . , Pi� according to our placement. We place
Pi�+1 such that v∗

i�+1
coincides with pT L and one of its edges lies on the line that contains pT L and

pt . There is a unique way to place Pi�+1 in this way. We continue until we placed all triangles in
P′. If all of them are placed completely inside K , we say that the resulting solution is a top-left-

packing and that P′ is top-left-packable. We define bottom-right-packing and bottom-right-packable

symmetrically, mirroring the preceding definition along the line that contains pBL and pT R . Thus,
in such a packing, each packed triangle P is contained in the triangular region defined by the
vertices pT L,pT R , and pBR and one of the vertices of P is placed at pBR .

In the next lemma, we show that there is always a top-left-packable or a bottom-right-packable
solution with large profit compared to PH ∩ OPT or there is a single triangle with large profit.

Lemma 23. There exists a solution P∗
H ⊆ PH ∩ OPTEF such that w(PH ∩ OPTEF)=O(w(P∗

H )) and

— P∗
H is top-left-packable or bottom-right-packable and for each j we have that |P∗

H ∩ Pj | ≤ 1,

— or it holds that |P∗
H | = 1.

We will prove Lemma 23 later in Section 2.4.2. We describe now a polynomial time algorithm
that computes the most profitable solution that satisfies the properties of Lemma 23. Assuming
Lemma 23, this yields an O(1)-approximation with respect to the edge-facing triangles in OPT.

To find the most profitable solution P∗
H that satisfies |P∗

H | = 1, we simply take the triangle with
maximum weight. Let Pi∗ be this triangle. We establish now a DP that computes the most profitable
top-left-packable solution; computing the most profitable bottom-right-packable solution works
analogously. Our DP has a cell corresponding to pairs (j, t)with j, t ∈ Z. Intuitively, (j, t) represents
the subproblem of computing a set P′

H ⊆ PH of maximum weight such that P′
H ∩Pj′ = ∅ for each

j ′ < j and |P′
H ∩Pj′′ | ≤ 1 for each j ′′ ≥ j and such that P′

H is top-left-packable inside the triangular
area Tt defined by the line that contains pT L and pt , the top edge of K , and the right edge of K .
Given a cell (j, t) we want to compute a solution DP(j, t) associated with (j, t). Intuitively, we guess
whether the optimal solution P′

H to (j, t) contains a triangle from PH ∩Pj . Therefore, we try each
triangle Pi ∈ PH ∩Pj and place it insideTt such thatv∗

i coincides with pT L and one of its edges lies
on the line containing pT L and pt . Let t ′(Pi ) denote the smallest integer such that t ′(Pi ) ≥ t and
pt ′(Pi ) is not contained in the resulting placement of Pi insideTt . We associate with Pi the solution
Pi ∪ DP(j + 1, t ′(Pi )). Finally, we define DP(j, t) to be the solution of maximum profit among the
solutions Pi ∪ DP(j + 1, t ′(Pi )) for each Pi ∈ PH ∩ Pj and the solution DP(j + 1, t).

We introduce a DP-cell DP(j, t) for each pair (j, t) ∈ Z2 where jmin ≤ j ≤ jmax and 0 ≤ t ≤
log1+1/n

(
N
2

)
. Note that due to Lemma 10, for all other values of j we have that Pj ∩ PH = ∅. Also
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note that pt � K if t ≥ N 2/2. This yields at most (nN )O (1) cells in total. Finally, we output the
solution DP(jmin, 0).

In the next lemma, we prove that our DP computes the optimal top-left-packable solution with
the properties of Lemma 23.

Lemma 24. There is an algorithm with a running time of (nN )O (1) that computes the optimal

solution P′ ⊆ PH such that P′ is top-left-packable or bottom-right-packable and such that for each

j we have that |P′ ∩ Pj | ≤ 1.

Proof. We say that a set of triangles S is a (j, t)-solution if it is top-left-packable inside of Tt ,
and only uses items from

⋃
j′′ ≥j PH ∩ Pj′′ and |PH ∩ Pj′′ | ≤ 1 for each j ′′ ≥ j. Let OPTj,t be the

(j, t)-solution of maximum weight. We aim to show that OPTj,t = DP(j, t) for each jmin ≤ j ≤ jmax

and 0 ≤ t ≤ log1+ 1
n

(
N
2

)
.

We proceed by backward induction on j. If j = jmax, then OPTj,t is exactly the packing of the top-
left-packable triangle of maximum weight in Tt . Since DP(j, t) tries to top-left-pack all triangles
into Tt , it is clear that OPTj,t = DP(j, t).

We now deal with the case j < jmax. By induction, DP(j, t) is the solution of maximum profit
among Pi ∪ OPT(j + 1, t ′(Pi )) for Pi ∈ PH ∩ Pj and OPT(j + 1, t). Suppose, by contradiction, that
there exists a (j, t)-solution S such that w(S) > w(DP(j, t)). We consider two cases. If |S ∩ Pj | � ∅,
we select Pi∗ ∈ S ∩ Pj and note that

w(Pi∗ ) +w(OPT(j + 1, t ′(Pi∗ ))) ≤ w(DP(j, t)) < w(Pi∗ ) +w(S \ {Pi∗ }).

Therefore, w(S \ {Pi∗ }) > w(OPT(j + 1, t ′(Pi∗ ))), which contradicts the optimality of w(OPT(j +
1, t ′(Pi∗ ))), since they are both (j + 1, t ′(Pi∗ ))-solutions. For the case |S ∩ Pj | = ∅, we have

OPT(j + 1, t) ≤ w(DP(j, t)) < w(S).

Hence,w(S) > w(OPT(j + 1, t)), which contradicts the optimality of OPT(j + 1, t), as they are both
(j + 1, t)-solutions.

We conclude that OPTj,t = DP(j, t) for each jmin ≤ j ≤ jmax and 0 ≤ t ≤ log1+ 1
n

(
N
2

)
. In

particular, DP(jmin, 0) = OPTj,0, as desired. Note that the bottom-right-packable case can be dealt
with in a similar manner, concluding the proof. �

We execute the preceding DP and its counterpart for bottom-right-packable solutions to obtain
a top-left-packable solution P′

1 and a bottom-right-packable solution P′
2. We output the most prof-

itable solution among {Pi∗ },P′
1,P′

2. Due to Lemma 23, this yields a solution with weight at least
Ω(w(PH ∩ OPT)).

Lemma 25. There is an algorithm with a running time of (nN )O (1) that computes a solution P′
H ⊆

PH such that w(OPTEF)=O(w(P′
H )).

2.4.2 Existence of Profitable Top-Left- or Bottom-Right-Packable Solution. In this subsection, we
prove Lemma 23. Let ϵ > 0 be a constant to be defined later. Like in the proof of Lemma 20, we
observe that there can be only Oϵ (1) classes Pj containing polygons whose respective values �i
are not larger than (

√
2 − ϵ)N ; recall that

√
2N is the length of the diagonal of K . Furthermore,

for the polygons with diameter at least (
√

2 − ϵ)N , we have that in any placement of Pi inside K
the angle α between the diametrical segment and the bottom edge of the knapsack is essentially

π/4 by Lemma 21. Additionally, we have that sinα and cosα are essentially
√

2
2 . Finally, recall that

ri = N −
√
�2i − N 2 as defined in Lemma 17 is at most ϵN by Lemma 21.
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Due to Lemmas 10 and 19, there can be only Oϵ (1) hard polygons in OPT ∩
⋃jmax

j=jmax−kϵ+1
Pj .

Hence, it suffices to prove the claim for the hard polygons in OPTW := OPTEF ∩
⋃jmax−kϵ

j=jmin
Pj since

otherwise the second case of Lemma 23 applies if we define that P∗
H contains the polygon in OPTEF

of maximum weight. Note that it holds that each triangle Pi ∈ OPTW intersects the line segment
L that we define to be the line segment that connects pL with pR . Let L1 denote the subsegment
of L that connects pM with pR , and let L2 denote the line segment connecting pL with pM . Now
each triangle in OPTW either overlaps pM or intersects L1 but not L2 or it intersects L2 but not L1.
Therefore, by losing a factor of 3, we can restrict ourselves to one of these cases.

Lemma 26. If ϵ > 0 is sufficiently small, then by losing a factor 3 we can assume that for each

triangle Pi ∈ OPTW we have that Pi ∩ L = Pi ∩ L1 or that |OPTW | = 1.

Proof. There can be at most one triangle Pi∗ ∈ OPTW that overlaps pM . Each other triangle
Pi ∈ OPTW satisfies that Pi ∩ L = Pi ∩ L1 or that Pi ∩ L = Pi ∩ L2. If the triangles Pi ∈ OPTW

satisfying Pi ∩ L = Pi ∩ L1 have a total weight of at least 1
3w(OPTW ) or if wi∗ ≥ 1

3w(OPTW ), then
we are done. Otherwise, the triangles satisfying that Pi ∩L = Pi ∩L2 have a total weight of at least
1
3w(OPTW ), and we establish the claim of the lemma by rotating OPT by π . �

If |OPTW | = 1, then we are done. Therefore, we assume that Pi ∩L = Pi ∩L1 for each Pi ∈ OPTW .
In the next lemma, we prove that by losing a factor of O(1) we can assume that the triangles in
OPTW intersect L1 in the order of their groups Pj (assuming that ϵ is a sufficiently small constant).
We call such a solution group-respecting as defined next.

Definition. Let P′ = {Pi1 , . . . , Pik
} be a solution in which each triangle intersects L1, and assume

w.l.o.g. that the triangles in P′ intersect L1 in the order Pi1 , . . . , Pik
when going from pM to pR . We

say that P′ is group-respecting if for any two triangles Pi� , Pi�+1 ∈ P′ with Pi� ∈ Pj and Pi�+1 ∈ Pj′

for some j, j ′ it holds that j ≤ j ′.

For each Pi ∈ OPTW , let di denote the length of the intersection of Pi and L1 in the placement
of OPT.

Lemma 27. If ϵ > 0 is sufficiently small, then by losing a factorO(1) we can assume that OPTW is

group-respecting and that |OPTW ∩ Pj | ≤ 1 for each j.

Proof. Due to Lemma 19, we lose only a factorO(1) by requiring that |OPTW ∩Pj | ≤ 1 for each
j. We prove now that by losing another factorO(1),we can assume that OPTW is group-respecting.
Let Pi ∈ Pj ∩ PH . Let D be the longest edge of Pi in the placement of Pi in OPTW . Let α be the
angle between D and L1.

Like in the proof of Lemma 17, we define ri := N −
√
�2i − N 2. Intuitively, using ri , we can define

two hexagonal areas H1(ri ),H2(ri ) close to the diagonals of the knapsack such that the longest
edge of Pi lies within H1(ri ) or within H2(ri ). Call r ′i the length of the line segment L1 ∩H1(ri ). By
a similarity argument, we have that r ′i = ri .

Let B̃i denote the rectangle obtained by taking the bounding box Bi of Pi and moving and ro-
tating it such that one of its edges coincides with the diametrical segment of Pi (in the placement

of OPT) inside K . Note that the intersection of B̃i and L1 has length at most hi

sin α
≤ 1

1−ϵ
hi ≤ 2hi

by Lemma 21. Therefore, di ≤ 2hi . However, if ϵ is sufficiently small, then hi=O(di ) and thus
di = Θ(hi ). Additionally, it holds that ri = Θ(h′

i ) and hence di = Ω(ri ). Let γ be a constant such
that di ≥ γ · ri for each Pi ∈ OPTW .

Consider the triangleT given by (0, 0), (N ,N ), and (N − ri ,N ). Let α ′ be the angle at (0, 0). Note
that the angles at (N ,N ) and (N − ri ,N ) are π/4 and 3π/4 − α ′. Let q be a point in the diagonal
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of the knapsack at distance �i from (0, 0). Note that this splits T into an isosceles triangle, and the
triangle given by q, (N − ri ,N ), and (N ,N ). Applying Lemma 21 and the law of sines on the latter
triangle, we obtain that

√
2N − �i ≤ ri =

sin(π/2 + α ′/2)
sin(π/2 − α ′/2) (

√
2N − �i ) ≤

sin(π/2 + π/10)
sin(π/2 − π/10) (

√
2N − �i ) ≤ 3(

√
2N − �i ).

In particular, if i ∈ Pj and i ′ ∈ Pj′ such that j + Γ ≤ j ′ for Γ = O(1), a simple induction on Γ shows

that ri ≤ 3Γri′ . Choosing Γ = log3 γ , we get that r ′i = ri ≤ γri′ = di′ .
Let D be the longest edge of Pi′ . Assume w.l.o.g. that D lies within H1(ri ). However, we have

that r ′i ≤ di′ . Since Pi and Pi′ do not intersect, they must therefore be placed in a group-respecting
manner in OPTW .

We split OPTW into Γ groups such that for each offset a ∈ {0, . . . , Γ − 1}, we define OPT
(a)
W

:=

OPTW ∩
⋃

k ∈Z Pa+kΓ . Therefore, for each solution OPT
(a)
W

it holds that for any two distinct poly-

gons Pi ∈ OPT
(a)
W

∩ Pj , Pi′ ∈ OPT
(a)
W

∩ Pj′ for values j, j ′ it holds that Pi and Pi′ are placed in a
group-respecting manner in OPTW . Then taking the most profitable solution among the solutions

{OPT
(a)
W

}a∈{0, ...,Γ−1} loses at most another factor Γ = O(1). �

For each triangle Pi ∈ OPTW , let v∗
i be the vertex adjacent to the two longest edges of Pi in the

placement of Pi in OPT. Additionally, let θi denote the angle at v∗
i . We prove that there exist only

constantly many triangles Pi ∈ OPTW with θi > ϵ .

Lemma 28. There exist at most Oϵ (1) triangles in Pi ∈ OPTW such that θi > ϵ .

Proof. Let Pi ∈ OPTW . Recall that the longest edge of Pi is horizontal. We now split Pi by a
vertical line which crosses the midpoint of the longest edge. Note that this has split Pi into two
polygons. Furthermore, one of these polygons containsv∗

i and is a triangle. We denote this triangle
by T . Thus,

area(Pi ) ≥ area(T ) =
�2i
8

tanθi >
�2i
8

tan ϵ ≥ (
√

2 − ϵ)2
8

N 2 tan ϵ .

Hence, there can only be at most Oϵ (1) such triangles in OPTW . �

There are only constantly many triangles Pi in OPT such thatθi > ϵ . If they contribute a constant
fraction of the profit of OPT (e.g., at least OPT/2), then we obtain anO(1)-approximate solution by
simply guessing the most profitable such triangle and guessing a packing for it inside the knapsack
(e.g., there is always a packing in which one of the vertices of the triangle is in a corner, we can
guess this vertex, and then easily obtain a packing of the triangle inside of the knapsack). Therefore,
by losing a factor of at most 2, we can assume that θi ≤ ϵ for each Pi ∈ OPTW . Furthermore, since
each triangle Pi ∈ OPTW is very wide, v∗

i must be close to one of the four corners of K since
otherwise the longest edge of Pi does not fit into K . Thus, by losing a factor 4, we assume that v∗

i

is close to pT L for each Pi ∈ OPTW .

Lemma 29. Let ϵ > 0. By losing a factor 4, we can assume for each Pi ∈ OPTW that
��v∗

i − pT L

��
2
≤

2ϵN .

Proof. Let u,v be the vertices that define �i . By Claim 1, we know that u or v is at distance ri

of some corner vC of K . W.l.o.g. and applying Lemma 21, we assume that ‖v − vC ‖ ≤ ϵN . Recall
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that by Lemma 21, ‖u −v ‖ = �i ≥ (
√

2 − ϵ)N . Thus,

‖u −vC ‖ = ‖u −v − (vC −v)‖
≥ ‖u −v ‖ − ‖vC −v ‖

≥
(√

2 − ϵ
)
N − ϵN

=
(√

2 − 2ϵ
)
N .

Let B(x , r ) := {p | ‖x − p‖ ≤ r }, and call vC ′ the corner farthest away from vC . Note that

u ∈ K \ B(vC , (
√

2 − 2ϵ)N ) ⊆ B(vC ′, 2ϵN ), from which we conclude that every endpoint of the
diagonal is at distance at most 2ϵN from a corner. In particular,v∗

i must be a distance at most 2ϵN
from some corner.

We define NT L := {Pi ∈ OPTW |‖v∗
i − pT L ‖2 ≤ 2ϵN } and NT L , NBL , NBR in a similar fashion.

These sets partition OPTW into four sets. Note that one of these sets must have weight at least
1
4w(OPTW ). If this set is NT L , we are done. Otherwise, we simply rotate OPTW accordingly. �

Due to Lemma 29, if ϵ is sufficiently small, we have for each triangle Pi ∈ OPTW that both

R(1)
i \ {v∗

i } and R(2)
i \ {v∗

i } intersect the right edge of the knapsack or both R(1)
i \ {v∗

i } and R(2)
i \ {v∗

i }
intersect the bottom edge of the knapsack. We call triangles Pi of the former type right-facing

triangles, and we call the triangles of the latter type bottom-facing triangles.

Proposition 30. If ϵ is sufficiently small, we have that by losing a factor of 2 we can assume that

each triangle in OPTW is right-facing or bottom-facing.

Assume that OPTW = {Pi1 , . . . , Pi |OPTW | }. We partition OPTW into д = O(1) groups such that

each group is top-left-packable. Then the most profitable such group yields a д-approximation. We

initialize OPT
(1)
W

:= OPT
(2)
W

:= · · · := OPT
(д)
W

:= ∅ and k := 0. Suppose inductively that for some

k ∈ N0, we partitioned the triangles Pi1 , . . . , Pik−1
into OPT

(1)
W
, . . . ,OPT

(д)
W

such that each of these

sets is top-left-packable. We argue that there is one value t ∈ {1, . . . ,д} such that OPT
(t )
W

∪ {Pik
}

is also top-left-packable. To this end, observe that in the top-left-packing of each set OPT
(t )
W

, each

triangle Pi ∈ OPT
(t )
W

blocks a certain portion of L1 such that no other triangle in this packing can

overlap this part of L1. For each triangle Pi ∈
{
Pi1 , . . . , Pik−1

}
, let t(i) ∈ N0 be the smallest integer t

such that if Pi ∈ OPT
(д′)
W

for someд′ ∈ {1, . . . ,д}, then in the top-left-packing of OPT
(д′)
W

the longest
edge e of Pi lies on the line that contains pT L and pt . Additionally, let t ′(i) be the smallest integer
t ′ such that t(i) < t ′ and Pi does not overlap the point pt ′ . Then, after placing Pi , we cannot add

another triangle in a top-left-packing to OPT
(t )
W

that touches the subsegment of L1 that connects

pt (i) with pt ′(i). Hence, intuitively, Pi blocks the latter subsegment. We define d̂i :=
��pt ′(i) − pt (i)

��
2
.

Our crucial insight is that up to a constant factor, in our top-left-packing the triangle Pi blocks as
much of L1 as it covers of L1 in OPTW .

Lemma 31. If ϵ is sufficiently small, then for each triangle Pi ∈ OPTW it holds that d̂i = O(di ).
Proof. We argue in a similar way as in the proof of Lemma 27. Let D be the longest edge of Pi

in an arbitrary placement of Pi inside K . Let d̃i denote the length of the intersection of Pi and L1 in
this placement. Let α be the angle between D and L1. Due to Proposition 21, we can assume that
α satisfies π/4− 1/10 ≤ α ≤ π/4+ 1/10. Hence, if ϵ is a sufficiently small, then the intersection of

B̃i and L1 has length at most 2hi . Therefore, d̃i ≤ 2hi .

However, if ϵ sufficiently small, then hi=O(d̃i ). Hence, d̃i = Θ(hi ) and also di = Θ(hi ) and

therefore d̃i = Θ(di ). Since hi ≥ h′
i/8, this implies that di = Ω(h′

i ). Additionally, it holds that
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Fig. 5. The points, line segments, and angles used in the proof of Lemma 32.

ri = Θ(h′
i ) and D lies in H1(ri ) or H2(ri ). Furthermore, if n′ is the number of packed triangles, we

have that d̃i ≤ d̂i +
n′

N 2 as each packed triangle contributes at most 1/N 2 error. Since we pack at

most N triangles, we obtain that d̂i = O(d̃i ) = O(di ). �

Lemma 31 implies that if д is a sufficiently large constant, then there is a value t ∈ {1, . . . ,д}
such that

∑
Pi�

∈OPT
(t )
W

d̂i� ≤
∑

Pi�
∈{Pi1, ...,Pik−1 } di� . Hence, in the top-left-packing for OPT

(t )
W

(which

at this point contains only triangles from
{
Pi1 , . . . , Pik−1

}
), the triangles block less of L1 than the

amount of L1 that the triangles Pi1 , . . . , Pik−1
cover in OPTW . However, we know that in OPTW , the

triangle Pik
is placed such that it intersects L1 farther on the right than any triangle in Pi1 , . . . , Pik−1

due to Lemma 27. Using this, in the next lemmas we show that we can add Pik
to OPT

(t )
W

.

Lemma 32. If ϵ > 0 is sufficiently small and if each triangle in OPTW is right-facing, then we have

that OPT
(t )
W

∪ {Pik
} is top-left-packable.

Proof. Let s∗ =
∑

Pi�
∈OPT

(t )
W

d̂i� and s = (s∗ + N /2,N /2). Consider p(z) = (z,N ), and define the

point pf (z) = (pf
x (z),p

f
y (z)) as the intersection between the right side of the knapsack and p(z)s

(see Figure 5 for an illustration). Here, the role of z is to parameterize the position of the “top-
left corner” of the triangle Pik

. Similarly, define pд(z) = (pд
x (z),p

д
y (z)) as the intersection between

{N } ×R and the line Lθ obtained by rotating p(z)s around p(z) by θ := θik
counterclockwise. Note

that every polygon in OPT
(t )
W

is contained in H− := K ∩ conv({pT L,p
f (0),pBR ,pBL}) as they are

top-left-packed.
Assume that Pik

has been placed into the knapsack in a not top-left-packable way (say, as in
the placement given by OPTW ). We translate Pik

upward until it intersects the top side of the
knapsack at a point (z∗,N ). The main idea is to now show that we can continuously slide the triangle
Pik

by decreasing z while “pivoting” on s , making the packing top-left-packable. Hence, we need
to show that the triangle still fits into the knapsack during this continuous sliding process. By
Lemma 29, we get that z∗ ∈ [0, 2ϵN ]. Note that Pik

is placed inside the triangle p(z∗),pf (z∗),pд(z∗).
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Let f (z) := ‖p(z) − pf (z)‖2, д(z) := ‖p(z) − pд(z)‖2, u(z) = (ux (z),uy (z)) be the placement of the
vertex of Pik

that is not adjacent to the longest edge, andw(z) = (wx (z),wy (z)) be the vertex of Pik

that is not u or v∗
ik

. Note that it suffices to prove that f (0) ≥ f (z) and that u(z) is placed inside the

knapsack for each z ∈ [0, 2ϵN ] as this implies that Pik
can be placed inside the triangle with vertices

p(0),pf (0),pд(0), this triangle is contained in K \ H−, and this placement is group-respecting.
We begin by proving that f (0) ≥ f (z) for every z ∈ [0, 2ϵN ]. Since N

2 + s
∗ − z ≥

(
1
2 − 2ϵ

)
N > 0

and N − z ≥ (1 − 2ϵ)N > 0, a similarity argument between triangles p(z), (z,pf
y (z)),pf (z) and

p(z), (z,N /2), s allows us to obtain

N
2

N
2 + s

∗ − z
=

N − p
f
y (z)

N − z
. (5)

As p
f
y (z) ≥ 0, we obtain N − z ≤ N + 2s∗ − 2z, implying that z ≤ 2s∗. Therefore, we only need

to prove that f (0) ≥ f (z) for each z ∈ [0,min{2ϵN , 2s∗}]. Pythagoras theorem on p(z),pf (z),pT R

gives us

f (z) = (N − z)2 +
(
N − p

f
y (z)

)2
. (6)

Combining (5) and (6), we obtain

f (z) = (N − z)2 +
(
N − p

f
y (z)

)2

= (N − z)2
(
1 +

N 2

(N + 2s∗ − 2z)2

)
.

Note that f (0) ≥ f (2s∗) since

f (0) − f (2s∗) = N 2

(
1 +

N 2

(N + 2s∗)2

)
− (N − 2s∗)2

(
1 +

N 2

(N − 2s∗)2

)

=
N 4 − (N + 2s∗)2(N − 2s∗)2

(N + 2s∗)

=
N 4 − (N 2 − (2s∗)2)2

(N + 2s∗) ≥ 0.

Thus, it is sufficient to show that −f is unimodal in the interval [0, 2s∗]—that is, there exists a t

such that f is decreasing in [0, t] and increasing in [t , 2s∗]. Let γ (z) be the angle between p(z)pf (z)
and the top of the knapsack, d the length of the line segment spT R , and τ be the angle between
spT R and the top of the knapsack. By the law of sines, we obtain that

−f (z) = −d
(

sin(τ )
sin(γ (z)) +

cos(τ )
cos(γ (z))

)
.

which is unimodal with respect to γ , hence also unimodal in z. Hence, we conclude that f (z) ≤
max{ f (0), f (2s∗)} = f (0) for z ∈ [0,min{2ϵN , 2s∗}].

LetL be the vertical line that containsp(z), and letα := α(z) be the angle betweenL andp(z)pf (z).
We aim to show that u(0) ∈ K , implying that Pik

is placed inside the knapsack. By examining the

triangle p(z), (z,pд
y (z)), pд(z), we get that

tan(α(z) + θ ) =
‖pд(z) − (z,pд

y (z))‖
‖p(z) − (z,pд

y (z))‖
=

N − z

|N − p
д
y (z)|

≥ (1 − 2ϵ)N
|N − p

д
y (z)|

. (7)
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Furthermore, by the law of sines on triangle p(z), pf (z), pд(z), we obtain that

sinθ

‖pд(z) − pf (z)‖
=

sinα(z)
‖pд(z) − p(z)‖ .

Therefore,

‖pд(z) − pf (z)‖ = sinθ

sin(α(z)) |p
д(z) − p(z)| ≤ ϵ

√
2

√
2

2 − ϵ
N .

By choosing ϵ small enough, we assume that ‖pд(z) −pf (z)‖ ≤ 1
10N and tan(α(z)+θ ) ≤ 21

20 . Using
the second bound on (7), we obtain

(1 − 2ϵ)N ≤
(
1 +

1

20

)
|N − pд(0)|.

Again, by choosing ϵ > 0 sufficiently small, we guarantee that

N ≤
(
1 +

1

10

)
|N − p

д
y (z)|,

which implies that p
д
y (z) ≤ 1

10N or p
д
y (z) ≥ 21

10N . If p
д
y (z) ≥ 21

10N , then pf (z)y ≥ 20
10N , which is

not possible. Hence, p
д
y (z) ≤ 1

10N < N , and since uy (z) ∈ conv({py (z),pд
y (z)}) = [pд

y (z),N ], we
conclude that 0 ≤ uy (z) ≤ N . It only remains to prove that the same holds for ux (0).

Let θ ′ be the angle of Pik
at w and β(z) the angle between uw and {wy (z)} × [wx (z),∞). Note

that β(z) + θ ′ + π/2 − α(z) = π , and therefore α ′(z) = β ′(z). By examining the triangle p(z), s ,
(z,N /2), we obtain that

tan(α(z)) = ‖s − (z,N /2)‖
‖p(z) − (z,N /2)‖ =

N + 2s∗ − 2z

N
= 1 + 2

s∗ − z

N
.

Therefore,

β ′(z) = α ′(z) =
− 2

N

1 +
(
1 + 2 s∗−z

N

)2
≤ 0.

Since β is decreasing, we conclude that β(0) ≥ β(z∗). Call �′ = ‖w − u‖ and R(β) the rotation
matrix by β , then u(z) = w(z) + R(β(z))(0, �′). In particular,

0 ≤ ux (0) = wx (0) − sin(β(0))�′ ≤ wx (z∗) − sin(β(z∗))�′ = ux (z∗) ≤ N . �

Lemma 33. If each triangle in OPTW is bottom-facing, we have that OPT
(t )
W
∪{Pik

} is bottom-right-

packable.

Proof. Let s∗ =
∑

Pi�
∈OPTt

W
d̂i� , sr = (s∗ + N

2 ,
N
2 ) and s� = (N

2 − s∗, N
2 ). We define p(z) as (z,N ).

Define pf (z) as the intersection between p(z)sr and the bottom edge of K . Similarly, let Lθ be the

rotation ofp(z)sr by θ counterclockwise, and callpд(z) the intersection between Lθ and the bottom

edge. Let also T (z) be the triangle p(z), pf (z), pд(z). We begin by rotating OPT
(t )
W

by π around pM .
We proceed to translate Pik

upward until it intersects the top edge of the knapsack at p(z∗) for
some z∗. Note that Pik

is contained inside the triangle T (z∗).
Let I be the amount T (z∗) intersects L. A similarity argument between T (z∗) and (z∗,N ),

(z∗,N /2), sr + (I , 0) gives us
1

2
=

N /2 + s∗ − z∗ + I

pд(z) − z∗
.

Since pд(z∗) ≤ N , we obtain 2s + 2I ≤ z∗.

ACM Trans. Algor., Vol. 20, No. 2, Article 16. Publication date: April 2024.



16:26 A. Merino and A. Wiese

We now translate Pik
to the left until v∗

ik
coincides with pT L . Let q = (qx ,qy ) be the rightmost

point in Pik
∩ L. Since 2s + 2I ≤ z∗, we know that qx ≤ N

2 − s . Therefore, Pik
is placed to the

left of the line L∗ that passes through vT L and s� . Furthermore, OPT
(t )
W

is to the right of L∗ as
they are bottom-right-packed. We then rotate Pik

counterclockwise around v∗
ik

until it overlaps

s� . Finally, by rotating OPT
(t )
W

∪ {Pik
} by π around pM , we arrive at a bottom-right-packing of

OPT
(t )
W

∪ {Pik
}. �

We add Pik
to OPT

(t )
W

. We continue iteratively until we have assigned all triangles in OPTW

to the sets OPT
(1)
W
, . . . ,OPT

(д)
W

. Then, the most profitable set OPT
(t ∗)
W

among them satisfies that

w(OPT
(t ∗)
W

) ≥ 1
д
w(OPTW ). However, w(Pi∗ ) ≥ Ω(w (OPT ∩ PH \ OPTW )). Hence, w(OPT

(t ∗)
W

) ≥
1
д
w(OPT ∩ PH ) or w(Pi∗ ) ≥ Ω(w (OPT ∩ PH )), which completes the proof of Lemma 23.

2.4.3 Corner-Facing Triangles. In this subsection, we present anO(1)-approximation algorithm
for the corner-facing triangles in OPT—that is, our algorithm computes a solution P′ ⊆ P of
profit at least Ω(w(OPTCF)). We first establish some properties for OPTCF. We argue that by losing
a constant factor, we can assume that each triangle in OPTCF intuitively faces the bottom-right
corner.

Lemma 34. By losing a factor 4, we can assume that for each triangle Pi ∈ OPTCF we have that

R(1)
i \ {v∗

i } intersects the bottom edge of the knapsack and R(2)
i \ {v∗

i } intersects the right edge of the

knapsack, or vice versa.

Proof. We can partition OPTCF into four groups according to which corner the triangles in this
group face. By losing a factor of 4, we keep only the group with largest weight. Then, we rotate
the solution appropriately such that the claim of the lemma holds. �

In the following lemma, we establish a property that will be crucial for our algorithm. Let Di be
the ray which starts atpBR and containsv∗

i . For each Pi ∈ OPTCF, letRext
i denote the ray originating

at v∗
i which is contained in Di . We establish that we can assume that Rext

i does not intersect with
any triangle Pi′ ∈ OPTCF (Figure 6).

Lemma 35. By losing a factor O(1), we can assume that for each Pi , Pi′ ∈ OPTCF it holds that

Rext
i ∩ Pi′ = ∅.

Proof. Let ϵ > 0 be sufficiently small. By losing a factor Oϵ (1), we can assume for each tri-

anglewin OPTCF that its longest edge has length at least (1 − ϵ)
√

2N . This holds since all other
triangles are contained in only Oϵ (1) groups Pj with only Oϵ (1) triangles in OPTCF in total (see
Lemma 19). Thus, if these other triangles form a constant fraction of the profit of OPT, then we
can obtain an O(1)-approximate solution by simply guessing the most profitable triangle among
them and a placement for it inside of the knapsack (using that there is a packing in which one
vertex of the triangle lies on a corner of the knapsack).

Assume by contradiction that there is a triangle Pi′ ∈ OPTCF with Rext
i ∩ Pi′ � ∅. Recall that v∗

i

and v∗
i′ are the vertices of Pi and Pi′ that are closest to pT L , respectively. Call B the ball centered at

pT L with radius 3ϵN . Note thatDi splitsB into two parts, one which contains the point (0, (1−3ϵ)N )
and one which does not; let us call these parts Bleft and Bright, respectively. Similarly, Di splits K
into two parts, one which contains pBL and one which does not; let us call these parts Kleft and
Kright, respectively. By Lemma 29„ we have that v∗

i ,v
∗
i′ ∈ B. Furthermore, assume w.l.o.g. that

vi′ ∈ Bleft ⊆ Kleft, as the other case is symmetrical. Let e1 and e2 be the two longest edges of Pi′ .
Since Pi′ intersects Rext

i , it is clear that e1 or e2 intersect Rext
i .
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Fig. 6. Left: The points pT L ,pT R ,pBL ,pBR ,pL ,pM ,pR . Right: A corner-facing triangle, its vertices v∗i and v̄i ,

and the lines Li and Rext
i .

Assume first that both e1 and e2 intersectRext
i . Let L1 and L2 denote the rays originating inv∗

i′ and

containing e1 and e2, respectively. Then both of them do not intersect the bottom edge of K since
otherwise they would intersect Di in two different points, which is impossible since L1 � Di � L2

and L1,L2, and Di are rays. Therefore, Pi′ is not corner-facing, which is a contradiction.
Assume now that exactly one edge among e1 and e2 intersects Rext

i . Since the lengths of both e1

and e2 are greater than (
√

2−ϵ)N /2 andv∗
i ∈ B′, if ϵ is sufficiently small enough we conclude that

v∗
i ∈ Pi′ , which is a contradiction. �

Our algorithm is a DP that intuitively guesses the placements of the triangles in OPTCF step by
step. To this end, each DP-cell corresponds to a subproblem that is defined via a part K ′ ⊆ K of
the knapsack and a subset of the groups J ⊆ {jmin, . . . , jmax}. The goal is to place triangles from⋃

j ∈J Pj of maximum profit into K ′. Formally, each DP-cell is defined by up to two triangles Pi , Pi′ ,

placements P̃i , P̃i′ for them, and a set J ⊆ {jmin, . . . , jmax}; if the cell is defined via exactly one
triangle Pi , then there is also a value dir ∈ {left,mid}. The corresponding region K ′ is defined as
follows: if the cell is defined via zero triangles, then the region is the whole knapsackK . Otherwise,

let v̄i denote the right-most vertex of P̃i —that is, the vertex of P̃i that is closest to the right edge of
the knapsack (see Figure 6). Let Li denote the vertical line that goes through v̄i (and thus intersects
the top and the bottom edge of the knapsack). If the cell is defined via one triangle Pi , then observe

that K \ (P̃i ∪ Rext
i ∪ Li ) has three connected components:

— one on the left, surrounded by Rext
i , parts of P̃i , the left edge of the knapsack, and parts of

the top and bottom edge of the knapsack,
— one on the right, surrounded by Li , the right edge of the knapsack, and parts of the top and

bottom edge of the knapsack, and

— one in the middle, surrounded by the top edge of the knapsack, P̃i , R
ext
i , and Li .

If dir = left, then the region of the cell equals the left component, and if dir = mid, then
the region of the cell equals the middle component. Assume now that the cell is defined via two
triangles Pi , Pi′ . Furthermore, assume w.l.o.g. that v̄i is closer to the right edge of the knapsack

than v̄i′ . Then, K \ (P̃i ∪ P̃i′ ∪Rext
i ∪Rext

i′ ∪Li′ ) has one connected component that is surrounded by
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Fig. 7. The cases in the transition of the DP for corner-facing triangles (see Lemma 36).

P̃i , P̃i′,R
ext
i ,R

ext
i′ ,Li′ and we define the region of the cell to be this component. Observe that the total

number of DP-cells is bounded by (nN )O (1), using that there are only (nN )O (1) possible placements
for each triangle.

We describe a DP that computes the optimal solution to each cell. Assume that we are given a
cellC for which we want to compute the optimal solution. We guess the triangle Pi∗ in the optimal

solution to this cell such that v̄i∗ is closest to the right edge of the knapsack, and its placement P̃i∗

in the optimal solution to C . Let j∗ such that Pi∗ ∈ Pj∗ . We will prove in the next lemma that the
optimal solution to C consists of Pi∗ and the optimal solutions to two other DP-cells (Figure 7).

Lemma 36. Let C be a DP-cell, let J ⊆ {jmin, . . . , jmax}, and let Pi ∈ P�, Pi′ ∈ P�′ be two triangles

with � < �′ and let P̃i , P̃i′ be placements for them. Then, there are disjoint sets J ′, J ′′ ⊆ J such that

(1) if C = (J ), then its optimal solution consists of Pi∗ and the optimal solutions to the cells

(J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi∗ , P̃i∗ ,mid),
(2) if C = (J , Pi , P̃i , left), then its optimal solution consists of Pi∗ and the optimal solutions to the

cells (J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi , P̃i , Pi∗ , P̃i∗ ),
(3) if C = (J , Pi , P̃i ,mid), then its optimal solution consists of Pi∗ and the optimal solutions to the

cells (J ′, Pi∗ , P̃i∗ ,mid) and (J ′′, Pi , P̃i , Pi∗ , P̃i∗ ),
(4) ifC = (J , Pi , P̃i , Pi′, P̃i′ ), then the optimal solution toC consists of Pi∗ and the optimal solutions

to the cells (J ′, Pi , P̃i , Pi∗ , P̃i∗ ) and (J ′′, Pi∗ , P̃i∗ , Pi′, P̃i′ ).

Proof. Let OPTC denote the optimal solution to the cellC . The following claim is easy to prove.

Claim 2. Consider a feasible solution S for the cell C . Let Pi∗ be the triangle in S whose vertex v̄i∗

is closest to the right edge of the knapsack. Then, it holds that Li∗ ∩ Pi = ∅ for each triangle Pi ∈ S .

First assume that C = (J ). By Lemmas 35 and Claim 2, no triangle in OPTC intersects Li∗ or
Rext

i∗ and no triangle in OPTC has a vertex on the right of Li∗ . Hence, each triangle in OPTC is

contained in the area corresponding to the cells (J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi∗ , P̃i∗ ,mid). We define
J ′ to be the set of indices j ∈ J such that in OPTC there is a triangle Pi ∈ OPTC contained in the area

corresponding to (J ′, Pi∗ , P̃i∗ , left) and J ′′ similarly. The other cases can be verified similarly. �

We guess the sets J ′, J ′′ ⊆ J according to Lemma 36 and store in C the solution consisting of
Pi∗ , and the solutions stored in the two cells according to the lemma. At the end, the cell C =
({jmin, . . . , jmax}) (whose corresponding region equals K ) contains the optimal solution.

Lemma 37. There is an algorithm with a running time of (nN )O (1) that computes a solution P′ ⊆ P
such that w(OPTCF)=O(w(P′)).

Proof. Since we applied Lemma 20, there are only (nN )O (1) different placements for each tri-
angle. Additionally, there are only 2O (log N ) = NO (1) possibilities for the set J in the description of
the DP-cell. Therefore, the number of DP-cells is bounded by (nN )O (1). To compute the value of
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a DP-cell C , we guess the triangle Pi∗ and its corresponding placement P̃i∗ , and in particular, we

reject a guess if P̃i∗ is not contained in the region corresponding to C . Additionally, we guess J ′

and J ′′ for which there are only NO (1) possibilities each and reject guesses which do not satisfy
that J ′ ⊆ J , J ′′ ⊆ J , and that J ′ ∩ J ′′ = ∅. Therefore, in each DP-cell, we store a solution that is
feasible. We can fill the complete DP-table in time (nN )O (1). Using Lemma 36, one can show that
the cell C = ({jmin, . . . , jmax}) contains a solution P′ with weight at least Ω(w(OPTCF)). �

By combining Lemmas 25 and 37, we obtain the proof of Lemma 9.

2.5 Hard Polygons under Resource Augmentation

Let δ > 0. We consider the setting of (1 + δ )-resource augmentation—that is, we want to compute
a solution P′ ⊆ P that is feasible for a knapsack of size (1 + δ )N × (1 + δ )N and such that
w(OPT)=O(w(P′)) where OPT is the optimal solution for the original knapsack of size N × N .
Note that increasing K by a factor of 1+δ is equivalent to shrinking the input polygons by a factor
of 1 + δ .

Given a polygon P defined via coordinates (x1,y1), . . . , (xk ,yk ) ∈ R2, we define shr1+δ (P) to be
the polygon with coordinates (x̄1, ȳ1), . . . , (x̄k , ȳk ) ∈ R2 where x̄k ′ = xk ′/(1+δ ) and ȳk ′ = yk ′/(1+δ )
for each k ′. For each input polygon Pi ∈ P,we define its shrunk counterpart to be P̄i := shr1+δ (Pi ).
Let �̄i denotes the length of the diametrical segment of P̄i . Based on the corresponding value of �̄i ,
we define sets P̄E , P̄M , P̄H and the set P̄j for each j ∈ Z in the same way as we defined PE ,PM ,PH

and Pj based on �i above. Therefore, these definitions are based of each polygon Pi after shrinking
Pi by a factor of 1 + δ .

For the sets P̄E and P̄M , we use the algorithms due to Lemmas 6 and 7 as before. Recall that we

may assume that in the original polygons there are no polygons with diameter greater than
√

2N .
For the hard polygons P̄H , we can show that there are only Oδ (1) groups P̄j that are non-empty,
using that we obtained them via shrinking the original input polygons. Intuitively, this is true since

�̄i ≤
√

2N
1+δ

for each P̄i ∈ P̄ and hence P̄j ∩ P̄H = ∅ if j < log( δ
1+δ

√
2N ).

Lemma 38. We have that P̄j = ∅ if j < log( δ
1+δ

√
2N ). Hence, there are only log( 1+δ

δ
) + 1 values

j ∈ Z such that P̄j � ∅.

Proof. Let Pi be an arbitrary polygon. Note that �̄i =
1

1+δ
�i and therefore �̄i ≤

√
2N

1+δ
. We con-

clude that δ
1+δ

√
2N ≤

√
2N − �̄i ≤

√
2N . Note that for any j, if P̄j is non-empty, there must be

a Pi that satisfies
√

2N − 2j ≤ �̄i <
√

2N − 2j−1 (or equivalently, 2j−1 <
√

2N − �̄i ≤ 2j ). We

conclude that such j’s must satisfy log( δ
1+δ

√
2N ) ≤ j < log(2

√
2N ), and therefore there are at most

log(2
√

2N ) − log( δ
1+δ

√
2N ) = log( 1+δ

δ
) + 1 non-empty P̄j . �

Lemmas 10, 19, and 38 imply that |OPT ∩ P̄H |=O(log( 1+δ
δ
)), where OPT denotes the optimal

solution for the polygons in P̄. Let P̄ ′
H ⊆ P̄H denote the set due to Lemma 20 when assuming that

P̄H are the hard polygons in the given instance. Therefore, we guess P̄ ′
H in timenO (log( 1+δ

δ
)). Finally,

we output the solution of largest weight among P̄ ′
H and the solutions due to applying Lemmas 6

and 7 to the input sets P̄E and P̄M , respectively. This yields the proof of Theorem 3.

3 OPTIMAL PROFIT UNDER RESOURCE AUGMENTATION

In this section, we also study the setting of (1 + δ )-resource augmentation—that is, we want to
compute a solution P′ which is feasible for an enlarged knapsack of size (1+δ )N ×(1+δ )N , for any

constant δ > 0. We present an algorithm with a running time of n(log(n)/δ )O (1)
that computes such
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a solution P′ with w(P′) ≥ w(OPT), where OPT is the optimal solution for the original knapsack
of size N × N . In particular, we here do not lose any factor in our approximation guarantee.

In Section 3.1, we will prove a set of properties that we can assume “by (1+δ )-resource augmen-
tation,” meaning that if we increase the size of K by a factor 1 + δ , then there exists a solution of
weightw(OPT) with the mentioned properties, or that we can modify the input in time nO (1) such
that it has these properties and there still exists a solution of weightw(OPT). We will perform sev-
eral such operations and hence at the end increase the knapsack by a factor (1+δ )O (1) = (1+O(δ )).
We then obtain our claimed result by scaling δ appropriately.

In Section 3.2, we will present our separator-based recursive algorithm. Roughly speaking, we
guess a balanced separator and then partition the problem into two subproblems: one inside the
separator and one outside the separator.

3.1 Few Types of Items

We want to establish that the input polygons have only (log(n)/δ )O (1) different shapes. Like in
Section 2, for each polygon Pi ∈ P, denote by Bi its bounding box with width �i and height hi .
Note that �i ≥ hi .

First, we argue that if we increase the size of the knapsack, then there exists a packing in which
any two polygons have a distance of at least Ω(δN /n). This will allows us later to modify our
polygons in this packing.

Lemma 39. By (1 + O(δ ))-resource augmentation, we can assume that the distance between any

two polygons Pi , Pi′ ∈ OPT is at least Ω(δN /n).

Proof. Assume that OPT = {P1, . . . , Pk }. For each polygon Pi ∈ OPT, denote by P̃i its corre-

sponding placement in OPT. We assume that for any P̃i , P̃i′ with i < i ′ it holds that intuitively P̃i

lies on the left of P̃i′ . Formally, we require that if there is a horizontal line L that has non-empty

intersection with both P̃i and P̃i′ , then L ∩ P̃i lies on the left of L ∩ P̃i′ .
We need to prove that such an ordering indeed exists. We consider in the proof of this the closure

of our polygons, which makes our requirement for the horizontal lines L only stronger. We define

a relation ≺ such that P̃i ≺ P̃i′ if there is a horizontal line L that has non-empty intersection with

both P̃i and P̃i′ such that L∩ P̃i lies on the left of L∩ P̃i′ . We want to show that ≺ is a partial order.
Suppose that it is not a partial order. Consider an instance with the smallest number of polygons

in which ≺ is not a partial order. Then there are polygons P̃1, P̃2, . . . , P̃k , P̃k+1 with P̃k+1 = P̃1 such

that P̃i ≺ P̃i+1 for each i ∈ {1, . . . ,k}. For each i ∈ {1, . . . ,k}, let Li be a horizontal line having

non-empty intersection with P̃i and P̃i+1 such that L ∩ P̃i lies on the left of L ∩ P̃i+1. Since our
example has a minimum number of polygons, for each i ∈ {1, . . . ,k} there is no line L intersecting

P̃i and some polygon P̃i′ with i ′ > i+1 such that L∩P̃i lies on the left of L∩P̃i′ . Assume w.l.o.g. that
L1 has a largery-coordinate than L2—that is, L1 is higher than L2. We move each line Li downward
as much as possible. By the minimality of our instance, L1 still has a larger y-coordinate than L2;

otherwise, there is a line intersecting P̃1, P̃2, and P̃3. Furthermore, for each i ∈ {1, . . . ,k}, the line

Li has a larger y-coordinate than the line Li+1. Therefore, the line Lk does not intersect P̃1, which
is a contradiction.

Now for each k ′ ∈ {1, . . . ,k}, we move P̃k ′ by k ′ · δ
n
N units to the right. Since k ≤ n, the

resulting placement fits into the knapsack using (1+ δ )-resource augmentation. Intuitively, in the

resulting placement, each polygon P̃i has δ
n
N units of empty space on its left and on its right. In

a similar fashion, we move all polygons up such that they still fit into the knapsack under (1 + δ )-
resource augmentation and, intuitively, each polygon has δ

n
N units of empty space above and
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Fig. 8. The points and rectangles used in the proof of Lemma 41.

below it. Therefore, in the resulting packing, the distance between any two polygons is at least
Ω(δN /n). �

We invoke Lemma 39 and use the gained space around each polygon Pi ∈ P to enlarge it such
that �i ≥ hi ≥ δN /n and area(Pi )≥Ω(δ 2/n2area(K))

Lemma 40. By (1 +O(δ ))-resource augmentation, we can assume for each Pi ∈ P that �i ≥ hi ≥
δN /n and that area(Pi )≥ δ 2

2n2 area(K).

Proof. If for a polygon Pi ∈ P it holds that hi < δN /n, then we replace Pi by a rectangle of
height δN /n and width max{�i ,δN /n}. After this modification, it holds that area(Pi ) ≥ 1

2�ihi =
1
2

δ 2N 2

n2 for each remaining polygon Pi . By Lemma 39, the enlarged polygons from OPT still fit into
the knapsack using (1 +O(δ ))-resource augmentation. �

Next, intuitively we stretch the optimal solution OPT by a factor 1+ δ which yields a container
Ci for each polygon Pi ∈ OPT which contains Pi and which is slightly bigger than Pi . We define a
polygon P ′

i such that Pi ⊆ P ′
i ⊆ Ci and that globally there are only (log(n)/δ )Oδ (1) different ways

P ′
i can look like, up to translations and rotations. We refer to those as a set S of shapes of input

objects. Hence, due to the resource augmentation, we can replace each input polygon Pi by one of
the shapes in S.

Lemma 41. By (1 + δ )-resource augmentation, we can assume that there is a set of shapes S with

|S| ≤ (log(n)/δ )Oδ (1) such that for each Pi ∈ P there is a shape S ∈ S such that Pi = S and S has

only Λ = (1/δ )O (1) many vertices.

Proof. Let P be an input polygon. Assume that P is rotated such that the diametrical segment
is horizontal—that is, let p = (px ,py ),q = (qx ,qy ) denote the vertices of P with largest distance;
we assume that p and q lie on a horizontal line (i.e., that py = qy ). Furthermore, let r = (rx , ry ), s =
(sx , sy ) denote the vertices of P with minimum and maximumy-coordinate, respectively (Figure 8).

Note that extending the knapsack by a factor 1+δ is equivalent to shrinking each input polygon
by a factor 1+δ . Let shr1+δ (P) denote the polygon obtained by shrinking P toward the origin—that

is, by replacing each vertexv = (vx ,vy ) of P by the vertexv ′ = ( vx

1+δ
,

vy

1+δ
). Our goal is to show that

there exists a polygon P ′ whose shape is one shape out of (log(n)/δ )Oδ (1) options such that there
is a translation vector �a with �a + shr1+δ (P) ⊆ P ′ ⊆ P . Then, we replace in the input the polygon P
by a polygon P̃ which is congruent to P ′. Hence, for the shapes of the resulting polygons P̃ , there
are only (log(n)/δ )Oδ (1) options. In the process, we will shrink P a constant number of times. Then,
the claim follows by redefining δ accordingly.
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First, we shrink P by a factor of at most 1+δ such that the line segment connecting p and q has

a length that is a power of 1+δ . Let �′i denote this new length. Since originally
√

2N ≥ �i ≥ δN /n,
there are only O(log1+δ n) options for �′i . We partition the bounding box of P into four rectangles
where

— R1 is the (unique) rectangle with vertices s and q,
— R2 is the (unique) rectangle with vertices r and q,
— R3 is the (unique) rectangle with vertices p and r , and
— R4 is the (unique) rectangle with vertices p and s .

We translate P such that p is the origin. If the width of R1 is smaller than δ�′i , then intuitively we
shrink P by a factor 1+δ toward p such that qx is again a power of 1+δ and sx = qx . First, we move
q toward p such that qx is the next smaller power of 1 + δ . Then we move s toward p such that
sx = qx . Finally, we move each remaining vertex v by exactly a factor 1 + δ toward p. As a result,
R1 becomes empty. We perform similar operations in case that the width of R2,R3, or R4 is smaller
than δ�′i . Additionally, we perform a similar operation in case that the height of R1 (identical to the
height of R4) is smaller than δhi or that the height of R2 (identical to the height of R3) is smaller
than δhi . In the latter operations, we move the vertices of P toward s or r , respectively.

Assume again that p is the origin. Let t := (sx ,py ). Let t ′ = (t ′x , t ′y ) such that t ′y = py , and t ′x is

the smallest value t ′x with t ′x ≥ tx such that the distance between t ′ and q is a multiple of δ 3�′i . In

particular, then t ′x − tx ≤ δ 3�′i ≤ δ 2(qx − tx ) and note that qx − tx is the width of R1 for which
qx − tx ≥ δ�′i holds.

We define s ′ = (s ′x , s ′y ) such that s ′x = t ′x and s ′y is that largest value s ′y such that s ′ = (s ′x , s ′y ) lies

inside P . Observe that s ′y ≥ (1 − δ 2)sy since P includes all points on the line segment connecting
s and q by convexity. Similarly, we define a point t ′′ between p and t and a corresponding point
s ′′. We move each vertex v = (vx ,vy ) of P toward t that satisfy that t ′′x ≤ vx ≤ t ′x and vy ≥ t ′′y =

ty = t ′y—that is, we reduce the distance between v and t by a factor 1/(1 + δ ) which we justify via
shrinking. One can show that afterward v lies in the convex hull spanned by the other vertices of
P and s ′ and s ′′, using that s ′y ≥ (1 − δ 2)sy ≥ (1 − δ 2)vy . Hence, we can remove v .

We move P such that t ′ becomes the origin. Let R′
1 denote the (unique) rectangle with vertices

s ′ and q. Our goal is now to move the vertices within R′
1 such that only Oδ (1) vertices remain and

that for the coordinate of each of them there are only (log(n)/δ )Oδ (1) options. Whenever we move
a vertex v within R′

1, we move v toward t ′ such that the distance between v and t ′ decreases by at
most a factor 1 + δ but keep s ′ and q unchanged. Let h denote the distance between t ′ and s ′, and
letw denote the distance between t ′ and q. Assume w.l.o.g. that h = w = 1 and that t ′ is the origin.
Observe that by convexity each point on the line segment connecting s ′ and q lies within P .

Let k ∈ N be a constant with k = Oδ (1) to be defined later. We shoot rays r0, . . . , rk originating
at t ′ such that r0 goes through s ′, rk goes through q, and between any two consecutive rays r j , r j+1

there is an angle of exactly π
4k

(Figure 9). For each j ∈ {0, . . . ,k}, denote by vj the point on the
boundary of P that is intersected by r j (not necessarily a vertex of P ). Imagine that we shrink P
such that we move each vertex v = (vx ,vy ) of P toward t ′ = 0—that is, we replace v by the point

v ′ := ( vx

1+δ
,

vy

1+δ
). We argue thatv ′ lies in the convex hull of t ′,v0, . . . ,vk and hence we can remove

v ′. Let r ′ be a ray originating at t ′ and going through v . Suppose that r j and r j+1 are the rays

closest to r ′. Let vj = (vx
j ,v

y
j ) and vj+1 = (vx

j+1,v
y
j+1). Then v lies in the convex hull of vj ,vj+1

and the point (vx
j+1,v

y
j ). We have that vx

j ≥ 1/3 and vx
j+1 ≥ 1/3 or that v

y
j ≥ 1/3 and v

y
j+1 ≥ 1/3.

Assume w.l.o.g. that vx
j ≥ 1/3 and vx

j+1 ≥ 1/3. We claim that then vx
j ≤ vx ≤ vx

j+1 ≤ (1 + δ )vx
j .

The first two inequalities follow from convexity. For proving thatvx
j+1 ≤ (1+δ )vx

j , we can assume

that vx
j ≤ 1/(1 + δ ) since otherwise the claim is immediate. This implies that v

y
j ≥ Ω(δ ). Also
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Fig. 9. The points and rays related to the shrinking of R1. In gray, we see the shrunk polygon P̄i ; in gray

outline, we see the original polygon Pi ; and inside the dashed line, we see the corresponding shape in S.

observe that v
y
j+1 ≤ v

y
j , since otherwise vj would not be on the boundary of P , by convexity.

Therefore, vx
j+1 cannot be larger than the x-coordinate of the point on r j+1 with y-coordinate v

y
j .

Using that 1/(1 + δ ) ≥ vx
j ≥ 1/3, one can show that there is a choice for k ∈ Oδ (1) that ensures

that vx
j+1 ≤ (1+ δ )vx

j . Finally, for each point vj with j ∈ {1, . . . ,k − 1}, we move vj toward t ′ such

that the distance between vj and t ′ becomes an integer power of 1+ δ . Since before the shrinking
this distance was Ω(1), there are only Oδ (1) options for the resulting distance.

In a similar way, we define R′
2,R

′
3, and R′

4 and perform a symmetric operation on them. The
resulting polygon is defined via �′i , the positions of t ′, t ′′, the positions of the vertices u ′ and u ′′

(which are defined analogously to t ′ and t ′′), for R′
1 the distance between t ′ and s ′ and the distances

of the Oδ (1) vertices vj to t ′, and the respective values for R′
2,R

′
3, and R′

4. For each of these values,

there are only (log(n)/δ )Oδ (1) options and there are Oδ (1) such values in total. Hence, there are
(log(n)/δ )Oδ (1) possibilities for the resulting shape. �

Finally, we ensure that for each polygon Pi ∈ P, we can restrict ourselves to only (n/δ )O (1)

possible placements in K .

Lemma 42. By (1 + δ )-resource augmentation, for each polygon Pi ∈ P we can compute a set Li

of at most (n/δ )O (1) possible placements for Pi in time (n/δ )O (1) such that if Pi ∈ OPT, then in OPT

the polygon Pi is placed inside K according to one placement P̃i ∈ Li .

Proof. First, we prove that for each polygon Pi , it suffices to allow only (n/δ )O (1) possible vec-

tors d when defining its placement P̃i as P̃i = d + rotα (Pi ). We invoke Lemma 39 such that any

two polygons have distance of at least δ
n
N . For each polygon Pi , let vi be its first vertex (x ′

i,1,y
′
i,1).

We move each polygon P̃i such that vi is placed on a point whose coordinates are integral mul-

tiples of δ
4n
N . For achieving this, it suffices to move P̃i by at most δ

4n
N units down and by at

most δ
4n
N units to the left. This implies that each polygon is translated by at most

√
2δ

4n
N units.
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Consequently, since the polygons were δ
n
N units apart, after translation every pair of polygons is

at least δ
n
N − 2

√
2δ

4n
N = (4 − 2

√
2) δ

4n
N > δ

4n
N units apart; in particular, they do not intersect.

We want to argue that we can rotate each polygon P̃i such that its angle is one out of (n/δ )O (1)

many possible angles. Consider a polygon P̃i . Suppose that we rotate it around its vertex vi . We

want to argue that if we rotate P̃i by an angle of at most δ
16n

, then this moves each vertex of P̃i by at

most δ
4n
N units. Letv ′

i be a vertex of P̃i withvi � v ′
i . Let x denote the distance between the old and

the new position of v ′
i if we rotate P̃i by an angle of α . Then we have that x = sinα

viv ′
i

sin((π−α )/2) ≤
4Nα ≤ δ

4n
N , assuming that α ≤ δ

16n
and that δ is sufficiently small.

Therefore, we rotate P̃i around vi by an angle of at most δ
16n

such that d + rotα (Pi ) = P̃i for an

angle α which is an integral multiple of δ
16n

. Due to our movement of P̃i before, we can assume

that d = (d1,d2) satisfies that d1 and d2 are integral multiples of δ
4n
N . Thus, for d and for α , there

are only (n/δ )O (1) possibilities, which yields only (n/δ )O (1) possible placements for Pi . �

3.2 Recursive Algorithm

We describe our main algorithm. First, we guess how many polygons of each of the shapes in S
are contained in OPT. Since there are only (log(n)/δ )Oδ (1) different shapes in S, we can do this

in time n(log(n)/δ )Oδ (1)
. Once we know how many polygons of each shape we need to select, it is

clear which polygons we should take, since if for some shape Si ∈ S we need to select ni polygons
with that shape, then it is optimal to select the ni polygons in P of shape Si with largest weight.
Therefore, in the sequel, assume that we are given a set of polygons P′ ⊆ P and we want to find
a packing for them inside K .

Our algorithm is recursive, and it generalizes a similar algorithm for the special case of axis-
parallel rectangles in [1]. On a high level, we guess a partition of K given by a separator Γ which
is a polygon inside K . It has the property that at most 2

3 |OPT| of the polygons of OPT lie inside Γ

and at most 2
3 |OPT| of the polygons of OPT lie outside Γ. We guess how many polygons of each

shape are placed inside and outside Γ in OPT. Then, we recurse separately inside and outside Γ.
For our partition, we are looking for a polygon Γ according to the following definition.

Definition. Let � ∈ N and ϵ > 0. Let P̄ be a set of pairwise non-overlapping polygons in K . A
polygon Γ is a balanced ϵ̂-cheap �-cut if

— Γ has at most � edges,
— the polygons contained in Γ have a total area of at most 2/3 · area(P̄),
— the polygons contained in the complement of Γ (i.e., in K \ Γ) have a total area of at most

2/3 · area(P̄), and
— the polygons intersecting the boundary of Γ have a total area of at most ϵ̂ · area(P̄).

To restrict the set of balanced cheap cuts to consider, we will allow only polygons Γ such that
each of its vertices is contained in a setQ of size (n/δ )O (1) defined as follows. We fix a triangulation
for each placement P ′

i ∈ Li of each polygon Pi ∈ P′. We define a setQ0 where for each placement
P ′

i ∈ Li for Pi we add toQ0 the positions of the vertices of P ′
i . Additionally, we add the four corners

of K to Q0. Let V denote the set of vertical lines {(x̄ , ȳ)|ȳ ∈ R} such that x̄ is the x-coordinate of
one point inQ0. We define a setQ1 where for each placement P ′

i ∈ Li of each Pi ∈ P′, each edge e
of a triangle in the triangulation of P ′

i , and each vertical line L ∈ V we add to Q1 the intersection
of e and L. Additionally, we add toQ1 the intersection of each line in L ∈ V with the two boundary
edges of K . Let Q2 denote the set of all intersections of pairs of line segments whose respective
endpoints are in Q0 ∪ Q1. We define Q := Q0 ∪ Q1 ∪ Q2. A result in the work of Adamaszek and
Wiese [1] implies that there exists a balanced cheap cut whose vertices are all contained in Q .
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Lemma 43 ([1]). Let ϵ > 0 and let P′ be a set of pairwise non-intersecting polygons in the plane

with at most Λ edges each such that area(P) < area(P′)/3 for each P ∈ P. Then, there exists a

balanced O(ϵΛ)-cheap Λ( 1
ϵ
)O (1)-cut Γ whose vertices are contained in Q .

Our algorithm is recursive and places polygons from P′, trying to maximize the total area of
the placed polygons. In each recursive call, we are given an area K̄ ⊆ K and a set of polygons
P̄ ⊆ P′. In the main call, these parameters are K̄ = K and P̄ = P′. If P̄ = ∅, then we return an
empty solution. If there is a polygon Pi ∈ P̄ with area(Pi ) ≥ area(P̄)/3, then we guess a placement
P ′

i ∈ Li and we recurse on the areaK \P ′
i and on the set P̄ \{Pi }. Otherwise, we guess the balanced

cheap cut Γ due to Lemma 43 with ϵ := δ
Λ log(n/δ ) , and for each shape S ∈ S, we guess how many

polygons of P′ with shape S are contained in Γ ∩ K̄ , how many are contained in K̄ \ Γ, and how
many cross the boundary of Γ (i.e., have non-empty intersection with the boundary of Γ). Note

that there are only n(Λ log(n/δ ))O (1)
possibilities to enumerate. Let P̄in, P̄out, and P̄cross denote the

respective sets of polygons. Then, we recurse on the area Γ∩K̄ with input polygons P̄in and on the
area K̄ \ Γ with input polygons P̄out. Suppose that the recursive calls return two sets of polygons
P̄ ′

in ⊆ P̄ in and P̄ ′
out ⊆ P̄out that the algorithm managed to place inside the respective areas Γ ∩ K̄

and K̄ \Γ. Then, we return the set P̄ ′
in∪P̄

′
out for the guesses of Γ, P̄ in, P̄out, and P̄cross that maximize

area(P̄ ′
in ∪ P̄′

out). If we guess the (correct) balanced cheap cut due to Lemma 43 in each iteration,

then our recursion depth is O(log3/2(n2/δ 2)) = O(log(n/δ )) since the cuts are balanced and each

polygon has an area of at least Ω(area(K)δ 2/n2) (see Lemma 40). Therefore, if in a recursive call of
the algorithm the recursion depth is larger than 5 log(n/δ ) + 2, then we return the empty set and
do not recurse further. Additionally, if we guess the correct cut in each node of the recursion tree,

then we cut polygons whose total area is at most a δ
log(n/δ ) -fraction of the area of all remaining

polygons. Since our recursion depth is O(log(n/δ )), our algorithm outputs a packing for a set of

polygons in P′ with area at least (1− δ
log(n/δ ) )

O (log(n/δ ))area(P̄) = (1−O(δ ))area(P̄). We prove this

formally in the following lemma.

Lemma 44. Assume that there is a non-overlapping packing for P′ inK . There is an algorithm with

a running time of n(Λ log(n/δ ))O (1)
that computes a placement of a set of polygons P̄ ′ ⊆ P′ inside K ,

increased by a factor (1 + δ ) in both dimensions, such that area(P̄ ′) ≥ (1 −O(δ ))area(P′).

Proof. Recall that by Lemma 40, we can assume that the area of each polygon is at least
δ 2

2n2 area(K) since we can pack polygons violating this in the extra capacity. We restrict our attention
to the part of the recursion tree that corresponds to correct guesses (i.e., guesses corresponding
to the optimal solution). This is justified, since in each node of the recursion tree, the algorithm
selects the guess that maximizes the total area of the packed polygons.

In each node of the recursion tree, the input can be described by a region K̄ and a set of polygons
P̄ to be packed inside of K̄ . We prove the theorem by induction on the length of the longest path
between each node to a leaf in the recursion tree. To be more specific, we show that if in a node
(K̄ , P̄) the longest path between (K̄ , P̄) and a leaf is d , and there is a non-overlapping packing for
P̄ in K̄ in which each polygon Pi ∈ P̄ is placed on a position in the respective set Li , then the

algorithm computes a solution which packs items whose total area is at least (1− δ
log(n/δ ) )

d area(P̄).
We begin by proving that the induction holds for the case d = 0. If d = 0, then the node (K̄ , P̄) is

a leaf. If P̄ = ∅, then the result trivially holds. Otherwise, the distance of (K̄ , P̄) to the root must be
5 log(n/δ ) + 2, which we assume now. Since every guess on the path between the root and (K̄ , P̄)
was correct, the area of the items that we need to pack was reduced by a factor of at least 2/3 in

ACM Trans. Algor., Vol. 20, No. 2, Article 16. Publication date: April 2024.
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each recursive step. Hence,

area(P̄) ≤
(

2

3

)5 log(n/δ )+2

area(P′),

<

(
2

3

) 2
log(3/2) log( n

δ )+ log(2)
log(3/2)

area(K),

=

(
2

3

) log

(
2n2

δ 2

)
log( 3

2 ) area(K),

=
δ 2

2n2
area(K).

This implies that P̄ = ∅, since by Lemma 40 each polygon in P ′ has area at least δ 2

2n2 area(K).
Suppose that d > 0; we distinguish the following two cases:

— Case 1: There exists a polygon P ′
i ∈ P̄ such that area(Pi ) ≥ 1

3 area(K̄). In this case, we guess

the correct placement P ′
i ∈ Li for Pi and we recurse on the areaK \P ′

i and on the set P̄ \{P ′
i }.

By induction, the placed items have a total area of at least(
1 − δ

log(n/δ )

)d−1

area(P̄ \ {P ′
i }) + area(P ′

i ),

≥
(
1 − δ

log(n/δ )

)d

area(P̄ \ {P ′
i }) +

(
1 − δ

log(n/δ )

)d

area(P ′
i ),

=

(
1 − δ

log(n/δ )

)d

area(P̄).

— Case 2: The second case is that every Pi ∈ P̄ satisfies that area(Pi ) ≤ 1
3 area(K̄). In this

case, we enumerate all possible balanced cheap cuts Γ. For each enumerated cut Γ, we guess
how many polygons of each shape are contained in Γ ∩ K̄ and in K̄ \ Γ, respectively. Let
P̄in, P̄out, P̄cross be the associated set of polygons which lie inside, outside, or cross Γ. For
each enumerated possibility of Γ, P̄in, P̄out, P̄cross, we take the union of the packings corre-
sponding to the nodes (Γ ∩ K̄ , P̄in) and (Γ \ K̄ , P̄out) and finally choose the balanced cheap
cut Γ and the sets P̄in, P̄out, P̄cross such that the area of packed polygons is maximized. We
show that there exists such a packing with large area. We know that the elements of P̄ ′ can
be packed into K̄ . Let Γ∗ be the balanced cheap cut associated to this packing by Lemma 43.
By induction on (Γ∗ ∩ K̄ , P̄in), we get that the algorithm packs polygons from P̄in with a

total area of at least (1 − δ
log(n/δ ) )

d−1area(P̄in) into (Γ∗ ∩ K̄). Similarly, the algorithm packs

polygons from P̄out with a total area at least (1 − δ
log(n/δ ) )

d−1area(P̄out) into (K̄ \ Γ∗). Hence,

the total area of the packed polygons is at least(
1 − δ

log(n/δ )

)d−1

area(P̄in) +
(
1 − δ

log(n/δ )

)d−1

area(P̄out)

=

(
1 − δ

log(n/δ )

)d−1

(area(P̄out) + area(P̄in))

=

(
1 − δ

log(n/δ )

)d−1

(area(P̄) − area(P̄cross))
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≥
(
1 − δ

log(n/δ )

)d

area(P̄).

Let k := 5 log(n/δ ) + 2 be the maximal recursion depth of the algorithm. We conclude the proof
by using the induction above on (K ,P′) and noting that k ≤ 7 log(n/δ ) for n ≥ 2δ (we find
the optimal solution by complete enumeration for smaller n). We obtain that if there is a non-
overlapping packing for P′ in K , the algorithm computes a placement of a set of polygons P̄ ′

inside K of area at least (
1 − δ

log(n/δ )

)k

area(P′)

≥
(
1 − δ

log(n/δ )

)7 log(n/δ )
area(P′)

≥
(
1 − δ

log(n/δ )7 log(n/δ )
)

area(P′)

= (1 − 7δ )area(P′). �

It remains to pack the polygons in P̃ ′ := P′ \ P̄′. The total area of their bounding boxes is

bounded by
∑

Pi ∈P̃′ Bi ≤ 2area(P̃ ′)=O(δ )area(P′)=O(δ )area(K). Therefore, we can pack them

into additional space that we gain via increasing the size of K by a factor 1 + O(δ ), using the
Next-Fit-Decreasing-Height algorithm [4]. This algorithm processes the rectangles by decreasing
height and packs the rectangles in “shelves” starting from left to right on a “shelf” until there is
no more space to pack the next rectangle. Then, it proceeds by defining the next “shelf” on top of
the currently packed rectangles and resumes the packing on the new “shelf” from left to right.

This completes the description of our algorithm and its proof of correctness. In particular, this
proves Theorem 4.
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