Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-43311
Titel: | Predicting the Emergence of Localised Dihedral Patterns in Models for Dryland Vegetation |
VerfasserIn: | Hill, Dan J. |
Sprache: | Englisch |
Titel: | Journal of Nonlinear Science |
Bandnummer: | 34 |
Heft: | 4 |
Verlag/Plattform: | Springer Nature |
Erscheinungsjahr: | 2024 |
DDC-Sachgruppe: | 510 Mathematik |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Localised patterns are often observed in models for dryland vegetation, both as peaks of vegetation in a desert state and as gaps within a vegetated state, known as ‘fairy circles’. Recent results from radial spatial dynamics show that approximations of localised patterns with dihedral symmetry emerge from a Turing instability in general reaction–diffusion systems, which we apply to several vegetation models. We present a systematic guide for finding such patterns in a given reaction–diffusion model, during which we obtain four key quantities that allow us to predict the qualitative properties of our solutions with minimal analysis. We consider four well-established vegetation models and compute their key predictive quantities, observing that models which possess similar values exhibit qualitatively similar localised patterns; we then complement our results with numerical simulations of various localised states in each model. Here, localised vegetation patches emerge generically from Turing instabilities and act as transient states between uniform and patterned environments, displaying complex dynamics as they evolve over time. |
DOI der Erstveröffentlichung: | 10.1007/s00332-024-10046-2 |
URL der Erstveröffentlichung: | https://link.springer.com/article/10.1007/s00332-024-10046-2 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-433118 hdl:20.500.11880/38835 http://dx.doi.org/10.22028/D291-43311 |
ISSN: | 1432-1467 0938-8974 |
Datum des Eintrags: | 29-Okt-2024 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Mathematik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
s00332-024-10046-2.pdf | 1,75 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons