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Abstract
Localised patterns are often observed in models for dryland vegetation, both as peaks
of vegetation in a desert state and as gaps within a vegetated state, known as ‘fairy
circles’. Recent results from radial spatial dynamics show that approximations of
localised patterns with dihedral symmetry emerge from a Turing instability in general
reaction–diffusion systems, which we apply to several vegetation models. We present
a systematic guide for finding such patterns in a given reaction–diffusion model,
during which we obtain four key quantities that allow us to predict the qualitative
properties of our solutions with minimal analysis. We consider four well-established
vegetation models and compute their key predictive quantities, observing that models
which possess similar values exhibit qualitatively similar localised patterns; we then
complement our results with numerical simulations of various localised states in each
model. Here, localised vegetation patches emerge generically fromTuring instabilities
and act as transient states between uniform and patterned environments, displaying
complex dynamics as they evolve over time.

1 Introduction

In semi-arid environments, the formation of distinct vegetation patterns has been well
documented since their first discovery in sub-Saharan Africa in the 1950s (MacFadyen
1950a, b). Sloped terrains exhibit stripes (or bands) of vegetation (Siero et al. 2015;
Samuelson et al. 2019; Deblauwe et al. 2011, 2012), while flat terrains are home to
periodic arrangements of spots and gaps, as well as labyrinthine patterns (Gowda et al.
2014, 2016;Borgogno et al. 2009;Ludwig et al. 2005;Rietkerk et al. 2002); see (Meron
2016) for a detailed review of the mechanisms that cause vegetation patterns. The
environmental role of these structures is still debated: Are they a sign of desertification,
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providing early indications of environmental decline (Rietkerk et al. 2004), or are they
nature’s safety net, allowing an ecosystem to avoid critical tipping points and stave off
extinction (Rietkerk et al. 2021)? Such questions have generated significant interest
in vegetation patterns over several decades, and this looks set to only increase in the
face of our changing climate.

One of the key questions when first studying vegetation patterns is what kind
of model to consider—the dynamics of an ecosystem are highly complex, and any
attempts to model a particular environment will need to reflect the specific qualities of
that environment. Vegetation with vertical roots and strong water uptake is subject to
a pattern-forming feedback driven by diffusion, while vegetation with widely spread
roots is also subject to non-local effects, due to water uptake by the roots (Meron
2016). Any attempts at modelling these types of environments must also reflect these
differences; see (Lejeune et al. 2002; Klausmeier 1999; von Hardenberg et al. 2001;
van der Stelt et al. 2013) for diffusive PDE models, and (Escaff et al. 2015; Meron
et al. 2007; Tlidi et al. 2008; Gilad et al. 2004) for non-local models.

Evenwith these environment-specificmodelling terms, there are certain phenomena
that appear across many vegetation models, which we call universal phenomena; we
can better understand these universal phenomena by identifying the mechanisms that
cause them. For example, periodic and labyrinthine patterns are known to emerge from
bifurcations with nonzero wavenumber, which we refer to as Turing bifurcations, and
so most flat terrain vegetation models will undergo such bifurcations for a critical
choice of parameters. The presence of a universal phenomenon (such as periodic
patterns) implies the presence of a universal mechanism (such as a Turing bifurcation)
within a phenomenological model.

Aparticular phenomenon thatwe are interested in is the emergence of fully localised
patterns, where a patterned state is completely surrounded by a uniform state. A
notable example of these is so called ‘fairy circles’, consisting of roughly circular
barren patches surrounded by vegetation (Getzin et al. 2021). Fairy circles have been
found to exhibit a consistent wavelength between neighbours and can be found in fully
localised patches or as constituents of a larger periodic structure (Getzin et al. 2015).
Originally observed in the Namib desert (van Rooyen et al. 2004), fairy circles have
since been discovered in Western Australia (Getzin et al. 2016), suggesting that they
may be more universal than originally supposed.

While localised patterns are well understood mathematically in one spatial dimen-
sion (Woods and Champneys 1999; Chapman and Kozyreff 2009), this is not the case
in two dimensions. There has been recent progress on axisymmetric patterns both in
vegetation models (Hill 2022; Byrnes et al. 2023) and other contexts (Lloyd and Sand-
stede 2009; McCalla and Sandstede 2013; McQuighan and Sandstede 2014; Hill et al.
2021), mostly using radial spatial dynamics theory pioneered by Scheel (Scheel 2003).
However, there is very little theory regarding fully localised non-axisymmetric pat-
terns outside of variational methods (Buffoni et al. 2022) and exponential asymptotics
(Kozyreff and Chapman 2013). We focus on fully localised patterns with dihedral
symmetry—such that they are invariant under rotations of 2π/m, for some m ∈ N,
and one line of reflection—which includes localised hexagons and squares observed in
prototypical pattern-forming systems (Lloyd et al. 2008; Sakaguchi and Brand 1997).
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Fig. 1 Example of a localised vegetation pattern with hexagonal symmetry, with vegetation density plotted
in the top row and water density plotted in the bottom row. The left-hand column provides a top-down view
of the pattern, while the right-hand column provides a three-dimensional view. Here the vegetation has a
negative polarity and so consists of gaps, whereas the water has a positive polarity and is thus made up of
peaks. These images were produced using VisualPDE (Walker et al. 2023)

We consider a simple class of two-component reaction–diffusion models that cover
a wide range of vegetation models, where pattern formation is driven by diffusion and
domain-covering patterns emerge from Turing bifurcations. For this general class of
models, we show that fully localised patterns with dihedral symmetry emerge univer-
sally from a Turing bifurcation. To do this, we first present a step-by-step procedure
to determine the local expression of a reaction–diffusion system near a Turing bifur-
cation, which then allows us to leverage recent rigorous results in Hill et al. (2023,
2024) regarding the existence of approximate fully localised dihedral patterns. We
present theorems for the existence of two classes of localised dihedral patterns: spot
A-type patterns, which can appear as either peaks or gaps, and ring-type patterns that
emerge from a pitchfork bifurcation. If a pattern mostly consists of peaks, we say it
has a positive polarity, and a negative polarity if it mostly consists of gaps; see Fig. 1.

This process also reveals four key quantities P1, . . . , P4, which we call qualita-
tive predictors, that establish the qualitative behaviour of these localised patterns. In
particular,

i. P1 determines the direction of bifurcation from the Turing point; see Fig. 2a. If
P1 > 0, then localised solutions bifurcate as the precipitation increases, and if
P1 < 0, then localised solutions bifurcate as the precipitation decreases.

ii. P2 determines the relationship between vegetation and water densities of spot
A-type patterns; see Fig. 2b. If P2 > 0, then the vegetation and water share the
same polarity, and if P2 < 0, then they have opposing polarity. Such vegetation
patterns are, respectively, called in-phase or anti-phase, both of which have been
observed in various semi-arid climates; see (Getzin et al. 2016), for example.

iii. P3 determines the polarity of spot A-type patterns; see Fig. 2b. If P3 > 0, then spot
A-type patterns are made up of peaks, and if P3 < 0, then spot A-type patterns
are made up of gaps.
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Fig. 2 a Possible bifurcation curves for localised dihedral patterns. The sign of P1 determines the direction
of bifurcation for spot A-type patterns (black, solid) and, if P4 < 0, ring-type patterns (red, dashed). b
Different profiles of localised patterns; P2 determines the phase of the solutions, while P3 determines the
polarity. Here, u denotes vegetation and v denotes water density

iv. P4 determines whether or not ring-type patterns exist. If P4 < 0, then ring-type
patterns bifurcate from the Turing point, as seen in Fig. 2a, and if P4 > 0, then
no ring-type patterns emerge.

This work represents the first analytic evidence for fully localised non-axisymmetric
patterns in vegetation models, to the author’s knowledge, and establishes a guide for
quickly analysing such patterns in other two-component reaction–diffusion systems.
We emphasise that our theoretical results are regarding the existence of localised
steady-state patterns for reaction–diffusion systems, and so they do not determine the
stability of such solutions. As such, these patterns instead represent transient states as
a uniform vegetated state transitions to a patterned state; we later observe the nonlinear
dynamics of this transition in Sect. 3. Since the time scales associated with vegetation
models are often larger than other pattern-forming systems, these transient states are
more likely to be observed in the field.

We find that spot A-type patterns are highly universal, emerging generically from
a Turing bifurcation, whereas ring-type patterns only emerge in narrow parameter
regions. In each of the vegetation models, we consider spot A-type patterns grow in
width over time, invading the surrounding uniform state. As such, these localised pat-
terns can represent a degradation of a uniform vegetated state resulting in a significant
change to the environment, such as desertification.

The rest of the paper is structured as follows: in Sect. 2.1, we derive the local expres-
sion for a general two-component reaction–diffusion system near a Turing instability,
presenting a step-by-step process that can be easily automated. In Sect. 2.2, we then
introduce four notable reaction–diffusion models for dryland vegetation and com-
pute their qualitative predictors in each case. Finally, in Sect. 3 we use exponential
time-steppers to numerically simulate three examples of localised dihedral patterns in
each vegetation model, comparing the similarities and differences between different
models.
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2 Theory

We begin this section by taking a general two-component reaction–diffusion model
and deriving its local representation in the neighbourhood of a Turing instability. This
allows us to utilise abstract theorems to predict the existence of solutions in various
vegetation models. Throughout this procedure, we identify several notable quantities
which describe the qualitative behaviour of our localised solutions; computing these
key quantities then allows us to make heuristic predictions regarding the emergence
of localised patterns in each specific reaction–diffusion model. Each stage of the
procedure is reduced to solving an algebraic condition; thus, the entire process can be
easily automated for rapid predictions regarding the emergence of localised patterns
in two-component reaction–diffusion models.

Following this, we introduce four vegetationmodels that belong to our general class
of two-component reaction–diffusion equations: the Klausmeier–Gray–Scott, logistic
Klausmeier, NFC–Gilad, and von Hardenberg models. For each model, we compute
our key quantities and predict the behaviour of localised solutions bifurcating from
each Turing point; we will then compare these predictions with the numerical results
presented in Sect. 3.

2.1 Derivation

In general, a reaction–diffusion equation has the form

∂tu = D�u + F(u;μ). (1)

Here,u(t, x) ∈ R
N denotes N coupled variables,with temporal and spatial coordinates

t ∈ R and x ∈ R
2, respectively, and μ ∈ R

p denotes p parameters of the system, for
some N , p ∈ N. The two-dimensional Laplacian � := ∂2x + ∂2y encodes the spatial
diffusion of u, and the N × N -dimensional square matrix D ∈ R

N×N defines the
diffusion coupling of the system (i.e. how the spatial diffusion of each variable affects
the overall temporal growth of u). Finally, the function F ∈ R

N accounts for all local
reactions in the model.

For this present work, we assume that u(t, x) is made up of two variables
u(t, x), v(t, x) ≥ 0 which represent the densities of the vegetation biomass and soil
water, respectively, and that the diffusion matrix D ∈ R

2×2 is lower triangular, such
that the rate of growth of the biomass is independent of the diffusive rate of the water.
This assumption models the effect of vegetation on water diffusion through root suc-
tion. We also assume that p − 1 parameters are fixed, such that any bifurcations are
driven by a single parameter μ ∈ R, which we call the bifurcation parameter (in
vegetation models μ is usually the precipitation rate).

As such, the remainder of thisworkwill focus on general reaction–diffusion systems
of the form

ut = �u − f̂ (u, v;μ),

vt = Dv�(v − βu) − ĝ(u, v;μ).
(2)
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We have defined the system (2) so that subsequent analysis will be slightly easier; a
more general system like

ut = Duu�u + f̃ (u, v;μ),

vt = Dvv�v + Duv�u + g̃(u, v;μ)

could equivalently be written in the form of (2) by rescaling the coordinate system
(t, x) with respect to Duu and then defining parameters Dv, β and functions f̂ , ĝ
accordingly. We are interested in steady states of the system (2), and so, for the rest
of this section, we will consider the following equations

0 = �u − f (u, v;μ),

0 = �v − g(u, v;μ),
(3)

where we have defined

f (u, v;μ) := f̂ (u, v;μ),

g(u, v;μ) := 1

Dv

ĝ(u, v;μ) + β f̂ (u, v;μ).

In Sect. 3, we will then return to the full time-dependent PDE system (2) for our
numerical investigations.

The aim for this section is to use abstract theory to predict the emergence of fully
localised dihedral patterns in (3) near a Turing instability. By Turing instability, we
mean a parameter value at which a uniform steady state loses stability with respect to
perturbationswith nonzerowave number k > 0; sometimes, the termTuring instability
is reserved for instabilities caused by changes in the diffusion coefficient D, but we
will not use that definition in this paper. To do this, we present the following procedure:

(Sect. 2.1.1) Identify uniform steady states of the system (3).
(Sect. 2.1.2) Compute the spatial eigenvalues of the system (3) at the uniform

steady state and identify a critical parameter value μ∗(k) such that
(3) undergoes a Turing bifurcation with wave number k > 0.

(Sect. 2.1.3) Express the system (3) as a Taylor expansion about the uniform
steady state at the Turing point μ = μ∗(k).

(Sect. 2.1.4) Use abstract existence results from Hill et al. (2023, 2024) for
localised approximate dihedral patterns near a Turing instability.

Once we have transformed the system (3) into local coordinates in the neighbourhood
of a Turing instability, we identify four key quantities P1, . . . , P4 that help us predict
various properties of localised dihedral patterns bifurcating from the Turing point
(Sect. 2.1.5).

2.1.1 Finding Uniform Steady States

Thefirst task is to identify uniform solutions of the steady-state Eq. (3). That is, we look
for solutions that are independent of the spatial coordinate x, such that�u = �v = 0.
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Then, the system (3) becomes

0 = f (u, v;μ), 0 = g(u, v;μ) (4)

for which we want to find solutions u = u∗(μ), v = v∗(μ). In general, while these
equations can be difficult to solve by hand, especially with additional fixed parameters
in a given model, they are very tractable for numerical solvers. For the vegetation
models presented later in this section, the problem reduces to solving a cubic-order
polynomial, and so one would typically expect to find between one and three uniform
solutions to (4) for any fixed μ ∈ R.

Having identified some uniform steady state (u, v;μ) = U∗(μ) := (u∗(μ),

v∗(μ);μ), we can restrict our analysis to a small neighbourhood of U∗(μ) by tak-
ing the Taylor series of f and g. We note that, in order to perform weakly nonlinear
analysis in Section 2.1.4, we require explicit formulae for the quadratic and cubic non-
linear terms in the Taylor expansion of f and g. Thus, we define u(x) = u∗(μ)+U (x)
and v(x) = v∗(μ) + V (x), with |U |, |V | � 1, so that

0 = �U − M(μ)U − F2(U;μ) − F3(U;μ) + O(|U|4), (5)

where U := (U , V )T and

M(μ) :=
(

∂u f (U∗(μ)) ∂v f (U∗(μ))

∂ug(U∗(μ)) ∂vg(U∗(μ))

)
,

F2(U;μ) := 1

2

(
∂2u f (U∗(μ))U 2 + 2∂u∂v f (U∗(μ))UV + ∂2v f (U∗(μ))V 2

∂2u g(U∗(μ))U 2 + 2∂u∂vg(U∗(μ))UV + ∂2v g(U∗(μ))V 2

)
,

F3(U;μ) := 1

6

⎛
⎜⎜⎝

∂3u f (U∗(μ))U 3 + 3∂2u ∂v f (U∗(μ))U 2V + 3∂u∂2v f (U∗(μ))UV 2

+∂3v f (U∗(μ))V 3

∂3u g(U∗(μ))U 3 + 3∂2u ∂vg(U∗(μ))U 2V + 3∂u∂2v g(U∗(μ))UV 2

+∂3v g(U∗(μ))V 3

⎞
⎟⎟⎠ .

(6)

Here, the matrix M(μ) is the linear operator of (5), F2 contains all quadratic (in U)
nonlinearities of (5), and F3 contains all cubic (in U) nonlinearities of (5). Note that
we do not truncate the Taylor series at cubic order—the O(|U|4) terms remain in our
problem but do not affect our existence results, and so we choose not to write them
down explicitly.

2.1.2 Spatial Eigenvalue Analysis

We now wish to compute the spatial eigenvalues of the linear operator for the system
(5); in particular, for fixed μ ∈ R we wish to find λ ∈ C such that

0 = λU − M(μ)U.

This is equivalent to solving the eigenvalue problem ofM(μ) for λ and so we need to
solve σ(λ;μ) = 0, where

σ(λ;μ) := det (λ1 − M(μ)) . (7)
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Fig. 3 Schematic diagram for the roots of σ(λ; μ∗), including the change in σ(λ; μ) as μ varies

We briefly comment on how σ(λ;μ) connects to the standard dispersion relation
found in one-dimensional Turing analysis. Taking the original time-dependent system
(2) foru ∈ R

2, restricted to one spatial dimension, and introducing the ansatzu(t, x) =
u∗+û eωt eikx +c.c.with u∗ a uniform steady state, we obtain the following dispersion
relation

d(ω, k;μ) = det
(
−k2D + ∂uF(u∗;μ) − ω1

)
= 0.

Then, the condition σ(λ;μ) = 0 corresponds to the critical value ω = 0, such that the
uniform stateu∗ changes stabilitywith respect to perturbationswith spatial eigenvalues
±√

λ. Using the above definition of M(μ), we find

σ(λ; μ) = (λ − ∂u f (U∗(μ))) (λ − ∂vg(U∗(μ))) − ∂v f (U∗(μ)) ∂ug(U∗(μ)),

=
(
λ − (∂u f (U∗(μ))+∂vg(U∗(μ)))

2

)2 − 4∂v f (U∗(μ)) ∂u g(U∗(μ))+(∂u f (U∗(μ))−∂vg(U∗(μ)))2

4 .

The point μ = μ∗ ∈ R defines a Turing instability if σ(−k2;μ∗) = 0 for some
k ∈ R, σ(λ;μ∗ + ε) has no real roots, and σ(λ;μ∗ − ε) has two distinct negative
roots for 0 < |ε| � 1; see Fig. 3. Note that we have adopted the convention that
σ(λ;μ∗ + ε) has no real roots, but we have not assumed the sign of ε, and so ε could
be positive or negative. Thus, μ = μ∗ is a Turing point if

σ(λ;μ∗) =
(
λ − (∂u f (U∗(μ∗))+∂vg(U∗(μ∗)))

2

)2 − 4∂v f (U∗(μ∗)) ∂u g(U∗(μ∗))+(∂u f (U∗(μ∗))−∂vg(U∗(μ∗)))2

4

possesses repeated real roots, or equivalently

0 = 4∂v f (U∗(μ∗)) ∂ug(U∗(μ∗)) + (∂u f (U∗(μ∗)) − ∂vg(U∗(μ∗)))2 . (8)
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Supposing that μ∗ satisfies the above condition, the wave number k ∈ R is then
determined to be

k2 = −
(

∂u f (U∗(μ∗))+∂vg(U∗(μ∗))
2

)
. (9)

We note that k2 < 0 would imply that μ∗ is not a Turing point, and so we proceed
under the assumption that the right-hand side of (9) is positive.

2.1.3 Local Coordinates Near a Turing Instability

Wecentre our system (5) at the pointμ = μ∗ where the uniform stateU∗(μ) undergoes
a Turing instability. To do this, we define μ = μ∗ + ε, for 0 < |ε| � 1, such that (5)
becomes

0 = �U − M1U − εM2U − Q(U,U) − C(U,U,U) + O (|U|4 + |ε|2 |U| + |ε| |U|2) .

(10)

Here, we have introduced new objectsM1,M2,Q,C to bring our system in line with
those considered in Hill et al. (2023, 2024). In particular, we define M1 := M(μ∗)
and M2 := M′(μ∗) as the first terms in the Taylor expansion of M(μ∗ + ε). For the
nonlinear terms F2, F3, we have defined

Q(X,Y) := 1
2 [F2(X + Y;μ∗) − F2(X;μ∗) − F2(Y;μ∗)] ,

C(X,Y,Z) := 1
6 [F3(X + Y + Z;μ∗) − F3(X + Y;μ∗)

− F3(X + Z;μ∗) − F3(Y + Z;μ∗)
+F3(X;μ∗) + F3(Y;μ∗) + F3(Z;μ∗)]

(11)

so that Q(U,U) = F2(U;μ∗), C(U,U,U) = F3(U;μ∗), and Q and C are respective
symmetric bilinear and trilinear functions, i.e. they satisfy

Q(αX1 + βX2,Y) = αQ(X1,Y) + βQ(X2,Y), Q(X,Y) = Q(Y,X),

C(αX1 + βX2,Y,Z) = αC(X1,Y,Z) + βC(X2,Y,Z), C(X,Y,Z) = C(Y,X,Z) = C(Z,Y,X),

for any α, β ∈ R and X1,X2,X,Y,Z ∈ R
2.

There are a number of quantities in (10) that play a part in the existence theorems
of Hill et al. (2023, 2024); these are mostly not unique to the existence of localised
dihedral patterns, and so we present them here before starting the next part of our
procedure. We begin by defining the following vectors

Û0 =
(

∂v f (U∗(μ∗))
− (

k2 + ∂u f (U∗(μ∗))
)
)

, Û1 =
(
0
k2

)
,

Û∗
0 = 1

∂v f (U∗(μ∗))

(
1
0

)
, Û∗

1 = 1

k2∂v f (U∗(μ∗))

((
k2 + ∂u f (U∗(μ∗))

)
∂v f (U∗(μ∗))

)(12)
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so that

M1Û0 = −k2Û0, M1Û1 = −k2Û1 + k2Û0, Û∗
i · Û j = δi, j .

Then, Û0, Û1 are generalised eigenvectors of M1 such that setting U = AÛ0 + BÛ1
transforms (10) into a canonical form for a Turing bifurcation. The vectors Û∗

0 , Û∗
1

form a dual basis for Û0, Û1, allowing us to project (10) onto the respective coordinates
A, B.

We now introduce the following constants

c0 := Û∗
1 ·

(
− 1

4M2Û0

)
,

c3 := −
(
5
6

(
Û∗
0 · Q00

)
+ 5

6

(
Û∗
1 · Q01

)
+ 19

18

(
Û∗
1 · Q00

)) (
Û∗
1 · Q00

)
− 3

4

(
Û∗
1 · C000

)
,

(13)

where we have written Qi j := Q(Ûi , Û j ), Ci jk := C(Ûi , Û j , Ûk). The constant
c0 determines the direction of bifurcation from the Turing point—we will see this
explicitly in the upcoming theorems—while the constant c3 determines whether
domain-covering stripes (otherwise known as rolls) emerge via a subcritical or super-
critical pitchfork bifurcation (Iooss and Peroueme 1993). This second definition may
seem irrelevant in our current study; however, it was previously determined that one-
dimensional localised patterns only bifurcate from the Turing point if rolls bifurcate
subcritically (Woods and Champneys 1999). Finally, we introduce the constant γ ,
where

γ := Û∗
1 · Q00. (14)

In the study of axisymmetric patterns, the sign of γ determines whether localised spot
solutions have an elevation (a peak) or a depression (a gap) at their centre (Lloyd
and Sandstede 2009; Hill et al. 2021). We note that the quantities c0, c3, γ and the
eigenvector Û0 will be important when defining our qualitative predictors P1, . . . , P4
later in this section.We are now equipped to study the existence theorems for localised
approximate dihedral patterns seen in Hill et al. (2023, 2024).

2.1.4 Approximate Localised Dihedral Patterns

We consider fully localised patterns with Dm dihedral symmetry, so that

U(r , θ) = U(r , θ + 2π
m ) = U(r ,−θ), (15)

where r , θ are the standard polar coordinates for R2. We employ a Galerkin scheme
for approximating Dm solutions of the system (10), which we now detail. Taking a
truncated Fourier expansion

U(r) =
N∑

n=−N

U|n|(r) cos(mnθ), (16)

123



Journal of Nonlinear Science (2024) 34 :67 Page 11 of 39 67

for a fixed choice of N ≥ 0 and projecting onto each cos(mnθ), (10) becomes

0 = �nUn − M1Un − εM2Un −
∑

i+ j=n
|i |,| j |≤N

Q(U|i |,U| j |)

−
∑

i+ j+k=n
|i |,| j |,|k|≤N

C(U|i |,U| j |,U|k|) + h.o.t .s,
(17)

for each n ∈ [0, N ], where h.o.t .s denotes the higher order terms seen in (10) and

�n := (∂2r + 1
r ∂r − (mn)2

r2
) is the Laplacian operator � when applied to the nth Fourier

mode. Note that our introduction of Q and C has provided a much cleaner expression
of the nonlinear terms in (17) than if we used F2 and F3.

We now write down existence theorems for localised solutions to (17) originally
proven in Hill et al. (2023, 2024). We shorten our statement of the theorems for the
sake of brevity and readability, presenting only the key points relevant to this work.
First, we consider spot A-type solutions, whose existence was the focus of Hill et al.
(2023):

Theorem 1 (Hill et al. 2023) Fix m ∈ N, N ∈ N0. If γ 	= 0, then there exists some
r0 > 0 such that the Galerkin system (17) has an approximate localised dihedral
solution UA(r , θ) for all r ∈ [0,∞), θ ∈ [0, 2π) in the region 0 < c0ε � 1, such
that UA has a leading-order expansion

UA(r , θ) = 2
√
3k

γ
(c0ε)

1
2

N∑
n=−N

a|n| J|mn|(kr) cos(mnθ)Û0 + O(|ε|) (18)

for r ∈ [0, r0] and |UA(r , θ)| → 0 exponentially fast as r → ∞. Here Jn is the nth-
order Bessel function of the first kind and the constants {an}Nn=0 are nondegenerate
solutions of the quadratic matching condition

an = 2
N−n∑
j=1

cos

(
mπ(n − j)

3

)
a jan+ j +

n∑
j=0

cos

(
mπ(n − 2 j)

3

)
a jan− j , (19)

for each n ∈ [0, N ].
Setting N = 0 recovers the axisymmetric spotA solution found inLloyd andSandstede
(2009) for the Swift–Hohenberg equation, which is why we refer to these solutions
as spot A-type patterns. The proof of Theorem 1 requires tools from radial spatial
dynamics, pioneered by Scheel (2003), and can be found in Section 4 of Hill et al.
(2023). Solving the algebraic matching condition (19) then provides excellent initial
approximations of fully localised dihedral patterns for numerical study; we will use
an initial guess of (18) with solutions from (19) as the starting point for our numerical
simulations in Sect. 3.

123



67 Page 12 of 39 Journal of Nonlinear Science (2024) 34 :67

Beyond the spot A-type dihedral patterns found in Hill et al. (2023), we can also
find localised dihedral ring patterns for the system (17); the existence of these patterns
was the focus of Hill et al. (2024), resulting in the following theorem.

Theorem 2 (Hill et al. 2024) Fix m ∈ N, N ∈ N0. If c3 < 0, then there exists some
r0 > 0 such that the Galerkin system (17) has an approximate localised dihedral
solution UR(r , θ) for all r ∈ [0,∞), θ ∈ [0, 2π) in the region 0 < c0ε � 1, such
that UR has a leading-order expansion

UR(r , θ) = CR(c0ε)
3
4

N∑
n=−N

b|n|
[
kr J|mn+1|(kr)Û0 + 2J|mn|(kr)Û1

]
cos(mnθ) + O(|ε|)

(20)

for r ∈ [0, r0] and |UR(r , θ)| → 0 exponentially fast as r → ∞. Here CR > 0 is a
fixed constant, Jn is the nth order Bessel function of the first kind, and the constants
{bn}Nn=0 are nondegenerate solutions of the cubic matching condition

bn =
∑

i+ j+k=n
|i |,| j |,|k|≤N

(−1)
m(|i |+| j |−|k|−n)

2 b|i |b| j |b|k|, (21)

for each n ∈ [0, N ].

Setting N = 0 recovers the axisymmetric ring solution found in Lloyd and Sandstede
(2009) for the Swift–Hohenberg equation, and so we refer to these solutions as ring-
type patterns. The proof of Theorem 2 follows in a similar way to Theorem 1, but
with more delicate analysis regarding the exponential decay of solutions for large
values of r . As discussed earlier, these ring-type patterns only emergewhen bifurcating
stripes are unstable; in particular, their far-field profile is approximated by the localised
solution of the cubic non-autonomous Ginzburg–Landau equation

(
d

ds
+ 1

2s

)2

q(s) = q(s) + c3q(s)3, (22)

where s := (c0ε)
1
2 r is a rescaled radial coordinate in the far field. An exponentially

decaying solution to (22) only exists when c3 < 0, as proved inMcCalla and Sandstede
(2013), van denBerg et al. (2015). The algebraicmatching condition (21) possessesZ2
symmetry, so −UR(r , θ) is also a solution of (17) and ring-type patterns emerge in a
pitchfork bifurcation. A numerical study of these ring-type patterns first requires solv-
ing (22) in order to construct an effective initial guess; we will restrict our numerical
simulations in Sect. 3 to the simpler spot A-type patterns.
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2.1.5 Qualitative Predictors

We conclude this section by highlighting the following quantities,

P1 := c0, P2 := [Û0]2
[Û0]1

, P3 := [Û0]1
γ

, P4 := c3, (23)

where the notation [v]i denotes the i th element of a vector v. Each quantity can be
computed directly from the original model (2) and describes a qualitative property of
our localised solutions. We recall

(i) P1 determines the direction of bifurcation from the Turing point. If P1 > 0, then
localised solutions bifurcate for ε > 0, and if P1 < 0, then localised solutions
bifurcate for ε < 0.

(ii) P2 determines the relationship between u and v. If P2 > 0, then u and v share
the same polarity, and if P2 < 0, then u and v have opposing polarity.

(iii) P3 determines the polarity of u. If P3 > 0, then spot A-type patterns are made
up of peaks, and if P3 < 0, then spot A-type patterns are made up of gaps.

(iv) P4 determines whether or not ring-type patterns exist. If P4 < 0, then ring-type
patterns bifurcate from the Turing point, and if P4 > 0, then no ring-type patterns
emerge.

Let us briefly discuss some intuition for each predictor. First, the sign of P1 fixes
the sign of ε via the condition that σ(λ;μ∗ + ε) has no real roots for |ε| � 1. One
can formally derive this by a linear transformation of σ(λ;μ∗ + ε) into {Û0, Û1}
coordinates, so that

σ(λ;μ∗ + ε) = det

(
λ + k2 + O(ε) −k2 + O(ε)

4P1ε + O(ε2) λ + k2 + O(ε)

)
= 0,

�⇒ λ = −k2 ± 2ik
√
P1ε + O(ε).

Then, we see that λ becomes complex when P1ε > 0. The quantities P2, P3 both
appear in the profile of our spot A-type solutions (18), which we can write as

UA(r , θ) = 2
√
3 k P3 (P1ε)

1
2

N∑
n=−N

a|n| J|mn|(kr) cos(mnθ)

(
1
P2

)
+ O(|ε|),

and so the role of both P2, P3 can be seen explicitly. The final predictor P4 has
already been discussed previously, where we observed that it corresponds to a
focussing/defocussing condition in the non-autonomous Ginzburg–Landau equation
(22). We will see that these predictors provide a quick guide by which to compare
and categorise different reaction–diffusion systems with regard to the formation of
localised dihedral patterns.
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2.2 VegetationModels

We now introduce several models for dryland vegetation and compute the quantities
Pj for j = 1, . . . , 4 in each model. This will then allow us to predict qualitative
properties of the types of localised patterns emerging in each model. We again recall
that our qualitative predictions are regarding the existence of localised steady states,
whichmay represent transient states between uniform and patterned environments.We
then support our analysis with a numerical exploration of some spot A-type patterns in
Sect. 3, where we verify our qualitative predictions and observe how localised patterns
evolve in each of the following vegetation models.

2.2.1 Klausmeier–Gray–Scott Model

We begin with the system

ut = �u + vu2 − mu,

vt = δv�v + μ − v − vu2,
(24)

introduced by van der Stelt et al. in van der Stelt et al. (2013) and commonly referred
to as the ‘extended Klausmeier’ model (Siteur et al. 2014; Siero et al. 2015), or the
‘Klausmeier–Gray–Scott’ model (Gandhi et al. 2018; Wang et al. 2021; Li et al. 2022;
Zelnik et al. 2018). Thefirst name is in reference to theKlausmeiermodel for vegetation
patterns on sloped domains,

ut = �u + vu2 − mu,

vt = ν∂xv + μ − v − vu2,

where m > 0 models an effective death rate of vegetation and ν models the advection
of water down a uniform hillslope (Klausmeier 1999). The Klausmeier model can
be extended to flat land by setting ν = 0 and including a diffusive term for the
water density, thus resulting in (24). The name ‘Klausmeier–Gray–Scott’ refers to the
similarities between (24) and the Gray–Scott model for chemical reactions (Gray and
Scott 1983). We will presently introduce another model derived as an extension of
the Klausmeier model, and so we will call (24) the Klausmeier–Gray–Scott model to
reduce confusion.

The Klausmeier–Gray–Scott model (24) is described by the general reaction–
diffusion model (2) with Dv = δv , β = 0, and

f̂ (u, v;μ) = −vu2 + mu, ĝ(u, v;μ) = −μ + v + vu2.

For this particular model, the functions f̂ , ĝ are simple enough to analyse explicitly,
which is done in the Appendix. We discover that (24) undergoes a Turing bifurcation
if δvm > 2, and

P1 > 0, P2 < 0, P3 < 0 for all m > 0, δv > 2/m.
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Fig. 4 a Plot of the sign of P4 in (δv,m)-parameter space; P4 < 0 in the left-most shaded region (blue) and
P4 > 0 in the right-most shaded region (green). The left-most boundary is the curve δvm = 2, and so no
Turing bifurcation occurs in the unshaded region. The red dot represents the parameter values (25) chosen
for our numerical study. b Schematic bifurcation diagram of the Klausmeier–Gray–Scott model (24) with
parameter values (25), where anti-phase spot A-type patterns emerge as gaps from the Turing point as μ

increases

The sign of P4 varies for different values of δv,m, and so we numerically plot a
diagram for sgn (P4) in Fig. 4a.

The benefit of finding explicit expressions for each Pj is that we can judge the
robustness of each qualitative property, i.e. how sensitive any numerical solutions
are with respect to our choice of parameters. What we find is that the direction of
bifurcation (P1), whether solutions are in-phase or anti-phase (P2), and whether the
solutions are peaks or gaps (P3) remain consistent across all choices of δv,m such
that δvm > 2. Figure4a shows that the subcriticality condition P4 < 0 only holds for
sufficiently small values of δv , given a fixed m, and so the ring-type patterns found in
Theorem 2 emerge in a much smaller parameter region than the spot A-type patterns
of Theorem 1.

For our subsequent numerical study in Sect. 3, we choose the following parameter
values

m = 0.5, δv = 7.2, (25)

taken from Zelnik et al. (2018), where localised periodic states have been observed
previously; we will use these parameter values for the remainder of this work when
considering (24). Then, we identify the Turing point

(u∗, v∗, μ∗) = (1.071, 0.467, 1.002),

with

P1 = 6.923, P2 = −0.348, P3 = −1.512, P4 = 0.248,

which is consistent with our explicit calculations. Hence, the Klausmeier–Gray–Scott
model (24) with parameter values (25) exhibits anti-phase spot A-type localised gaps,
which bifurcate as the precipitation increases beyond the Turing point; see Fig. 4b.

123



67 Page 16 of 39 Journal of Nonlinear Science (2024) 34 :67

We note that the direction of bifurcation, as predicted by P1, does not tell the whole
story; the bifurcation curve in Fig. 4b could undergo a fold and continue into the region
where μ < μ∗. This is the case for certain localised one-dimensional solutions in the
Klausmeier–Gray–Scott model (Zelnik et al. 2018), and so we might expect the same
to be true in this case.

2.2.2 Logistic Klausmeier Model

Our second example is the logistic Klausmeier model introduced by Bastiaansen et al.
(2019),

ut = �u + (1 − bu)vu2 − mu,

vt = δv�v + μ − v − vu2,
(26)

which is an extension of the previous Klausmeier–Gray–Scott model (24), where
the unrestricted vegetation growth term vu2 is replaced by a logistic growth term
(1 − bu)vu2 with carrying capacity b−1 > 0.

This adjustment limits the growth of vegetation at any given point, which is moti-
vated as follows. For extremely low precipitation levels, it is reasonable to assume that
vegetation growth is constrained by the amount of soil water, as modelled by (24);
however, in environments that can support larger quantities of vegetation, one should
expect other limiting effects to become relevant, such as competition for space and
nutrients among individual plants. Hence, when considering larger scale vegetation
patterns, such as in Bastiaansen et al. (2019), Byrnes et al. (2023), Carter and Doelman
(2018), Sewalt and Doelman (2017), Carter et al. (2023), Iuorio and Veerman (2021),
it may be more appropriate to consider (26) rather than (24).

The logistic Klausmeier model (26) is again covered by the general reaction–
diffusion model (2) with Dv = δv , β = 0, and

f̂ (u, v;μ) = −(1 − bu)vu2 + mu, ĝ(u, v;μ) = −μ + v + vu2. (27)

The additional nonlinear termmakes any explicit calculations significantly more cum-
bersome, and so we just present our numerical calculations of Pj . We fix b = 1 and
choose the following parameter values

m = 0.45, δv = 182.5, (28)

used to model grass patterns in Klausmeier (1999), where the value of the diffusion
constant δv is significantly larger than in the previous example. Then, we find the
Turing point

(u∗, v∗, μ∗) = (0.465, 1.809, 2.200),

with

P1 = 0.503, P2 = −0.282, P3 = −0.965, P4 = 0.015.
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Fig. 5 Schematic bifurcation diagrams of a the logistic Klausmeier model (26) with parameter values (28)
and b the NFC–Gilad model (29) with parameter values (31). In both cases, anti-phase spot A-type patterns
emerge as gaps from the Turing point as μ increases

Hence, the logistic Klausmeier model (26) with parameter values (28) exhibits anti-
phase spotA-type localised gaps, which bifurcate as the precipitation increases beyond
the Turing point. Comparing Fig. 5a with Fig. 4b, we see that the localised structures
emerging in theKlausmeier–Gray–Scottmodel (24) and the logisticKlausmeiermodel
(26) are qualitatively the same.

2.2.3 NFC–Gilad Model

Our next model is a simplification of the Gilad model introduced in Gilad et al. (2004,
2007)

ut = Guu(1 − u) − u + δu�u,

vt = α

(
u + γ σ

u + γ

)
w − ν(1 − ρu)v − Gvv + δv�v,

wt = μ − α

(
u + γ σ

u + γ

)
w + δw�(w2),

where w(t, x) denotes the density of water on the surface of the soil and
Gu(t, x),Gv(t, x) are non-local terms that describe vegetation growth and soil water
consumption, given by

Gu(t, x) = �

2π

∫
�

1

S20
exp

(
− |x − x′|
2S20 (1 + ηu(t, x))2

)
v(t, x′) dx′,

Gv(t, x) = �

2π

∫
�

1

S20
exp

(
− |x − x′|
2S20 (1 + ηu(t, x))2

)
u(t, x′) dx′,

respectively. One of the aims of this model was to describe the behaviour of plants
with widely spread out roots, such that the interaction between vegetation and water
is no longer strictly local, resulting in a three-component non-local PDE system. As
such, this model is not covered by our results unless some simplifications are first
performed.
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We consider a simplification of the Gilad model introduced in Zelnik et al. (2015),
where the authors focused on studying fairy circles on flat terrains in Namibia. For this
particular environment, the sandy soil results in very fast changes to the surface water
w(t, x)—which converges to an equilibrium state—and the remaining slow dynamics
of the system can be reduced to the two-component reaction–diffusion system

ut = �u + �vu(1 − u)(1 + ηu)2 − u,

vt = δv�v + μ − ν(1 − ρu)v − �vu(1 + ηu)2.
(29)

We refer to this model as the ‘Namibian fairy circle Gilad’ model, or ‘NFC–Gilad’
model for short. It is exactly of the form in (2), with Dv = δv , β = 0, and

f̂ (u, v;μ) = −�vu(1 − u)(1 + ηu)2 + u,

ĝ(u, v;μ) = −μ + ν(1 − ρu)v + �vu(1 + ηu)2.
(30)

Again, the functions f̂ , ĝ are complicated enough that we only present numerical
calculations here. We choose the following parameter values

� = 16
35 , η = 14

5 , ν = 10
7 , ρ = 7

10 , δv = 125, (31)

taken from Zelnik et al. (2015); then, we find the Turing point

(u∗, v∗, μ∗) = (0.474, 0.768, 1.635),

with qualitative predictors

P1 = 0.381, P2 = −0.207, P3 = −0.575, P4 = 0.818.

Hence, the NFC–Gilad model (29) with parameter values (31) exhibits anti-phase spot
A-type localised gaps, which bifurcate as the precipitation increases beyond the Turing
point; see Fig. 5b. Again, comparing Fig. 5b with Figs. 4b, 5a, we see that the localised
structures emerging in the NFC–Gilad model (29) are qualitatively the same as those
in the Klausmeier–Gray–Scott and logistic Klausmeier models.

2.2.4 von Hardenberg Model

The final model we consider is the von Hardenberg model introduced in von Harden-
berg et al. (2001),

ut = �u + γ v
1+σv

u − u2 − νu,

vt = δv�(v − βu) + μ − (1 − ρu)v − uv2,
(32)

which reproduces many symmetry-breaking transitions found in field observations.
In particular, simulations of domain-covering patterns undergo ‘gaps → labyrinth
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Fig. 6 Schematic bifurcation
diagram of the von Hardenberg
model (32) with parameter
values (34), with in-phase spot
A-type patterns emerging as
peaks from the lower Turing
point (35) and as gaps from the
upper Turing point (36)

→ spots’ and ‘spots → stripes → gaps’ transitions (Gowda et al. 2014, 2016), and
simulations of localised patterns undergo ‘spot-→-ring’ and ‘ring-→-spot’ transitions
(Meron et al. 2004).

We highlight some of the terms in (32) not seen in the previous models. The coef-

ficient
(

γ v
1+σv

)
models vegetation growth due to water intake, which is linear for low

levels of water and tends to a constant for larger levels of water; this is instead of the
constant term m in (24) and (26) or the linear term �v in (29). The �(v − βu) term
models the transport of water via Darcy’s law; this includes the suction of water by
plant roots at a rate of β > 0, which is not covered by the previous models.

The von Hardenberg model (32) is of the form in (2), with Dv = δv , β > 0, and

f̂ (u, v;μ) = − γ v
1+σv

u + u2 + νu, ĝ(u, v;μ) = −μ + (1 − ρu)v + uv2, (33)

and we again only present numerical calculations for P1, P2, P3, P4 here. We choose
the following parameter values

γ = 1.6, σ = 1.6, ν = 0.2, ρ = 1.5, δv = 100, β = 3, (34)

taken from von Hardenberg et al. (2001). Notably, we obtain two Turing points for the
von Hardenberg model, both with qualitatively different properties. The first Turing
point is at

(u∗, v∗, μ∗) = (0.017, 0.173, 0.169), (35)

with qualitative predictors

P1 = −0.384, P2 = 1.707, P3 = 0.8427, P4 = 0.0012,

while the second Turing point is at

(u∗, v∗, μ∗) = (0.271, 0.556, 0.414), (36)

with qualitative predictors

P1 = 0.217, P2 = 2.578, P3 = −1.512, P4 = 0.014.
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Hence, the von Hardenberg model (32) with parameter values (34) exhibits the
following localised dihedral patterns. As the precipitation decreases beyond the first
Turing point (35), in-phase spot A-type localised peaks emerge. In contrast, as the
precipitation increases beyond the second Turing point (36), in-phase spot A-type
localised gaps emerge; for a summary of these predictions, see Fig. 6. We note that,
while ring-type patterns do not emerge from either Turing point for the given parameter
values, localised one-dimensional patterns have been found to emerge from the first
Turing point for a different choice of parameters; see (Dawes and Williams 2016,
Figure 15). As discussed earlier, these one-dimensional patterns require c3 < 0 in
order to emerge, and so we expect dihedral ring-type patterns to also emerge in those
parameter regimes.

3 Numerical Results

In the previous section,we demonstrated how fully localised patterns emerge in general
two-component reaction–diffusion systems near a Turing instability, which we now
supportwith a brief numerical study on the evolution of spotA-type dihedral vegetation
patterns in each of the vegetationmodels introduced previously. The goal of this section
is to numerically explore spot A-type vegetation patterns in the four vegetation models
introduced previously, in order to (1) verify our qualitative predictions from Sect. 2.2;
(2) explore the role of localised patterns as transient states of vegetationmodels; and (3)
observe how different models with similar initial conditions can result in qualitatively
different evolution dynamics.

The numerical codes for producing the results of this section are all available at
Hill (2023), along with codes for calculating the predictive quantities P1, . . . , P4
in each vegetation model considered here. Furthermore, we provide others with the
option to define their own reaction–diffusion models of the form (2) and determine
the qualitative properties of patterns emerging from a given Turing point.

3.1 Implementation

Our numerical approach is as follows: for a system of the form (2), we provide the
functions f̂ (u, v, μ), ĝ(u, v, μ), including the values of any other parameters, and
an initial guess for the Turing point (u∗, v∗, μ∗). We numerically solve the algebraic
equations detailed in Sect. 2 in order to find a Turing point close to our initial guess
and compute k, Û0, Û1, γ, c0, c3. Then the values of P1, P2, P3, P4 can be computed,
as in the previous section for each vegetation model.

Next, we choose what type of dihedral pattern we want to find by fixing m, N ∈ N

in Theorem 1 and providing an initial guess for the algebraic matching condition (19)
for spot A-type patterns. This results in an initial profile (18) for a localised dihedral
pattern bifurcating from the Turing instability; we then input this solution into our
time–stepping codes in order to investigate how these solutions evolve over time.
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We employ a second-order exponential time–differencing method from Asante-
Asamani et al. (2020) for a reaction–diffusion system of the form

∂tu =
(
Du 0
0 Dv

)
�u + F(u;μ), (37)

with homogeneous Neumann boundary conditions. In order to convert our general
system (2) into this form, we apply the transformation

û :=
(

1 0
− βDv

Dv−1 1

)
u, u =

(
1 0

βDv

Dv−1 1

)
û, (38)

so that our general system of the form

∂tu =
(

1 0
−Dvβ Dv

)
�u + F(u;μ) (39)

becomes

∂t û =
(
1 0
0 Dv

)
�û +

(
1 0

− βDv

Dv−1 1

)
F

((
1 0

βDv

Dv−1 1

)
û;μ

)
. (40)

In particular, we apply our time-stepping codes to the system

∂t

(
û
v̂

)
=

(
1 0
0 Dv

)
�

(
û
v̂

)

+
⎛
⎝ − f̂

(
û, v̂ + βDv û

Dv−1 ;μ
)

(
βDv

Dv−1

)
f̂
(
û, v̂ +

(
βDv

Dv−1

)
û;μ

)
− ĝ

(
û, v̂ +

(
βDv

Dv−1

)
û;μ

)
⎞
⎠ , (41)

and then recover u, v from the transformation u = û, v = βDv

Dv−1 û + v̂.

We compute our simulations on a square domain of length 20λ, where λ := 2π
k is

thewavelength related to each Turing bifurcation. This k−dependent choice of domain
means that any patterns found across different models should be of a similar size when
plotted. We present our simulations through snapshots of our solutions in time; videos
of each simulation can be found at Hill (2023).

3.2 Simulations

We present three examples of localised dihedral patterns for our numerical study:
hexagons (D6), squares (D4), and pentagons (D5). In particular, we provide an initial
guess

(
u
v

)
=

(
u∗
v∗

)
+ CP3

[
N∑

n=−N

a|n| J|mn|(kr) cos(mnθ)

]
e−(P1ε)

1
2 r

(
1
P2

)
(42)
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Fig. 7 Three localised dihedral patterns: a hexagons (D6), b squares (D4), and c pentagons (D5). Each
profile is an approximate localised dihedral pattern obtained in Hill et al. (2023), and together they form
the initial guesses for our simulations

adapted from (18), where ε = μ − μ∗, C > 0 is a fixed constant, and

Hexagon: m = 6, N = 2, (a0, a1, a2) = (0.311, 0.267, 0.189),

Square: m = 4, N = 5,

(a0, a1, a2, a3, a4, a5) = (−0.136, 0.262, 0.236, −0.114, 0.187, 0.145),

Pentagon: m = 5, N = 3, (a0, a1, a2, a3) = (−0.382, 0.300, 0.382, 0.486).

See Fig. 7 for the profile of u−u∗ in each case. Note that while we refer to each pattern
by the polygon associated with its dihedral symmetry group—i.e. hexagons, squares,
and pentagons—the patterns do not necessarily appear similar to these polygons. For
example, the ‘square’ pattern is related to a twelve-fold quasipattern, rather than a
square lattice.

These three examples of dihedral patterns each possess a different level of rarity in
pattern formation; hexagons are very common in experiments and field observations,
square lattices are common but our specific square example is not, and pentagons are
not very common at all. However, Theorem 1 tells us that each example emerges from
the same Turing point in the same parameter regime, and so it would be interesting
to compare the time evolution for each example and observe whether the square and
pentagon patterns converge to the more common hexagons over time.

Since each of the models we consider is nondimensionalised, we cannot readily
compare the amplitude of patterns across different models. However, we observe that,
for a given model, each of our initial dihedral patterns converges to roughly the same
amplitude, and so we provide an approximate range of values for u in each model.
The videos available at Hill (2023) show an individual colorbar for each pattern, thus
providing more details for enquiring readers.

3.2.1 Klausmeier–Gray–Scott

We begin our simulations with the Klausmeier–Gray–Scott model (24) with param-
eter values (25). We recall from Sect. 2.2.1 that

P1 = 6.923 > 0, P2 = −0.348 < 0, P3 = −1.512 < 0, P4 = 0.248 > 0
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Fig. 8 Time evolution of vegetation density u in the Klausmeier–Gray–Scott model (24) with parameter
values (25). The dark green represents a vegetated state ( u ≈ 1.5), while the lighter yellow represents a
bare state ( u ≈ 0). Each row corresponds to a different initial perturbation (42) for—from top to bottom—
hexagons, squares, and pentagons. From left to right, the columns correspond to different points in time
t = 100, 200, 300, 400 and 500. The final column is divided into vegetation density (left) and water density
(right), where darker and lighter blue represents higher and lower water density, respectively. Videos of
each simulation can be found at Hill (2023)

and so we expect localised anti-phase gaps to emerge as the precipitation increases
from the Turing pointμ∗ = 1.002. Hence, we simulate the time evolution of our initial
guess (42)—for hexagons, squares, and pentagons—in the parameter region μ > μ∗.

The Turing bifurcation has an associated wave number k ≈ 0.3177, and so we
simulate our patterns in a square box of length 396. The simulations of our three
examples—hexagons, square, and pentagons—are presented in Fig. 8. We note that
the patterns found for (24) are all anti-phase, as predicted in Sect. 2 and shown in the
final column of Fig. 8; we do not otherwise plot the water density v since the spatial
structure is identical to the vegetation density u.

For the hexagon example, solutions form a regular hexagonal lattice of gaps. As
time evolves, new gaps emerge on the outer layer of the patch such that the width of
the pattern grows continuously. This behaviour is what we would expect for localised
patterns that undergo homoclinic snaking (for example, Lloyd et al. (2008); Hill et al.
(2023); Bramburger et al. (2019) for snaking solutions and Lloyd (2019, 2021) for
growing patterns away from the snaking region) and is also observed in the square and
pentagon examples, but with very different structures being formed.

In the square example, the initial pattern contains regions of the uniform state
between individual gaps; emerging gaps first fill these regions until the resulting pattern
is compact, before then emerging on the outer layers. Whereas the hexagon example
only consists of circular gaps, the square pattern is also comprised of long thin gaps.
For later times, the square pattern is reminiscent of the penta-hepta defects and grain
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Fig. 9 Time evolution of vegetation density u in the logistic Klausmeier model (26) with parameter values
(28). The dark green represents a vegetated state ( u ≈ 0.6), while the lighter yellow represents a bare state
( u ≈ 0). The rows and columns are identical to Fig. 8. The final column is divided into vegetation density
(left) and water density (right), where darker and lighter blue represents higher and lower water density,
respectively. Videos of each simulation can be found at Hill (2023)

boundaries studied in Subramanian et al. (2021); this is when a point in an almost-
hexagonal lattice has five or seven neighbours, rather than the standard six neighbours.

For the pentagon example, the story is much the same as the square example. Gaps
first fill out the initial patterned region before then emerging on the outer layer. Notably,
the five gaps at the core of the pattern coalesce and appear to converge to a ring, while
the outer layer of the pattern traces out a regular pentagon as times increases.

3.2.2 Logistic Klausmeier

We next consider the logistic Klausmeier model (26) with parameter values (28).
We recall from Sect. 2.2.2 that

P1 = 0.503 > 0, P2 = −0.282 < 0, P3 = −0.965 < 0, P4 = 0.015 > 0

and so we expect localised anti-phase gaps to emerge as the precipitation increases
from the Turing pointμ∗ = 2.200. Hence, we simulate the time evolution of our initial
guess (42)—for hexagons, squares, and pentagons—in the parameter region μ > μ∗.

The Turing bifurcation has an associated wave number k ≈ 0.1612, and so we
simulate our patterns in a square box of length 780. The simulations are presented in
Fig. 9, where we again mostly plot the vegetation density u since the water density v

exhibits the same spatial structures in anti-phase.
The logistic term in (26) restricts the height of individual gaps, causing the gaps

to grow in width instead; this was also observed in Bastiaansen et al. (2019) for
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Fig. 10 Time evolution of vegetation density u in the NFC–Gilad model (29) with parameter values (31).
The dark green represents a vegetated state ( u ≈ 0.6), while the lighter yellow represents a bare state (
u ≈ 0). The rows and columns are identical to Fig. 8. The final column is divided into vegetation density
(left) and water density (right), where darker and lighter blue represents higher and lower water density,
respectively. Videos of each simulation can be found at Hill (2023)

one-dimensional patterns. As a result, nearby gaps expand and coalesce, causing a
collapse from a patterned state to a compact region of bare soil. New gaps emerge
on the periphery of this compact region, in the same positions as in the Klausmeier–
Gray–Scott model (24), but are soon absorbed into the central gap as time evolves.

Over time, these patterns resemble radial fronts connecting the bare state to the
vegetated state, similar to the axisymmetric and one-dimensional fronts studied in
Bastiaansen et al. (2019); Byrnes et al. (2023); Carter et al. (2023). However, the
geometry of the front interface is highly non-trivial, and so it is unclear whether these
structure could be analysed using similar techniques.

3.2.3 NFC–Gilad

We now consider the NFC–Gilad model (29) with parameter values (31). We recall
from Sect. 2.2.3 that

P1 = 0.381 > 0, P2 = −0.207 < 0, P3 = −0.575 < 0, P4 = 0.818 > 0

and so we expect localised anti-phase gaps to emerge as the precipitation increases
from the Turing pointμ∗ = 1.635. Hence, we simulate the time evolution of our initial
guess (42)—for hexagons, squares, and pentagons—in the parameter region μ > μ∗.

The Turing bifurcation has an associated wave number k ≈ 0.333, and so we
compute our simulations in a square box of length 378. The simulations for our three
examples are presented in Fig. 10 for the vegetation density u; solutions are again
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Fig. 11 Time evolution of vegetation density u in the von Hardenberg model (32) with parameter values
(34) near its first Turing point. The dark green represents a vegetated state ( u ≈ 0.35), while the lighter
yellow represents a bare state ( u ≈ 0). The rows are the same as Fig. 8; the columns correspond to the
points in time t = 200, 300, 400, 500, and 600. The final column is divided into vegetation density (left) and
water density (right), where darker and lighter blue represents higher and lower water density, respectively.
Videos of each simulation can be found at Hill (2023)

found to be anti-phase, and so we mostly do not plot the water density v since its
spatial structure is identical to u.

Much like with the logistic Klausmeier model (26), individual gaps in the NFC–
Gilad model grow in width as time evolves. However, unlike the logistic Klausmeier
model, these gaps do not coalesce with their neighbours. As a result, we observe
patterns with non-uniform elliptic gaps that retain a mosaic-like structure. We note
that the interface between the pattern and the surrounding vegetated state is much
more circular for (29) than in our previous models, even for the square and pentagon
examples.

We note that all three examples exhibit a pseudo-hexagonal lattice structure away
from their core, which might hint towards the dominance of hexagonal patterns in
field observations and experiments. One could then think of the resultant square and
pentagon patterns as versions of the hexagonal example with defects at their core.
However, it is worth noting that the hexagonal packing observed in the square and
pentagon examples is not symmetry breaking; the dihedral symmetry of each example
(D4 for squares, D5 for pentagons) is preserved throughout, except for when the
pentagon example becomes large enough to experience boundary effects.
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3.2.4 Von Hardenberg—Turing point 1

We consider the first Turing bifurcation (35) in the von Hardenberg model (32) with
parameter values (34). We recall from Sect. 2.2.4 that, for this bifurcation point,

P1 = −0.384 < 0, P2 = 1.707 > 0, P3 = 0.843 > 0, P4 = 0.001 > 0

and so we expect localised in-phase peaks to emerge as the precipitation decreases
from the Turing pointμ∗ = 0.169. Hence, we simulate the time evolution of our initial
guess (42)—for hexagons, squares, and pentagons—in the parameter region μ < μ∗.

This bifurcation has an associated wave number k ≈ 0.106, and so we compute
our simulations in a square box of length 1190. However, the width of the patterns is
considerably smaller than this domain, and so we present our results in the smaller
square box of length 595. The water density v is found to be in-phase, as predicted
in Sect. 2, and shares an identical spatial structure to the vegetation density u. Hence,
we present our simulations of u in Fig. 11. The evolution of these patterns occurs at a
slower rate than in previous models, and so we present our simulations at later times,
as detailed in Fig. 11.

The initial guess (42) is very small for this Turing bifurcation, and so it can be
difficult to capture numerically. As such, in order to observe localised dihedral patterns
in this model, we take a larger choice for the constant C in (42). Then, for each
example solutions converge to localised peaks spread out in dihedral arrangements.
The emergence of new peaks is much slower than in the previous models; individual
spots instead grow in width until their core destabilises, causing a transition into a ring
or two smaller spots. This behaviour is reminiscent of localised spikes in singularly
perturbed reaction–diffusion systems, such as Kolokolnikov and Ward (2022), rather
than the invading patterns seen in our other models. We note that we observe these
spot-to-ring transitions occur even though localised ring-type patterns do not emerge
from the uniform state.

Other than the central spot in the hexagon example, every spot is observed tran-
sitioning into two smaller spots. The way that each spot splits appears to be very
structured; the outer ring of spots appears to split in the azimuthal (i.e. angular) direc-
tion, whereas the inner ring of spots appears to split in the radial direction. Since
the outer layer of spots also appears to split symmetrically, we note that the overall
dihedral symmetry of the system seems to be preserved by these splittings.

3.2.5 Von Hardenberg—Turing point 2

Our final simulations are for the second Turing point (36) in the von Hardenberg
model (32) with parameter values (34). We recall from Sect. 2.2.4 that, for this bifur-
cation,

P1 = 0.217 > 0, P2 = 2.578 > 0, P3 = −1.512 < 0, P4 = 0.014 > 0
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Fig. 12 Time evolution of vegetation density u in the von Hardenberg model (32) with parameter values
(34) near its second Turing point. The dark green represents a vegetated state ( u ≈ 0.35), while the lighter
yellow represents a bare state (u ≈ 0). The rows and columns are the same as Fig. 11. The final column
is divided into vegetation density (left) and water density (right), where darker and lighter blue represents
higher and lower water density, respectively. Videos of each simulation can be found at Hill (2023)

and so we expect localised in-phase gaps to emerge as the precipitation increases from
the Turing point μ∗ = 0.414. Hence, we simulate the time evolution of our initial
guess (42)—for hexagons, squares, and pentagons—in the parameter region μ > μ∗.

This bifurcation has an associated wave number k ≈ 0.201, and so we compute
our simulations in a square box of length 612. Again, we find the water density v to
be in-phase, as predicted in Sect. 2, with an identical spatial structure to the vegetation
density u; we present our simulations of u in Fig. 12. Again, the time evolution of our
patterns is slower than the other models, and so we present our simulations for slightly
later times.

In each example, solutions are comprised of circular gaps with a uniform size. The
hexagon example results in a perfect hexagonal lattice, exhibiting the same behaviour
as in the Klausmeier–Gray–Scott model and prototypical pattern-forming systems
like the Swift–Hohenberg equation (Lloyd et al. 2008). The square and pentagon
examples grow similarly to the Klausmeier–Gray–Scott (24), but new gaps exhibit
hexagonal packing like in the NFC–Gilad models (29). Then, each example evolves
into a perfect hexagonal lattice with possible defects; these defects then form grain
boundaries throughout the localised pattern, such as the horizontal and vertical lines
in the square example. As with the previous models, even though the solutions are
all evolving into distorted hexagonal lattices, the dihedral symmetry of the solution is
preserved.
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4 Discussion

In thiswork,wehave provided a step-by-step guide onhow to convert a two-component
reaction–diffusion system into its local representation near a Turing instability for a
class of vegetation models. Then, one can find localised dihedral patterns bifurcat-
ing from the Turing instability and obtain four quantities that encode the qualitative
behaviour of these localised solutions and how they bifurcate. We found that localised
spot A-type patterns emerge generically from a Turing instability, not requiring any
subcriticality conditions like localised one-dimensional and ring-type patterns.

We then considered four established models for dryland vegetation and predicted
the emergence of localised dihedral patterns. For the simple Klausmeier–Gray–Scott
model (24), wewere able to derive explicit forms for each qualitative predictor in terms
of the parameters of the model and hence better understand the qualitative robustness
of localised dihedral solutions with regard to our choice of parameters. We found that
eachmodel exhibits spot A-type patterns bifurcating from a Turing point, but ring-type
patterns donot emerge for the given choices of parameters from the literature.However,
in the Klausmeier–Gray–Scott model we saw that there exists a small parameter region
in which ring-type patterns emerge from the uniform state, which is also observed for
the von Hardenberg model in (J. H. Dawes and J. L. Williams Dawes and Williams
(2016), Figure 15). We then supported our predictions through numerical simulations
of each vegetation model, where we observed that the generic spot A-type patterns
evolve into dramatically different structures depending on the choice of model.

We note that the dihedral symmetry of each solution is very robust in our simula-
tions, even though the Cartesian discretisation of our spatial domain should actively
disfavour the rotational symmetry of our patterns. One possible reason for this might
be that the emergence of each peak or gap is strongly influenced by its neighbours.
Then, if we begin with a collection of peaks or gaps arranged with dihedral symmetry,
the neighbourly effects on a new peak or gap also possess dihedral symmetry, thus
enforcing the dihedral structure on the new peaks and gaps. Another possible reason
might be that our initial guess imparts a dihedral symmetry on the whole domain
which the localisation just makes extremely small away from the origin. Then, as the
uniform state destabilises, the already present dihedral oscillations grow in amplitude,
resulting in a pattern with dihedral symmetry.

Although our solutions maintain their dihedral symmetry as time evolves, we
observe significant differences in the resultant patterns for different vegetation mod-
els. The Klausmeier–Gray–Scott (24), NFC–Gilad (29), and von Hardenberg models
(32) all exhibit similar growth behaviour in Figs. 8, 10 & 12, but with significantly
different final patterns. For the Klausmeier–Gray–Scott model in Fig. 8, there is no
clear packing structure as each pattern grows larger, whereas solutions the NFC–
Gilad model in Fig. 10 exhibit non-uniform hexagonal packing and solutions for the
von Hardenberg model in Fig. 12 exhibit uniform hexagonal packing. We note that
we cannot reasonably compare the speed of growth of the patterns in each model, as
each model considered in this work is nondimensionalised with a rescaled time coor-
dinate. For example, for the fixed parameter values given, t = 500 in our simulations
corresponds to approximately 50 years in the NFC–Gilad model but 125 years in the
logistic Klausmeier model.
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Table 1 A summary of different qualitative patterns emerging from a Turing point and their required values
for P2, P3, and P4

Patterns Example Requirement

In-phase spots Yizhaq et al. (2014) P2 > 0, P3 > 0

Anti-phase spots Yizhaq et al. (2014) P2 < 0, P3 > 0

In-phase gaps Getzin et al. (2016) P2 > 0, P3 < 0

Anti-phase gaps Getzin et al. (2016) P2 < 0, P3 < 0

Rings and (unstable) stripes Sheffer et al. (2007) P4 < 0

We have provided novel tools for the design of phenomenological reaction–
diffusion models; by computing the quantities P1, P2, P3, P4, one is able to quickly
check the qualitative behaviour of solutions of a prospective model and compare them
against the observed phenomena. While these predictors are derived for localised
patterns, they also have applications in general pattern formation. Like spot A-type
patterns, domain-covering hexagons also possess a fixed phase and polarity—as pre-
dicted by P2 and P3, respectively—while P4 determines whether unstable stripes
bifurcate in the direction determined by P1. In order to model the emergence of a
particular type of pattern, one would then require a particular type of Turing point
determined by the signs of each Pi ; this is summarised in Table 1.

For example, if you were looking to model localised in-phase gaps (such as fairy
circles observed in Australia (Getzin et al. 2016)), then any prospective reaction–
diffusion model must have a Turing instability with P2 > 0, P3 < 0. Such a model
would not be appropriate for the fairy circles observed in Namibia, however, which
manifest as anti-phase gaps and thus require a model with P2 < 0, P3 < 0. Further-
more, we note that any vegetation model that exhibits a transition from spots to gaps
(or vice versa), such as the von Hardenberg model (Gowda et al. 2014), must thus
possess two distinct Turing points with different signs for P3. While these properties
alone are not sufficient to successfully model complex phenomena such as vegetation
patterns, they can provide helpful conditions to be used in conjunction with ecologi-
cal modelling. We also note that the spot A-type patterns emerge generically from a
Turing bifurcation, and so the mere existence of localised patterns is not necessarily a
good indicator of whether or not a model is appropriate, since if a model can exhibit
two-dimensional periodic patterns, it can also exhibit localised dihedral patterns.

Beyond the design of new models, our work also provides some insight into the
formation of vegetation patterns. In our simulations, localised patterns represent a
transition between two states, a stable patterned state and an unstable uniform state.
The patterned state emerges at the origin and begins to invade the uniform state in
a radial direction, as seen prototypical pattern-forming systems (Lloyd 2019, 2021);
this is particularly serious in the logistic Klausmeier model (26) where the invading
patterned state collapses to the bare state, resulting in the desertification of the local
environment. Since localised dihedral patterns lead to the further destabilisation of the
uniform vegetated state, they may serve the same role as periodic patterns in predict-
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ing or mitigating tipping points and desertification effects in semi-arid environments
(Rietkerk et al. 2004, 2021).

We briefly comment on the popular phenomenon of fairy circles and their relation
to the localised gaps discussed in this work. In (Getzin et al. 2021), Getzin et al. define
fairy circles as satisfying the following conditions: (a) theymust be gaps in a vegetated
state that (b) can form periodic structures and (c) are not rings surrounded by a bare
state. We have found that, for any Turing bifurcation with P3 < 0, there are localised
dihedral patterns that satisfy these criteria, as seen in Figs. 8, 9, 10 & 12. Furthermore,
we have found that these gap solutions are distinct from ring-type patterns found in
Theorem 2, which emerge in much more restrictive parameter regimes.

We note that there are numerous possible directions inwhich to numerically explore
localised vegetation patterns, many of which we do not consider here. The theory in
Sect. 2 describes the bifurcation of localised patterns from a Turing instability and so
a natural first step would be to use numerical continuation schemes to characterise
the bifurcation curves of these patterns in more detail. One could adapt the pseudo-
spectral codes of Hill et al. (2023) to each vegetation model, using a truncated angular
Fourier expansion and finite difference to solve and continue solutions with a givenDm

dihedral symmetry. However, determining the nonlinearities of each model projected
onto angular Fourier modes remains a difficult task, and each bifurcation curve would
be restricted to the dihedral symmetry group Dm , thus preventing symmetry-breaking
instabilities. One could instead use a PDE solver such as pde2path (Uecker et al.
2014), but the large domains required for vegetationmodels wouldmake any continua-
tion study computationally intensive. It would be interesting to consider the bifurcation
structure of these localised patterns in a future numerical study. Furthermore, it would
also be interesting to explore the sensitivity of our localised vegetation patterns to
the domain boundary. The size of our spatial domain and choice of boundary con-
ditions can both cause nonlinear effects in the time evolution of vegetation patterns;
for localised patterns in sufficiently large domains, these effects are negligible, but
become more important as the vegetation patches grow in width. We again leave this
topic for future study.

A possible extension of this work would be to consider non-local equations or
reaction–diffusion systems with more than 2 components; there are several examples
of vegetation models of these forms, including in Gilad et al. (2004) and Rietkerk et al.
(2002). However, such problems would require some kind of model reduction, either
formally or rigorously, before one could apply the techniques presented in this work.
It would also be interesting to try and investigate more complicated two-dimensional
localised patterns, such as localised labyrinthine patterns observed numerically (Clerc
et al. 2021). Of course, the theory presented in this work goes beyond the study of
vegetation patterns and could be applied to any two-component reaction–diffusion sys-
tem that undergoes a Turing bifurcation. Some interesting examples would include the
Lugiato–Lefever equation in nonlinear optics and the Gross–Pitaevskii (GP) equation
for Bose–Einstein solitons in quantum mechanics.

This work also highlights the need for more topological measures in order to com-
pare localised planar patterns. We discussed the qualitative differences between our
numerical simulations, but we are not currently equipped with the tools to easily com-
pare them quantitatively. There have been recent developments in this direction for
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studying nearly hexagonal lattices (Subramanian et al. 2021; Motta et al. 2018) which
could provide further insight into the dynamics observed in our simulations.

5 Appendix: Analysis of the Klausmeier–Gray–Scott Model

We now explicitly analyse the Klausmeier–Gray–Scott model (24)

ut = �u + vu2 − mu,

vt = δv�v + μ − v − vu2.

We begin by finding uniform steady states, which satisfy

v = μ

1 + u2
, 0 =

[
u2 −

( μ

m

)
u + 1

]
mu.

In particular, we obtain a trivial solution u0 = 0, v0 = μ, as well as two non-trivial
solutions

u±(μ) =
( μ

2m

)
±

√( μ

2m

)2 − 1 v±(μ) = m

u±(μ)
,

which exist for μ ≥ 2m. The trivial steady state never undergoes a Turing instability
as μ varies, and so we linearise (24) about (u±, v±), that is, we define u(t, x) =
u±(μ) +U (t, x), v(t, x) = m

u±(μ)
+ V (t, x), such that (24) becomes

0 = �U + mU + u±(μ)2V + m

u±(μ)
U 2 + 2u±(μ)UV +U 2V ,

0 = �V − 1

δv

[
2mU + (1 + u±(μ)2)V + m

u±(μ)
U 2 + 2u±(μ)UV +U 2V

]
.

(E.1)

We nowwant to identify any values ofμ such that (E.1) undergoes a Turing instability.
First, we write (E.1) in the vector form of (5), so that

0 = �U − M(μ)U − F2(U;μ) − F3(U;μ),

with

M(μ) =
(−m −u2±(μ)

2m
δv

1
δv

(
1 + u2±(μ)

)) ,

and

F2(U;μ) =
( − m

u±(μ)
U 2 − 2u±(μ)UV

1
δv

[
m

u±(μ)
U 2 + 2u±(μ)UV

]
)

, F3(U;μ) =
(−U 2V

1
δv
U 2V

)
.
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A general two-dimensional matrixA has a double eigenvalue of λ = 1
2 trA if and only

if

(trA)2 − 4 detA = 0,

where trA and det A denote the trace and determinant of the matrix A. For the above
matrixM(μ), we obtain

(trM)2 − 4 detM = m2 − 2m 1
δv

(
1 + u2±

)
+ 1

δ2v

(
1 + u2±

)2 − 4 m
δv

(
u2± − 1

)
,

= 1
δ2v

[
(δvm + 1)2 + 2(1 − 3(δvm))u2± + u4±

]
,

and hence, any repeated eigenvalues must satisfy

u±∗ =
√
3(δvm) − 1 ±

√
(3(δvm) − 1)2 − (δvm + 1)2

=
√
3(δvm) − 1 ±

√
8(δvm)2 − 8(δvm)

which implies that

μ±∗
m

= 1 + (u±∗ )2

u±∗
= 3(δvm) ± √

8(δvm)2 − 8(δvm)√
3(δvm) − 1 ± √

8(δvm)2 − 8(δvm)

.

Computing the eigenvalue λ = 1
2 trM(μ±∗ ), we find that

λ± = 1
2δv

[
(1 + (u±∗ )2) − (δvm)

]
= 1

δv

[
(δvm) ±

√
(δvm)2 + [(δvm) − 2](δvm)

]
.

Hence, we have found two bifurcations with repeated roots; however, λ+ (corre-
sponding to u+∗ ) is positive for all (δvm) > 0 and λ− (corresponding to u−∗ ) is only
negative if (δvm) > 2.

Let us briefly make a couple of observations. Firstly, we note that both points u±∗ lie
on the upper branch of the non-trivial uniform steady state, such that u±∗ = u+(μ±∗ ) ≥
1. Secondly, we note that the upper point u+∗ is called a Belyakov–Devaney point,
since it always possesses a positive repeated eigenvalue. These points are related to
spot-to-spike transitions; see (Saadi and Champneys 2021) for an example of such
transitions.

We continue by assuming that (δvm) > 2 so that the equilibrium

(u, v) =
(
u+(μ),

m

u+(μ)

)
,
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undergoes a Turing bifurcation at

μ = μ−∗ , u = u∗ :=
√
3(δvm) − 1 −

√
8(δvm)2 − 8(δvm)

with wave number k > 0, defined by

k =
√

1
2δv

[
(δvm) − (1 + u2∗)

] =
√

1
δv

(√
2(δvm)2 − 2(δvm) − (δvm)

)
.

Taking μ = μ−∗ + ε, with |ε| � 1, we note that

u+(μ−∗ + ε) = u∗ + 1

m

(
u2∗

u2∗ − 1

)
ε + O(ε2).

Then, we can now express (E.1) in the form of (10),

0 = �U − M1U − εM2U − Q(U,U) − C(U,U,U) + O
(
|ε| |U|2 + |ε|2 |U|

)
,

where

M1 :=
(−m −u2∗

2m
δv

1
δv

(1 + u2∗)

)
=

( −m −u2∗
(m−k2)2

u2∗
m − 2k2

)
, M2 :=

⎛
⎝0 −

(
2u3∗

m(u2∗−1)

)
0

(
u∗(m−k2)2

m2(u2∗−1)

)
⎞
⎠ ,

and

Q(U1,U2) :=
[
m

u∗
U1U2 + u∗(U2V1 +U1V2)

]( −1
(m−k2)2

2mu2∗

)
,

C(U1,U2,U3) := 1
3 [U1U2V3 +U1U3V2 +U2U3V1]

( −1
(m−k2)2

2mu2∗

)
.

Here, we have used the relation

u2∗ = δv

(m − k2)2

2m

in order to write down M1,M2,Q and C in terms of m, u∗ and k. We introduce the
generalised eigenvectors Û0, Û1 and their dual basis Û∗

0 , Û∗
1 ,

Û0 =
( −u2∗
m − k2

)
, Û1 =

(
0
k2

)
, Û∗

0 =
(

− 1
u2∗
0

)
, Û∗

1 =
(

m−k2

k2u2∗
1
k2

)
,
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so that

(M1 + k21)Û0 =
(−(m − k2) −u2∗

(m−k2)2

u2∗
m − k2

) ( −u2∗
m − k2

)
=

(
(m − k2)u2∗ − u2∗(m − k2)

− (m−k2)2

u2∗
u2∗ + (m − k2)2

)
= 0,

(M1 + k21)Û1 =
(−(m − k2) −u2∗

(m−k2)2

u2∗
m − k2

) (
0
k2

)
=

( −k2u2∗
k2(m − k2)

)
= k2Û0

and Ûi · Û j = δi, j . Finally, we can determine the explicit forms of the qualitative
predictors Pj ; starting with P1, we see that

P1 = c0 = Û∗
1 ·

(
− 1

4M2Û0

)

= − 1

4

(
2u3∗

m(u2∗ − 1)

) (
m−k2

k2u2∗
1
k2

)
·
(
0 −1

0 (m−k2)2

2mu2∗

) ( −u2∗
m − k2

)

= − 1

4

(
2u3∗(m − k2)

m(u2∗ − 1)

) (
m−k2

k2u2∗
1
k2

)
·
( −1

(m−k2)2

2mu2∗

)

=
(
u∗(m − k2)2(m + k2)

4k2m2(u2∗ − 1)

)
.

Since u∗ = u+(μ−∗ ), we know that u2∗ − 1 > 0, and so P1 > 0 for all parameter
values. Turning our attention to P2, we find that

P2 = [U0]2
[U0]1 = −

(
m − k2

u2∗

)
,

and so P2 < 0 for all parameter values, since m − k2 = 1
2 [m + 1

δv
(1 + u2∗)] > 0.

Before computing P3 and P4, we compute the following nonlinear terms

Q00 = Q(Û0, Û0) = −u∗(m − 2k2)

(
−u2∗

(m−k2)2

2m

)
,

Q01 = Q(Û0, Û1) = −k2u∗

(
−u2∗

(m−k2)2

2m

)
,

C000 = C(Û0, Û0, Û0) = u2∗(m − k2)

(
−u2∗

(m−k2)2

2m

)
.

Then, we see that

P3 = [U0]1
Û∗
1 · Q00

= −
(

2u∗mk2

(m − 2k2)(m − k2)(m + k2)

)
,
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and so P3 < 0 for all parameter values, since m − 2k2 = 1
δv

(1+ u2∗) > 0. Finally, we
obtain

P4 = c3 = − 5

6

(
Û∗
0 · Q00

) (
Û∗
1 · Q00

)
− 5

6

(
Û∗
1 · Q01

) (
Û∗
1 · Q00

)

− 19

18

(
Û∗
1 · Q00

)2 − 3

4

(
Û∗
1 · C000

)
,

= 5

6

(
u2∗(m − 2k2)2(m − k2)(m + k2)

2mk2

)

− 5

6

(
u2∗(m − 2k2)(m − k2)2(m + k2)2

4m2k2

)

− 19

18

(
u2∗(m − 2k2)2(m − k2)2(m + k2)2

4m2k4

)

+ 3

4

(
u2∗(m − k2)2(m + k2)

2mk2

)
.

It is not clear for each m > 0, δv > 2
m whether P4 > 0 or P4 < 0, and so we

numerically plot the sign of P4 in Fig. 4a.
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