Please use this identifier to cite or link to this item: doi:10.22028/D291-42889
Title: Splitting-type variational problems with asymmetrical growth conditions
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Title: Bollettino dell’Unione Matematica Italiana
Volume: 17 (2024)
Pages: 559-576
Publisher/Platform: Springer Nature
Year of Publication: 2023
Free key words: Splitting-type variational problems
Asymmetrical growth conditions
Non-uniform ellipticity
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Splitting-type variational problems n i=1 fi(∂iw) dx → min with superlinear growth conditions are studied by assuming hi(t) ≤ f i (t) ≤ Hi(t) (∗) with suitable functions hi , Hi : R → R+, i = 1, …, n, measuring the growth and ellipticity of the energy density. Here, as the main feature, we do not impose a symmetric behaviour like hi(t) ≈ hi(−t) and Hi(t) ≈ Hi(−t) for large |t|. Assuming quite weak hypotheses on the functions appearing in (∗), we establish higher integrability of |∇u| for local minimizers u ∈ L∞() by using a Caccioppoli-type inequality with some power weights of negative exponent.
DOI of the first publication: 10.1007/s40574-023-00394-4
URL of the first publication: https://link.springer.com/article/10.1007/s40574-023-00394-4
Link to this record: urn:nbn:de:bsz:291--ds-428890
hdl:20.500.11880/38439
http://dx.doi.org/10.22028/D291-42889
ISSN: 2198-2759
Date of registration: 17-Sep-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Martin Fuchs
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s40574-023-00394-4.pdf369,84 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons