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Abstract
Splitting-type variational problems

∫
�

n∑
i=1

fi (∂iw) dx → min

with superlinear growth conditions are studied by assuming

hi (t) ≤ f ′′
i (t) ≤ Hi (t) (∗)

with suitable functions hi , Hi : R → R
+, i = 1, …, n, measuring the growth and ellipticity

of the energy density. Here, as the main feature, we do not impose a symmetric behaviour
like hi (t) ≈ hi (−t) and Hi (t) ≈ Hi (−t) for large |t |. Assuming quite weak hypotheses on
the functions appearing in (∗), we establish higher integrability of |∇u| for local minimizers
u ∈ L∞(�) by using a Caccioppoli-type inequality with some power weights of negative
exponent.

Keywords Splitting-type variational problems · Asymmetrical growth conditions ·
Non-uniform ellipticity

Mathematics Subject Classification 49N60 · 49N99 · 35J45

1 Introduction

Suppose that � ⊂ R
n is a bounded Lipschitz domain and consider the variational integral

J [w] :=
∫

�

f (∇w) dx (1.1)
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of splitting-type, i.e.

f : R
n → R , f (Z) =

n∑
i=1

fi (Zi ) (1.2)

with strictly convex functions fi : R → R of class C2(R), i = 1, …, n, satisfying in addition
some suitable superlinear growth and ellipticity conditions.

Problem (1.1), (1.2) serves as a prototype for non-uniformly elliptic variational problems.
After Giaquinta’s counterexample [1] and the pioneering work of, e.g., Marcellini [2, 3],
Acerbi and Fusco [4], Fusco and Sbordone [5] and many others it is well understood that
the ratio of the highest and the lowest eigenvalue of D2 f is the crucial quantity for proving
the regularity of solutions. The reader will find an extensive overview including different
settings of non-uniformly elliptic variational problems in the recent paper [6]. Without going
into further details we refer to the series of references given in this paper.We just like to finish
this short considerations with the remark, that the unbounded counterexamples constructed
by Giaquinta et al. are complemented, e.g., by the work of Fusco and Sbordone [7].

In Section 1.3 of [6], the authors consider general growth conditions which, roughly
speaking, means that the energy density f is controlled in the sense of

g(|Z |)|ξ |2 ≤ D2 f (Z)(ξ, ξ) ,
∣∣D2 f (Z)

∣∣ ≤ G(|Z |) , (1.3)

with suitable functions g, G: R+
0 → R

+. Then, under appropriate assumptions on g, G, a
general approach to regularity theory is given in [6].

Our note is motivated by the observation, that in (1.2) there is no obvious reason to assume
some kind of symmetry for the functions fi , i.e. in general we have fi (t) �= fi (−t) and, as
one model case, we just consider (q±

i > 1, i = 1, . . . , n)

fi (t) ≈ |t |q−
i if t � −1 , fi (t) ≈ |t |q+

i if t 
 1 . (1.4)

Then, both for t � −1 and for t 
 1, the functions fi just behave like a uniform power of
|t |. Nevertheless, the power q−

i enters the left-hand side of (1.3) and q+
i is needed on the

right-hand side of (1.3).
Thismotivates to study themodel case (1.2) and to establish regularity results for solutions

under the weaker assumption

hi (t) ≤ f ′′
i (t) ≤ Hi (t) t ∈ R , (1.5)

with suitable functions hi , Hi : R → R
+, i = 1, . . . n.

There is another quite subtle difficulty in studying regularity of solutions to splitting-type
variational problems: in [8] the authors consider variational integrals of the form (1 ≤ k < n)

I [w,�] =
∫

�

[
f (∂1w, . . . , ∂kw) + g (∂k+1w, . . . , ∂nw)

]
dx, (1.6)

where f and g are of p and q-growth, respectively (p, q > 1). Then the regularity of bounded
solutions follows in the sense of [8], Theorem 1.1, without any further condition relating p
and q . The proof argues step by step and works since the energy density splits into two parts.
If, as supposed in (1.2), the energy density splits in more than two components, then one has
to be more careful dealing with the exponents and somemore restrictive (but still quite weak)
assumptions have to be made. In this sense Remark 1.3 of [8] might be a little bit misleading.
We note that a splitting structure into two components as supposed in (1.6) is also assumed,
e.g., in [9] and related papers.

123



Splitting-type variational problems with... 561

In the following we consider the variational integral (1.1), (1.2) defined on the energy
class

E f (�) :=
{
w ∈ W 1,1(�) :

∫
�

f (∇w) dx < ∞
}

.

We are interested in local minimizers u: � → R of class E f (�), i.e. it holds that
∫

�

f (∇u) dx ≤
∫

�

f (∇w) dx (1.7)

for all w ∈ E f (�) such that spt(u − w) � �.
Notation. We will always denote by q+

i > 1, q−
i > 1, 1 ≤ i ≤ n, real exponents and we

let for fixed 1 ≤ i ≤ n

q
i
:= min

{
q±

i

}
, qi := max

{
q±

i

}
. (1.8)

Moreover, we let

� : [0,∞) → R , �(t) = 1 + t2.

Recalling the idea sketched in (1.4), (1.5) we denote by hi and Hi , i = 1, …, n, functions
R → R

+ such that with positive constants ai , ai

ai�
q−
i −2
2 (|t |) if t < −1

ai�
q+
i −2
2 (|t |) if t > 1

⎫⎪⎪⎬
⎪⎪⎭

≤ hi (t) (1.9)

and

Hi (t) ≤

⎧⎪⎪⎨
⎪⎪⎩

ai�
q−
i −2
2 (|t |) if t < −1

ai�
q+
i −2
2 (|t |) if t > 1

. (1.10)

We consider functions fi : R → [0,∞) of class C2(R), i = 1, …, n, such that for all
t ∈ R

hi (t) ≤ f ′′
i (t) ≤ Hi (t) (1.11)

and note that (1.11) immediately implies for all i ∈ {1, . . . , n} with constants bi > 0

| f ′
i (t)| ≤ bi

⎧⎪⎨
⎪⎩

�
q−
i −1
2 (|t |) if t < −1

�
q+
i −1
2 (|t |) if t > 1

⎫⎪⎬
⎪⎭ . (1.12)

Moreover we obtain (maybe up to additive constants) for all i = 1, …, n with constants ci ,
ci > 0

ci

⎧⎪⎪⎨
⎪⎪⎩

�
q−
i
2 (|t |) if t < −1

�
q+
i
2 (|t |) if t > 1

⎫⎪⎪⎬
⎪⎪⎭

≤ fi (t) ≤ ci

⎧⎪⎪⎨
⎪⎪⎩

�
q−
i
2 (|t |); if t < −1

�
q+
i
2 (|t |) if t > 1

⎫⎪⎪⎬
⎪⎪⎭

. (1.13)

With this notation our main result reads as follows.
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562 M. Bildhauer, M. Fuchs

Theorem 1.1 Suppose that for i = 1, …, n the functions fi : R → [0,∞) are of class C2(R)

and satisfy (1.11) with hi , Hi given in (1.9), (1.10) for q±
i > 1.

With the notation (1.8) we assume in addition:

(i) in the case n = 2 and q2 > 2 we suppose that

q2 < 2q1 + 2. (1.14)

By (1.14) we may choose ρ1 > 1 such that

ρ1 < 2
q
1

q2 − 2

and we further suppose that

q1 < q
2
[2 + ρ1] + 2. (1.15)

In the case n = 2 and 1 ≤ q2 ≤ 2 we may take any ρ1 < ∞ which follows from (5.1)
with θ j = 0.

(ii) in the case n ≥ 3 suppose that we have for every fixed 1 ≤ i ≤ n

q j < 2q
i
+ 2 for all i < j ≤ n, (1.16)

q j < 3q
i
+ 2 for all 1 ≤ j < i . (1.17)

If u ∈ L∞(�) ∩ E f (�) denotes a local minimizer of (1.1), (1.2), i.e. of

J [w] =
∫

�

[
n∑

i=1

fi (∂iw)

]
dx,

then for every 1 ≤ i ≤ n, for some δ > 1/2 and for any ball B2r (x0) � �∫
Br (x0)

fi (∂i u)�δ(|∂i u|) dx ≤ c (1.18)

with a finite local constant c.

Remark 1.1 i) In the two dimensional case as discussed in [8] we have p = q2 ≤ q1 = q
and q j = q

j
= q j , j = 1, 2.

In this case (1.14) gives no restriction on the exponents sincewe have chosenw.l.o.g. p ≤
q .
In an analogous way it is possible to renumber the exponents in the general form (1.16),
(1.17) (or in the same spirit (2.5), (2.6) of Theorem 2.1 below) in order to have these
conditions after reordering.
For (1.15) we observe

p

[
2 + 2q

p − 2

]
+ 2 = 2pq

p − 2
+ 2(p + 1) > 2q,

hence (1.15) as well does not restrict the class of admissible exponents p and q .
Here and in the following we always suppose w.l.o.g. that we have (5.1) (see Section 2
for the precise notation) since otherwise no further hypotheses on the exponents have to
be made.

ii) Of course with an explicit choice of ρ1 and the parameter ρ2 (see (5.11)) the choice of
δ in (1.18) can be made precise. Moreover, given (1.18) one may iterate the arguments
in order to improve the integrability results. We leave the details to the reader.
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Splitting-type variational problems with... 563

iii) In the case n ≥ 3 we could choose parameters ρi, j �=i as outlined by the choice of ρ1
and ρ2 in the case n = 2. We prefer the much simpler formulation of (1.16) and (1.17).

Theorem 1.1 describes the typical situation we have in mind. The proof however is not
limited to this particular case which leads to the generalized version stated in Theorem 2.1
below.

Although the algebraic choice of parameters in the general form appears somehow
involved, we prefer the general formulation since it clearly indicates the idea of the proof.
We start with an Ansatz involving both fi (∂i u) and �(|∂i u|) where the asymmetric structure
enters by exploiting the structure of fi combined with the relation to its derivatives. This
Ansatz leads to the first general inequalities and we end up with some mixed terms which
have to be discussed in the last section. There we combine a careful pointwise analysis with
an iteration procedure which generalizes the arguments given in [8]. We note that even in the
symmetric case splitting into more than 2 groups the known results are generalized by our
Theorems.

In Sect. 3 we shortly sketch a regularization procedure via Hilbert-Haar solutions while
Sect. 4 presents the main inequalities for the iteration procedure of Sect. 5. This completes
the proof of Theorem 2.1 and hence Theorem 1.1.

2 Precise assumptions on f

The suitable larger class of admissible energy densities is given by the following assumption.

Assumption 2.1 The energy density f ,

f : R
n → R , f (Z) =

n∑
i=1

fi (Zi ) ,

introduced in (1.2) is supposed to satisfy the following hypotheses.

(i) The function fi :R → [0,∞), i = 1, …, n, is of class C2(R) and for all t ∈ Rwe have
f ′′
i (t) > 0.

For 1 ≤ i ≤ n we suppose superlinear growth in the sense of

lim
t→±∞

∣∣ f ′
i (t)

∣∣ = ∞
and at most of polynomial growth in the sense that for some s > 0 we have for |t |
sufficiently large

fi (t) ≤ c|t |s with a finite constant c .

(ii) For i ∈ {1, . . . , n} and for

0 ≤ θi <
1

2
(2.1)

we suppose that for all |t | sufficiently large

c1�
1−θi (|t |) f ′′

i (t) ≤ fi (t) ≤ c2 f ′′
i (t)�1+θi (|t |) , (2.2)∣∣ f ′

i (t)
∣∣2 ≤ c3 f ′′

i (t) fi (t)�
θi (|t |), (2.3)

where c1, c2 and c3 denote positive constants.
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564 M. Bildhauer, M. Fuchs

(iii) We let

�
q±
i
2 (t) =

⎧⎪⎪⎨
⎪⎪⎩

�
q−
i
2 (|t |) if t < 0

�
q+
i
2 (|t |) if t ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

.

and suppose that fi , i = 1, …,n, satisfies with q±
i > 1, with positive constants c4, c5

and for |t | sufficiently large

c4�
q±
i
2 (|t |) ≤ fi (t) ≤ c5�

q±
i
2 (|t |). (2.4)

Remark 2.1 1. If fi is a power growth function like, e.g., fi (t) = (1+ t2)pi /2, pi > 1 fixed,
then we have

c�(|t |) f ′′
i (t) ≤ fi (t) ≤ c�(|t |) f ′′

i (t) ,

i.e. (2.2) with θi = 0. Our asymmetric model case given by (1.9)–(1.13) as well is an
admissible choice satisfying (2.2).

2. By convexity it is well known (see, e.g., [10], exercise 1.5.9, p. 53) that if a convex
function is at most of growth rate s, then we have at most the growth rate s − 1 for its
derivative. Hence, (2.4) together with the right-hand side of (2.2) imply (2.3).

3. The condition (2.2) with θi < 1/2 formally corresponds with the condition q < p + 2 in
the standard (p, q)-case (see, e.g., [11], Chapter 5, and the references quoted therein).

Theorem 2.1 Suppose that we have Assumption 2.1 with q±
i > 1, i = 1, …, n. With the

above notation we assume in addition that we have for every fixed 1 ≤ i ≤ n

q j <
(
1 − θ j

) [
2

(
q

i
− 2θi

)
+ 2

]

for all i < j ≤ n , (2.5)

q j <
(
1 − θ j

) [
(2 + τ)

(
q

i
− 2θi

)
+ 2

]
, τ := 1 − 2θ j

1 − θ j
,

for all 1 ≤ j < i . (2.6)

If u ∈ L∞(�) ∩ E f (�) denotes a local minimizer of (1.1), (1.2), i.e. of

J [w] =
∫

�

[
n∑

i=1

fi (∂iw)

]
dx,

then for every 1 ≤ i ≤ n, for some δ > 1/2 and for any ball B2r (x0) � � we have
∫

Br (x0)
fi (∂i u)�δ−θi (|∂i u|) dx ≤ c (2.7)

with a finite local constant c.

Remark 2.2 In particular we note that (2.5), (2.6) reduce to (1.16), (1.17) if θi is equal to
zero.

123



Splitting-type variational problems with... 565

3 Some remarks on regularization

We have to start with a regularization procedure such that the expressions given below are
well defined.We follow Section 2 of [8] and fix a ball D � �. If u denotes the localminimizer
in the sense of (1.7) and if ε > 0 is sufficiently small, we consider the mollification (u)ε of
u w.r.t. the radius ε. We consider the Dirichlet-problem

∫
D

n∑
i=1

fi (∂iw) dx → min

among all Lipschitz mappings D → R with boundary data (u)ε . According to, e.g., [12],
there exists a unique (Hilbert-Haar) solution uε to this problem.

Exactly as outlined in [8], Lemma 2.1 and Lemma 2.2, we obtain:

Lemma 3.1 Let q := min1≤i≤n q
i

i) We have as ε → 0

uε⇁u in W 1,q(D) ,

∫
D

n∑
i=1

fi (∂i uε) dx →
∫

D

n∑
i=1

fi (∂i u) dx .

ii) There is a finite constant c > 0 not depending on ε such that

‖uε‖L∞(D) ≤ c .

iii) For any α < 1 we have uε ∈ C1,α(D) ∩ W 2,2
loc (D).

We then argue as follows: consider a local minimizer u of (1.1), (1.2) and the approxi-
mating sequence {uε} minimizing the functional

J [w, D] :=
∫

D

n∑
i=1

fi (∂iwi ) dx (3.1)

w.r.t. the data (u)ε . In particular we have a sequence of local J [w, D]-minimizers. We apply
the a priori results of the next section to uε and Theorem 1.1 follows from Lemma 3.1 passing
to the limit ε → 0.

4 General inequalities

The main result of this section is Proposition 4.2 which is not depending on the hypotheses
made in Assumption 2.1, i i i).

Wewill rely on the following variant ofCaccioppoli’s inequalitywhichwasfirst introduced
in [13]. We also refer to Section 6 of [14] on Caccioppoli-type inequalities involving powers
with negative exponents, in particular we refer to Proposition 6.1.

Lemma 4.1 Fix l ∈ N and suppose that η ∈ C∞
0 (D), 0 ≤ η ≤ 1. If we consider a local

minimizer u ∈ W 1,∞
loc (D) ∩ W 2,2

loc (D) of the variational functional

I [w] =
∫

D
g(∇w) dx
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566 M. Bildhauer, M. Fuchs

with energy density g: Rn → R of class C2 satisfying D2g(Z)(Y , Y ) > 0 for all Y , Z ∈ R
n,

then for any fixed i ∈ {1, . . . , n} we have
∫

D
D2g(∇u) (∇∂i u,∇∂i u) η2l�β(|∂i u|) dx

≤ c
∫

D
D2g(∇u)(∇η,∇η)η2l−2�1+β(|∂i u|) dx

for any β > −1/2.

To the end of our note we always consider a fixed ball

B = B2r (x0) � D .

With this notation we have the following auxiliary proposition.

Proposition 4.1 Suppose that we have i) of Assumption 2.1 and let η ∈ C∞
0 (B), 0 ≤ η ≤ 1,

η ≡ 1 on Br (x0), |∇η| ≤ c/r . Moreover, we assume that u ∈ L∞(D)∩W 1,∞
loc (D)∩W 2,2

loc (D).

Then we have for fixed γ ∈ R, for all k > 0 sufficiently large and for i = 1, …, n the
starting inequalities (no summation w.r.t. i )

∫
B

fi (∂i u)�1+γ (|∂i u|)η2k dx ≤ c

[
1 +

∫
B

|∂i∂i u|�γ (|∂i u|) fi (∂i u)η2k dx

+
∫

B
|∂i∂i u| | f ′

i |(∂i u) �
1
2+γ (|∂i u|)η2k dx

]
, (4.1)

where the constant may depend on ‖u‖L∞ and on r > 0.

Remark 4.1 (i) The idea of the proof of Proposition 4.1 is based on an integration by parts
using the boundedness of u. An Ansatz of this kind was already made by Choe [15],
where all relevant quantities are depending on |∇u|. Here the main new feature is to
work with the energy density f which is not depending on the modulus of ∇u.

(ii) We note that for the proof of Proposition 4.1 no minimizing property of u is needed.

Proof of Proposition 4.1 With i ∈ {1, . . . , n} fixed we obtain using an integration by parts
∫

B
fi (∂i u) �1+γ (|∂i u|)η2k dx

=
∫

B
|∂i u|2 fi (∂i u)�γ (|∂i u|)η2k dx +

∫
B

fi (∂i u)�γ (|∂i u|)η2k dx

= −
∫

B
u∂i

[
∂i u fi (∂i u)�γ (|∂i u|)η2k

]
dx +

∫
B

fi (∂i u)�γ (|∂i u|)η2k dx

≤ c
∫

B
|∂i∂i u|�γ (|∂i u|) fi (∂i u)η2k dx

+c
∫

B
|∂i∂i u| |∂i u| | f ′

i |(∂i u) �γ (|∂i u|)η2k dx

+c
∫

B
|∂i u| fi (∂i u)�γ (|∂i u|)η2k−1|∂iη| dx +

∫
B

fi (∂i u)�γ (|∂i u|)η2k dx

= I1,i + I2,i + I3,i + I4,i . (4.2)

123



Splitting-type variational problems with... 567

In (4.2) we discuss I3,i : for ε > 0 sufficiently small we estimate

I3,i ≤
∫

B
|∂i u| f

1
2

i (∂i u)�
γ
2 (|∂i u|)ηk f

1
2

i (∂i u)�
γ
2 (|∂i u|)ηk−1|∇η| dx

≤ ε

∫
B

|∂i u|2 fi (∂i u)�γ (|∂i u|)η2kdx

+c(ε, r)

∫
B

fi (∂i u)�γ (|∂i u|)η2k−2 dx . (4.3)

The first integral on the right-hand side of (4.3) is absorbed in the left-hand side of (4.2), i.e.∫
B

fi (∂i u)�1+γ (|∂i u|)η2k dx

≤ I1,i + I2,i + c(ε, r)

∫
B

fi (∂i u)�γ (|∂i u|)η2k−2 dx

+
∫

B
fi (∂i u)�γ (|∂i u|)η2k dx

≤ I1,i + I2,i + c(ε, r)

∫
B

fi (∂i u)�γ (|∂i u|)η2k−2 dx . (4.4)

Discussing the remaining integral we recall that the function fi (t)�1+γ (|t |) is at most of
polynomial growth, hence we may apply the auxiliary Lemma 4.2 below to the functions
ϕ(t) = fi (t)�γ (|t |) and ψ(t) := fi (t)�1+γ (|t |) with the result that for some ρ > 1 and for
all t ∈ R

fi (t)�
γ (|t |) ≤ c

[
fi (t)�

1+γ (|t |)] 1
ρ + c (4.5)

with a suitable finite constant c.
With (4.5) we estimate for ε̃ > 0 sufficiently small and for k > ρ∗ = ρ/(ρ − 1)

c(ε, r)

∫
B

fi (∂i u) �γ (|∂i u|)η2k−2 dx

≤ c(ε, r)

∫
B

[
fi (∂i u)�1+γ (|∂i u|)] 1

ρ η
2k
ρ η

2k
ρ∗ −2 dx + c

≤ ε̃

∫
B

fi (∂i u)�1+γ (|∂i u|)η2k dx + c(ε̃, ε, r)

∫
B

η2(k−ρ∗) dx + c .

(4.6)

The inequalities (4.4) and (4.6) complete the proof of the proposition by absorbing the first
integral on the right-hand side of (4.6) in the left-hand side of (4.4). ��

It remains to give an elementary proof of the following auxiliary Lemma.

Lemma 4.2 For m ∈ N we consider functions ϕ, ψ: R
m → [0,∞) such that ψ(X) ≤

c�τ (|X |) for some τ > 0 and for all X ∈ R
m. Suppose that we have for some ε > 0 and for

all X ∈ R
n

ϕ(X) ≤ c�−ε(|X |)ψ(X) .

Then there exists a real number ρ > 1 and a constant C > 0 such that

ϕ(X) ≤ [
ψ(X)

] 1
ρ + C .
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568 M. Bildhauer, M. Fuchs

Proof Let δ := ε/τ , w.l.o.g. δ < 1, i.e. for all X ∈ R
m

1 + ψδ(X) ≤ 1 + c�ε(|X |) ≤ (1 + c)�ε(|X |) ,

hence we have by assumption

ϕ(X) ≤ c
[
1 + ψδ(X)

]−1
ψ(X)

≤
⎧⎨
⎩

c if ψδ(X) ≤ 1

cψ1−δ(X) if ψδ(X) > 1

⎫⎬
⎭ .

The lemma follows with the choice ρ = 1/(1 − δ). ��

With the help of Proposition 4.1 we now establish the main inequality of this section.

Proposition 4.2 Suppose that we have Assumption 2.1 and let η ∈ C∞
0 (B), 0 ≤ η ≤ 1, η ≡ 1

on Br (x0), |∇η| ≤ c/r . Moreover, we assume that u ∈ L∞(D) ∩ W 1,∞
loc (D) ∩ W 2,2

loc (D) is a
local minimizer of (3.1).

For i ∈ {1, . . . , n} we choose σi satisfying (recall 0 < θi < 1/2)

θi < σi < 1/2 .

Moreover, again for i = 1, …, n we choose arbitrary real numbers γi > −1, βi > −1/2
subject to the condition

γi + σi =: βi > −1

2
. (4.7)

Then we have for any sufficiently large real number k > 0
∫

B
fi (∂i u) �1+γi (|∂i u|)η2k dx

≤ c

[
1 +

∑
j �=i

∫
B

f ′′
j (∂ j u)�1+βi (|∂i u|)η2k−2 dx

]
. (4.8)

Proof We recall the starting inequality (4.1),
∫

B
fi (∂i u)�1+γi (|∂i u|)η2k dx ≤ c

[
1 + I1,i + I2,i

]
, (4.9)

where we fix i ∈ {1, . . . , n}. We estimate for fixed βi as above

I1,i =
∫

B
|∂i∂i u|[ f ′′

i (∂i u)
] 1
2 �

βi
2 (|∂i u|)[ f ′′

i (∂i u)
]− 1

2 �− βi
2 (|∂i u|)

·�γi (|∂i u|) fi (∂i u)η2k dx

≤ c
∫

B
f ′′
i (∂i u)|∂i∂i u|2�βi (|∂i u|)η2k dx

+c
∫

B

[
f ′′
i (∂i u)

]−1
�γi −σi (|∂i u|) f 2i (∂i u)η2k dx . (4.10)
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The second integral on the right-hand side of (4.10) is handled with the help of the right-
hand side of (2.2) using in addition Lemma 4.2 (recalling σi > θi )

∫
B

[
f ′′
i (∂i u)

]−1
�γi −σi (|∂i u|) f 2i (∂i u)η2k dx

≤
∫

B

[
fi (∂i u)�1+γi −(σi −θi )(|∂i u|)

]
η2k dx

≤
∫

B

[
fi (∂i u)�1+γi (|∂i u|)

] 1
ρ
η

2k
ρ η

2k
ρ∗ dx + c

≤ ε

∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx + c(ε, r) . (4.11)

Absorbing terms it is shown up to now (using (4.9)– (4.11))
∫

B
fi (∂i u) �1+γi (|∂i u|)η2k dx

≤ c

[
1 +

∫
B

f ′′
i (∂i u)|∂i∂i u|2�βi (|∂i u|)η2k dx + I2,i

]
. (4.12)

Let us consider I2,i , i ∈ {1, . . . , n}. With βi > −1/2 as above we have

I2,i =
∫

B
|∂i∂i u|[ f ′′

i (∂i u)
] 1
2 �

βi
2 (|∂i u)

[
f ′′
i (∂i u)

]− 1
2 �− βi

2 (|∂i u|)

·� 1
2+γi (|∂i u|)| f ′

i |(∂i u)η2k dx

≤ c
∫

B
f ′′
i (∂i u)|∂i∂i u|2�βi (|∂i u|)η2k dx

+c
∫

B

[
f ′′
i (∂i u)

]−1
�1+γi −σi (|∂i u|)| f ′

i |2(∂i u)η2k dx . (4.13)

The first integral on the right-hand side of (4.13) already occurs in (4.12) and the second one
is handled with (2.3) and Lemma 4.2 (recalling σi > θi )

∫
B

[
f ′′
i (∂i u)

]−1
�1+γi −σi (|∂i u|)| f ′

i |2(∂i u)η2k dx

≤
∫

B
fi (∂i u)�1+γi −(σi −θi )(|∂i u|)η2k dx

≤
∫

B

[
fi (∂i u)�1+γi (|∂i u|)

] 1
ρ
η

2k
ρ η

2k
ρ∗ dx + c

≤ ε

∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx + c(ε, r) (4.14)

and once more the integral on the right-hand side is absorbed.
To sum up, (4.12) implies with the help of (4.13) and (4.14) for i = 1, …, n

∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx

≤ c

[
1 +

∫
B

f ′′
i (∂i u)|∂i∂i u|2�βi (|∂i u|)η2k dx

]
. (4.15)
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Discussing the right-hand side of (4.15) we apply Lemma 4.1, where we let f (Z) =∑n
j=1 f j (Z j ) and fix i ∈ {1, . . . , n}:

∫
B

f ′′
i (∂i u)|∂i∂i u|2�βi (|∂i u|)η2k dx

≤ c
∫

B
D2 f (∇u)

(
∂i∇u, ∂i∇u

)
�βi (|∂i u|)η2k dx

≤ c
∫

B
D2 f (∇u)

(∇η,∇η)�1+βi (|∂i u|)η2k−2 dx

≤ c(r)

n∑
j=1

∫
B

f ′′
j (∂ j u)�1+βi (|∂i u|)η2k−2 dx . (4.16)

For j = i on the right-hand side of (4.16) we now apply the left-hand side of (2.2) and again
Lemma 4.2 with the result (recall θi , σi < 1/2)

∫
B

f ′′
i (∂i u)�1+βi (|∂i u|)η2k−2 dx

≤
∫

B
fi (∂i u)�γi +θi +σi (|∂i u|)η2k−2 dx

≤
∫

B

[
fi (∂i u)�1+γi (|∂i u|))

] 1
ρ
η

2k
ρ η

2k
ρ∗ −2 dx + c

≤ ε

∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx + c(ε, r) . (4.17)

Note that the integral on the right-hand side of (4.17) can be absorbed in the left-hand side
of (4.15). This proves Proposition 4.2. ��

5 Iteration

Step 1 - preliminaries. We start with an elementary proposition recalling and relating the
relevant parameters of the problem.

Proposition 5.1 With q±
i , q

i
, qi , θi , −1/2 < βi = γi + σi , i = 1, …, n, as above we further

let

ω±
i := q±

i

2
+ γi , i ∈ {1, . . . , n} .

W.l.o.g. (since otherwise the claim (5.3) trivially holds on account of σ j < 1/2) we assume
that we have for j ∈ {1, . . . , n}

q j > 2(1 − θ j ) . (5.1)

We fix τ ≥ 0, i , j ∈ {1, . . . , n} and suppose in addition to (4.7) that γi (and βi ) are given
such that

1 + γi <
q

i

(
1 − θ j

)
2

2 + τ

q j − 2
(
1 − θ j

) − σi
(
1 − θ j

) τ + q j

(1−θ j)

q j − 2
(
1 − θ j

) (5.2)
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This yields (for any combination of q±
j and q±

i , recall σi < 1/2, hence ω±
i − βi > 0)

q±
j

1 + βi

ω±
i − βi

< 2
(
1 − θ j

) 1 + q±
i
2 + γi

ω±
i − βi

+ τ
(
1 − θ j

)
. (5.3)

Proof We note that

1 + γi <
q

i

(
1 − θ j

)
2

2 + τ

q j − 2
(
1 − θ j

) − σi
(
1 − θ j

) τ + q j/
(
1 − θ j

)
q j − 2

(
1 − θ j

) ,

is equivalent to

(1 + γi )
[
q j − 2

(
1 − θ j

) ]
< q

i

(
1 − θ j

) + τ

[
q

i

(
1 − θ j

)
2

− σi
(
1 − θ j

)] − σi q j .

Writing this in the form

q j (1 + βi ) < 2
(
1 − θ j

) [
1 + γi + q

i

2

]
+ τ

(
1 − θ j

) [q
i

2
− σi

]

and recalling that we have by definition ω±
i − βi = (q±

i /2) − σi we obtain as an equivalent
inequality

q j
1 + βi

ω±
i − βi

< 2
(
1 − θ j

) 1 + q
i
2 + γi

ω±
i − βi

+ τ
(
1 − θ j

) q
i
− 2σi

q±
i − 2σi

.��

Up to now no relation between q+
i and q−

i was needed due to our particular Ansatz
depending on t instead of |t |.

Step 2 - main inequality. To complete the proofs of Theorem 1.1 and Theorem 2.1 it
remains to handle the mixed terms on the right-hand side of (4.8). Here, of course, it is
no longer possible to argue with the structure conditions for fixed i , i.e. to argue with q±

i
separated from each other in disjoint regions.

Throughout the rest of this section we suppose that the assumptions of Theorem 2.1 are
satisfied.

Consider a set U ⊂ � and a C1-function v: � → R. We let for any i ∈ {1, . . . , n}
U ∩ [∂iv ≥ 0] =: U+

i [v] =: U+
i , U ∩ [∂iv < 0] =: U−

i [v] =: U−
i ,

in particular U can be written as the disjoint union

U = U+
i ∪ U−

i

for every 1 ≤ i ≤ n.
Using this notation, recalling Proposition 4.2 and the left-hand side of (2.2) we have for

every 1 ≤ i ≤ n∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx

≤ c

[
1 +

∑
j �=i

∫
B

f ′′
j (∂ j u)�1+βi (|∂i u|)η2k−2 dx

]

≤ c

[
1 +

∑
j �=i

∫
B

f j (∂ j u)�θ j −1(|∂ j u|)�1+βi (|∂i u|)η2k−2 dx

]
. (5.4)
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Fix i ∈ {1, . . . , n} and let

κ±
i = 1 + ω±

i

1 + βi
, κ̂±

i = 1 + ω±
i

ω±
i − βi

.

For the choice of exponents we observe

1 + ω±
i > 1 + βi ⇔ q±

i

2
> σi

which follows from σi < 1/2.
We obtain for fixed 1 ≤ i ≤ n and for ε > 0 sufficiently small (note that the ball B is

divided into two parts w.r.t. the function ∂i u)

∑
j �=i

∫
B

f j (∂ j u)�θ j −1(|∂ j u|)�1+βi (|∂i u|)η2k−2 dx

≤ c
∑
j �=i

∑
±

∫
B±

i

(
1 + f j (∂ j u)

)
�θ j −1(|∂ j u|)�1+βi (|∂i u|)η2k−2 dx

≤
∑
j �=i

∑
±

[
ε

∫
B±

i

�(|∂i u|)1+ω±
i η2k dx

+c(ε)
∫

B±
i

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) dx

]
. (5.5)

By (2.4) we have on B±
i for |∂i u| sufficiently large �(|∂i u|)q±

i /2 ≤ c fi (∂i u), hence by the
definition of ω±

i

ε
∑
j �=i

∑
±

∫
B±

i

�(|∂i u|)1+ω±
i η2k dx ≤ c(n − 1)ε

∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx + c

(5.6)

and, as usual, the integral on the right-hand side can be absorbed in (5.4).
We will finally show with the help of an iteration procedure that for every 1 ≤ i ≤ n

∑
j �=i

∑
±

∫
B±

i

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) dx ≤ c , (5.7)

which completes the proof of Theorem 2.1 since we have by (5.4), (5.5) and (5.6) for every
1 ≤ i ≤ n

∫
B

fi (∂i u)�1+γi (|∂i u|)η2k dx

≤ c

[
1 +

∑
j �=i

∑
±

∫
B±

i

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) dx

]
. (5.8)

In order to establish (5.7) let us suppose that (5.2) is true with a real number τ ≥ 0.
Then we may apply Proposition 5.1 and (5.3) implies in the case q j > 2

(
1 − θ j

)
(recall
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f j ≈ c�q±
j /2)

�
−(1−θ j )

1+ω
±
i

ω
±
i −βi

−(1−θ j )
τ
2
(|∂ j u|) ≤ c

(
1 + f j (∂ j u)

)− 1+βi
ω

±
i −βi

= c
(
1 + f j (∂ j u)

)1− 1+ω
±
i

ω
±
i −βi .

Thus we obtain

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) ≤ c

(
1 + f j (∂ j u)

)
�(1−θ j )

τ
2 (|∂ j u|) . (5.9)

We note that (5.9) is formulated uniformly w.r.t. the index j and the symbol ± is just
related to ∂i u.

In the case q j ≤ 2
(
1 − θ j

)
we have

(1 + f j (∂ j u)) ≤ c�1−θ j (|∂ j u|) ,

hence

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) ≤ c

and (5.9) holds for any τ ≥ 0.
Inequality (5.9) is the main tool for the iteration procedure leading to the claim (5.7).
The strategy is the following: we start with i = 1 and use (5.2) with an appropriate real

number γ1 which gives (5.9) for i = 1 and 2 ≤ j ≤ n. In this first step τ = 0 is chosen such
that we have a priori integrability on the right-hand side.

For i = 2 and 3 ≤ j ≤ n the same is done in the next step. We note that for j = 1 we may
benefit from the integrability obtained before with i = 1, i.e. we may choose an appropriate
τ > 0 in (5.2).

The iteration is done with the case i = n.
Step 3 - proof of Theorem 1.1, (i). Let us start with the easiest case i) of Theorem 1.1,

i.e. n = 2, θi = 0, i = 1, 2.
On account of θ1 = 0 we may choose σ1 arbitrarily small and (5.2) for q2 > 2 and τ = 0

becomes with ρ1 > 1

1 + γ1 =: 1
2
ρ1 <

q
1

q2 − 2
. (5.10)

We note that (5.10) is satisfied with some ρ1 > 1 if we have

q2 < 2q
1
+ 2 ,

which corresponds to our assumption (1.14).
This implies by (5.8) and (5.9)∫

B
f1(∂1u)�

ρ1
2 (|∂1u|)η2k dx ≤ c .

As a consequence, in the second step we consider (5.2) with

τ < ρ1 < 2
q
1

q2 − 2
.
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This leads to the condition (ρ2 > 1)

1

2
< 1 + γ2 =: 1

2
ρ2 <

q
2

2

2 + ρ1

q1 − 2
. (5.11)

This condition is satisfied for an appropriate ρ2 if we suppose that

q1 < q
2
[2 + ρ1] + 2

with ρ1 satisfying (5.10). This proves Theorem 1.1 i).
Step 4 - iteration and proofs of the theorems.
We first note that we have (5.2) with

γi + σi = βi

for βi sufficiently close to −1/2 if

q j < (2 + τ)q
i
(1 − θ j ) + 2(1 − θ j )(1 − (2 + τ)σi ) .

and for σi > θi sufficiently close to θi we are led to

q j < (2 + τ)q
i
(1 − θ j ) + 2(1 − θ j )(1 − (2 + τ)θi ) . (5.12)

i = 1.
Again with βi sufficiently close to−1/2 (here for i = 1) and choosing σi > θi sufficiently

close to θi (i = 1), (5.2) is valid with the choice τ = 0 if we have (recall (5.12))

q j < (1 − θ j )
[
2

(
q

i
− 2θi

)
+ 2

]
for all 2 ≤ j ≤ n , (5.13)

i.e. in the particular case i = 1 under consideration

q j <
(
1 − θ j

) [
2

(
q
1
− 2θ1

)
+ 2

]
for all 2 ≤ j ≤ n ,

and this is just assumption (2.5) for i = 1.
From (5.2) we deduce (5.9) for i = 1, τ = 0, and (5.7) follows from (5.9) for i = 1 and

for all 2 ≤ j ≤ n with the choice τ = 0

∑
j �=1

∑
±

∫
Bi

±

(
1 + f j (∂ j u)

) 1+ω
±
1

ω
±
1 −β1 �

(θ j −1)
1+ω

±
1

ω
±
1 −β1 (|∂ j u|) dx

≤ c
∫

B

(
1 + f j (∂ j u)

)
dx ≤ c , (5.14)

Returning to (5.8) we insert (5.14) which yields (w.l.o.g. 1+ γ1 = 1+ β1 − σ1 > δ − θ1
for some δ > 1/2)

∫
B

f1(∂1u)�δ−θ1(|∂1u|)η2k dx ≤ c (5.15)

for some δ > 1/2
1 < i ≤ n.

Suppose that we have (5.13) (again compare (2.5)) in the sense

q j < (1 − θ j )
[
2

(
q

i
− 2θi

)
+ 2

]
for i + 1 ≤ j ≤ n . (5.16)
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With the same argument leading to (5.14) we have for all i + 1 ≤ j ≤ n

∑
j>i

∑
±

∫
B±

i

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) dx ≤ c. (5.17)

Moreover, we suppose that by iteration we have (5.15) for 1 ≤ j < i , i.e. by decreasing
radii in this finite iteration, if necessary, we have w.l.o.g.

∫
B

f j (∂ j u)�δ−θ j (|∂ j u|) dx ≤ c, 1 ≤ j < i, (5.18)

for some δ > 1/2.
Then we return to (5.2) with the choice τ = (1− 2θ j )/(1− θ j ). For βi sufficiently close

to −1/2 and σi sufficiently close to θi we are lead to the condition (recall (5.12))

q j <
(
1 − θ j

) [
(2 + τ)

(
q

i
− 2θi

)
+ 2

]
, τ = 1 − 2θ j

1 − θ j
, (5.19)

1 ≤ j < i , and (5.19) is just the assumption (2.6).

With (5.2) we again have (5.9), now with τ = (1 − 2θ j )/(1 − θ j ), hence

∑
j<i

∑
±

∫
B±

i

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) dx

≤ c
∑
j<i

∫
B

(
1 + f j (∂ j u)

)
�δ−θ j (|∂ j u|) dx ≤ c , (5.20)

where the last estimate follows from (5.18) for some δ > 1/2.
With (5.17) and (5.20) one has

∑
j �=i

∑
±

∫
B±

i

(
1 + f j (∂ j u)

) 1+ω
±
i

ω
±
i −βi �

(θ j −1)
1+ω

±
i

ω
±
i −βi (|∂ j u|) dx ≤ c , (5.21)

which exactly as in the case i = 1 shows for some sufficiently small δ > 1/2
∫

B
fi (∂i u)�δ−θi (|∂i u|)η2k dx ≤ c , (5.22)

hence with (5.22) we proceed one step in the iteration of (5.19). This completes the proof of
Theorem 2.1. ��

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability No additional data are involved.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

123



576 M. Bildhauer, M. Fuchs

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Giaquinta, M.: Growth conditions and regularity, a counterexample. Manuscripta Math. 59(2), 245–248
(1987)

2. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth
conditions. Arch. Ration. Mech. Anal. 3, 267–284 (1989)

3. Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(11), 1–5 (1996)

4. Acerbi, E., Fusco, N.: Partial regularity under anisotropic (p, q) growth conditions. J. Differ. Equ. 107(1),
46–67 (1994)

5. Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Comm.
Partial Differ. Equ. 18(1–2), 153–167 (1993)

6. Beck, L., Mingione, G.: Lipschitz bounds and nonuniform ellipticity. Comm. Pure Appl. Math. LXXIII,
944–1034 (2020)

7. Fusco, N., Sbordone, C.: Local boundedness of minimizers in a limit case. Manus. Math. 69(1), 19–25
(1990)

8. Bildhauer, M., Fuchs, M., Zhong, X.: A regularity theory for scalar local minimizers of splitting-type
variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(3), 385–404 (2007)

9. Breit, D.: A note on splitting-type variational problems with subquadratic growth. Arch. Math. (Basel)
94(5), 467–476 (2010)

10. Dacorogna, B.: Introduction to the Calculus of Variations, 3rd edn. Imperial College Press, London (2015)
11. Bildhauer, M. Convex., variational problems. Linear, nearly linear and anisotropic growth conditions,

volume 1818 of Lecture Notes in Mathematics, p. 2003. Springer, Berlin (1818)
12. Massari, U., Miranda, M.: Minimal surfaces of codimension one. North-Holland Mathematics Studies,

vol. 91. North-Holland Publishing Co., Amsterdam (1984)
13. Bildhauer, M., Fuchs, M.: Splitting type variational problems with linear growth conditions. J. Math. Sci.

(N.Y.) 250(2), 45–58 (2020). (Problems in mathematical analysis. No. 105)
14. Bildhauer, M., Fuchs, M.: On the global regularity for minimizers of variational integrals: splitting-type

problems in 2D and extensions to the general anisotropic setting. J. Elliptic Parabol. Equ. 8(2), 853–884
(2022)

15. Choe, H.J.: Interior behaviour of minimizers for certain functionals with nonstandard growth. Nonlinear
Anal. 19(10), 933–945 (1992)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Splitting-type variational problems with asymmetrical growth conditions
	Abstract
	1 Introduction
	2 Precise assumptions on f
	3 Some remarks on regularization
	4 General inequalities
	5 Iteration
	References




