Please use this identifier to cite or link to this item: doi:10.22028/D291-42756
Title: Generalised Diffusion Probabilistic Scale-Spaces
Author(s): Peter, Pascal
Language: English
Title: Journal of Mathematical Imaging and Vision
Volume: 66
Issue: 4
Pages: 639-656
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Diffusion probabilistic models
Scale-spaces
Drift-diffusion
Osmosis
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Diffusion probabilistic models excel at sampling new images from learned distributions. Originally motivated by driftdiffusion concepts from physics, they apply image perturbations such as noise and blur in a forward process that results in a tractable probability distribution. A corresponding learned reverse process generates images and can be conditioned on side information, which leads to a wide variety of practical applications. Most of the research focus currently lies on practice-oriented extensions. In contrast, the theoretical background remains largely unexplored, in particular the relations to drift-diffusion. In order to shed light on these connections to classical image filtering, we propose a generalised scale-space theory for diffusion probabilistic models. Moreover, we show conceptual and empirical connections to diffusion and osmosis filters.
DOI of the first publication: 10.1007/s10851-024-01202-0
URL of the first publication: https://link.springer.com/article/10.1007/s10851-024-01202-0
Link to this record: urn:nbn:de:bsz:291--ds-427563
hdl:20.500.11880/38347
http://dx.doi.org/10.22028/D291-42756
ISSN: 1573-7683
0924-9907
Date of registration: 4-Sep-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s10851-024-01202-0.pdf1,66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons