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Abstract
Diffusion probabilistic models excel at sampling new images from learned distributions. Originally motivated by drift-
diffusion concepts from physics, they apply image perturbations such as noise and blur in a forward process that results
in a tractable probability distribution. A corresponding learned reverse process generates images and can be conditioned
on side information, which leads to a wide variety of practical applications. Most of the research focus currently lies on
practice-oriented extensions. In contrast, the theoretical background remains largely unexplored, in particular the relations to
drift-diffusion. In order to shed light on these connections to classical image filtering, we propose a generalised scale-space
theory for diffusion probabilistic models. Moreover, we show conceptual and empirical connections to diffusion and osmosis
filters.
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1 Introduction

Diffusion probabilistic models [1] have recently risen to
the state-of-the-art in image generation, surpassing gener-
ative adversarial networks [2] in popularity. In addition to
significant research activity, the availability of pre-trained
latent diffusion networks [3] has also brought diffusion mod-
els to widespread public attention [4]. Practical applications
are numerous, including the generation of convincing, high-
fidelity images from text prompts or partial image data.

Initial diffusion probabilistic models [1, 5–10] relied on a
forward drift-diffusion process that gradually perturbs input
images with noise and can be reversed by deep learning.
Recently, it has been shown that the concrete mechanism that
gradually destroys information in the forward process has a
significant impact on the image generation by the reverse
process. Alternative proposed image degradations include
blur [11], combinations of noise and blur [12–14], or image
masking [12].

So far, diffusion probabilistic research was mostly of
practical nature. Some theoretical contributions established
connections to other fields such as score-matching [7–10],
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variational autoencoders [6], or normalising flows [15]. Dif-
fusion probabilistic models have been initially motivated [1]
bydrift-diffusion, awell-knownprocess in physics.However,
its connections to other physics-inspired methods remain
mostly unexplored. Closely related concepts have a long
tradition in model-based visual computing, such as osmosis
filtering proposed by Weickert et al. [16]. In addition, there
is a wide variety of diffusion-based scale-spaces [17–20].
Conceptually, these scale-spaces embed given images into
a family of simplified versions. This resembles the gradual
removal of image features in the forward process of diffusion
probabilistic models.

Despite this multitude of connections, there is a distinct
lack of systematic analysis of diffusion probabilistic models
from a scale-space perspective. This is particularly surprising
due to the impact of the forward process on the generative
performance [13, 14]. It indicates that a deeper understand-
ing of the information reduction could also lead to further
practical improvements in the future.

1.1 Our Contribution

With our previous conference publication [21], we made
first steps to bridge this gap between the scale-space and
deep learning communities. To this end, we introduced first
generalised scale-space concepts for diffusion probabilis-
tic models. In this work, we further explore the theoretical
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background of this successful paradigm in deep learning. In
contrast to traditional scale-spaces, we consider the evolu-
tion of probability distributions instead of images. Despite
this departure from conventional families of images, we can
show scale-space properties in the sense of Alvarez et al.
[17]. These include architectural properties, invariances, and
entropy-based measures of simplification.

In addition to our previous findings [21], our novel con-
tributions include

• A generalisation of our scale-space theory for diffu-
sion probabilistic models (DPMs) which includes both
variance-preserving and variance-exploding approaches,

• Generalised scale-space properties for the reverse pro-
cess of DPM,

• A scale-space theory for inverse heat dissipation [13] and
blurring diffusion [14],

• And a significantly extended theoretical and empirical
comparison of three diffusion probabilistic models to
homogeneous diffusion [18] and osmosis filtering [16].

2 RelatedWork

Besides diffusion probabilistic models themselves, two addi-
tional research areas are relevant for our own work. Since
we adopt a scale-space perspective, classical scale-space
research acts as the foundation for our generalised the-
ory. Furthermore, we discuss connections to osmosis filters,
which have a tradition in model-based visual computing.

2.1 Diffusion Probabilistic Models

Large parts of our scale-space theory are based on the work
of Sohl-Dickstein et al. [1], which pioneered diffusion prob-
abilistic models (DPMs). The latent diffusion model by
Rombach et al. [3] was integral for the gain of popularity
of this approach. The public availability of code and trained
models sparked many practical applications and caused a
shift [4] away from generative adversarial networks [2].
Applications range from image generation [1, 3–5] over
image inpainting [22, 23], super-resolution [24], segmenta-
tion [25], and deblurring [26] to the generation of different
types of media, including video [24] and audio [27].

Following the same principles as early DPMs, most
approaches rely on adding noise in the forward process.
Since coarse-to-fine strategies were shown to improve DPMs
[24, 28], they inspired Lee et al. [29] to use blurring with
Gaussian convolution instead. Rissanen et al. [13] leveraged
the equivalence of Gaussian blur to homogeneous diffusion
[18] to establish inverse heat dissipation models. They only
add small amounts of observation noise, while the model of
Hoogeboom and Salimans [14] generalises this process and

allows more substantial contributions of noise. Due to the
close relations to both classical diffusion and osmosis filter-
ing, we address both of these models in detail in Sect. 5.3.
Image masking was recently also proposed as an alternative
degradation in the forward process by Daras et al. [12].

Wealso rely on amore general versionof the originalDPM
model that was proposed by Kingma et al. [6]. In addition,
they introduced the notion of variational diffusion models
and showed connections to variational autoencoders. Inter-
estingly, early results ofVincent [30] established connections
between denoising autoencoders and score-matching. Later
publications showed more direct relations of score-based
approaches to DPM [5]. Song and Ermon [7] related dif-
fusion models to score-based Langevin dynamics with later
follow-up results [8–10] that also include continuous time
processes.

Theoretical contributions that are related to our own work
are rare. Recently, Hagemann et al. [15] connected diffu-
sion probabilistic models to a multitude of different concepts
under the common framework of normalising flows. This
includes relations to osmosis filtering, but not from a scale-
space perspective. Franzese et al. [31] have investigated
functional diffusion processes as a time-continuous gener-
alisation of classical DPMs. They also allow both noise and
blur as image degradations. In contrast, our models are time-
and space-discrete.

2.2 Scale-Spaces

The second major field of research that forms the foundation
of our contribution is scale-space theory. Scale-spaces have a
long tradition in visual computing. Most of them rely on par-
tial differential [17–20, 32] or pseudo-differential equations
[33, 34], but they have also been considered for wavelets
[35], sparse inpainting-based image representations [36], or
hierarchical quantisation operators [37]. Such classical scale-
spaces describe the evolution of an input image over multiple
scales, which gradually simplifies the image. Since they obey
a hierarchical structure and provide guarantees for simplifi-
cation, they allow to analyse image features that are specific
to individual scales. This makes them useful for tasks such
as corner detection [38], modern invariant feature descriptors
[39, 40], or motion estimation [41–43].

General principles for classical scale-spaces are vital
for our contributions. They form the foundation for our
generalised scale-space theory for DPM. We establish archi-
tectural, invariance, and information reduction properties in
the sense of Alvarez et al. [17] for this new setting. In Sect. 5,
we also mention where we drew inspiration from this contri-
bution and other sources [18, 20] in more detail.

There are many different classes of scale-spaces, origi-
nating from the early work by Iijima [18], which was later
popularised byWitkin [44]. They proposed a scale-space that
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can be interpreted as evolutions according to homogeneous
diffusion. These initialGaussian scale-spaces [17, 18, 44–47]
have been generalised with pseudodifferential operators [33,
34, 48, 49] or nonlinear diffusion equations [19, 20]. More-
over, a comprehensive theory for shape analysis exists in
the form ofmorphological scale-spaces [17, 50–54].Wavelet
shrinkage as a form of blurring [35] and sparse image repre-
sentations [36, 37] have been considered from a scale-space
perspective as well. Among this wide variety of different
options, for us, the original Gaussian scale-space is still the
most relevant. It is closely related to the blurring diffusion
processes we consider in Sect. 5.3.

Our novel class of stochastic scale-spaces considers fam-
ilies of probability distributions instead of sequences of
images. Conceptually similar approaches are rare. The Ph.D.
thesis ofMajer [55] proposes a stochastic concept,which also
considers drift-diffusion. However, it is not related to deep
learning and simplifies images in a different way. Instead
of adding noise or blur, it shuffles image pixels. Similarly,
Koenderink and Van Doorn [56] proposed “locally orderless
images”, a local pixel shuffling as an alternative to blur. Other
probabilistic scale-space concepts are only broadly related.
There have been theoretical considerations of connections
between diffusion filters and the statistics of natural images
[57] and practical applications in stem cell differentiation
[58].

In parallel to our conference publication [21], Zach et
al. [59] have used homogeneous diffusion scale-spaces on
probability densities. However, they learn image priors via
denoising score matching with practical applications to
image denoising. We on the other hand focus on the scale-
space theory of generative diffusion probabilistic models.

2.3 Osmosis Filtering

In visual computing, osmosis filtering is a successful class
of filters that has been introduced by Weickert et al. [16] and
generalises diffusion filtering [20]. Even though it creates
deterministic image evolutions, it is connected to statistical
physics. Namely, it is closely related to the Fokker-Planck
equation [60] and by extension also to Langevin formulations
and theBeltrami flow [61]. This suggests that there could also
be connections to diffusion probabilistic models.

Since such connections to drift-diffusion also apply to
diffusion probabilistic models, we investigate connections
between these approaches in Sect. 6.1. There, we also discuss
the continuous theory for osmosis filters as it was origi-
nally proposed by Weickert et al. [16] and later extended
by Schmidt [62]. Vogel et al. [63] introduced both the corre-
sponding discrete theory and a fast implicit solver which we
use for our experiments.

Osmosis filters are well suited to integrate conflicting
information from multiple images, which makes them an

excellent tool for image editing [16, 63, 64]. Additionally,
they have been successfully used for shadow removal [16, 64,
65], the fusion of spectral images [66, 67], and image blend-
ing [68]. There are also applications for osmosis that do not
deal with images. Notably, Hagenburg et al. [69] used osmo-
sis to enhance numerical methods and considered a Markov
chain formulation. While we deal with Markov processes in
this paper, our interpretation of osmosis and the context in
which we use it is significantly different.

There are also conceptually similar methods in visual
computing that are also connected to drift–diffusion and
predate osmosis. Namely, Hagenburg et al. [70] proposed a
lattice Boltzmann model for dithering. Other broadly related
filters are the directed diffusion models of Illner and Neun-
zert [71] and the covariant derivative approach of Georgiev
[72].

3 Organisation of the Paper

We introduce the basic ideas of diffusion probabilisticmodels
in Sect. 4, includingMarkov formulations for the forward and
reverse processes. Based on these foundations, we propose
generalised scale-space properties for three classes of prob-
abilistic forward diffusion processes in Sect. 5 and briefly
address reverse processes as well. As a link to classical
scale-spaces and deterministic image filters, we investigate
relations of diffusion probabilistic models to homogeneous
diffusion and osmosis filtering in Sect. 6. We conclude with
a discussion and an outlook in Sect. 7.

4 Diffusion Probabilistic Models

Diffusion probabilistic models [1] are generative approaches
which have the goal to create new samples from a desired
distribution. This distribution is unknown except for a set
of given representatives. For image processing purposes,
this training data typically consists of a set of images
f 1, ..., f nt ∈ R

nxnync with nc colour channels of size nx×ny
and n = nxnync pixels. From a stochastic point of view,
these images are realisations of a random variable F with an
unknown probability density function p(F). DPMs aim to
sample from this target distribution.

4.1 The Forward Process

In a first step, the so-called forward process, diffusion prob-
abilistic models map from the target distribution to a simpler
distribution. While there are many alternatives, the stan-
dard normal distribution N (0, I) is a typical choice. Here,
I ∈ R

n×n denotes the unit matrix. Thus, the forward process
takes training images as an input andmaps them to samples of
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multivariateGaussian noise. These noise samples act as seeds
for the reverse process. Like other generative models such as
generative adversarial networks [2], it maps from samples of
this simple distribution back to the approximate target distri-
bution. These diffusion probabilistic models (DPMs) create
image structures from pure noise.

In Sect. 5.3, we also present alternatives to purely noise-
based forward processes. Typically, the forward process is
straightforward both conceptually and in its implementation.
For practical tasks, a major challenge is the estimation of the
corresponding reverse process, which is implemented with
deep learning. Our focus lies mostly on a theoretical analysis
of the forward process from a scale-space perspective. We
also discuss the reverse process in Sect. 5.2, but due to its
approximate nature, theoretical results are less comprehen-
sive. The design of the forward process also has significant
impact on the performance of the generative model [13, 14].
Thus, it also constitutes a more attractive direction for a
scale-space focused investigation: Understanding the nature
of existing forward processesmight allow to carry over useful
properties from existing classical scale-spaces.

Therefore, in Sect. 5, we show that a wide variety of
existing diffusion probabilistic models fulfil generalised
scale-space properties. This new class of scale-spaces differs
significantly from classical approaches, since it does not con-
sider the evolution of images, but of probability distributions
instead. First, we need to establish a mathematical definition
of the probabilistic forward process on a time-dependent ran-
dom variable U(t).

At time t = 0, this random variable has the initial dis-
tribution p(F). For subsequent times t1 < t2 < ... < tm
a trajectory is defined as a sequence of temporal realisa-
tions u1, ..., um of U(t). It represents one possible evolution
according to random additions of noise in each time step
and is visualised in Fig. 1. Importantly, each image ui in
a trajectory only depends on ui−1. This implies that the
corresponding conditional transition probabilities fulfil the
Markov property

p(ui |ui−1, ..., u0) = p(ui |ui−1) . (1)

Here, we consider the probability of observing ui as a real-
isation of U(t) at time ti given U(ti−1) = ui−1. Thus, the
stochastic forward evolution is aMarkov process [73] andwe
can write the probability density of the trajectory in terms of
the transition probabilities from (1) and the initial distribution
p(u0) = p(F):

p(u0, ..., um) = p(u0)
m∏

i=1

p(ui |ui−1) . (2)

This property is also integral to establishing central architec-
tural properties of our generalised scale-space in Sect. 5. In
contrast to our earlier conference publication [21], we con-
sider a more general transition probability than the original
model of Sohl-Dickstein et al. [1]. Relying on the model of
Kingma et al. [6], we use Gaussian distributions of the type

p(ui |ui−1) = N
(
αi ui−1, β2

i I
)

. (3)

Since I ∈ R
n×n denotes the unit matrix, the covariance

matrix of this multivariate Gaussian is diagonal. Thus, for
every pixel j , we consider independent, identically dis-
tributed Gaussian noise with mean αi ui−1, j and standard
deviation βi . Overall, the forward process has the free param-
eters αi > 0 and βi ∈ (0, 1). In practice, these parameters
can be learned or chosen by a user. Often αi is also defined as
a function of βi , which we discuss in more detail in Sect. 5.

4.2 The Reverse Process

Sohl-Dickstein et al. [1] motivate the reverse process by a
partial differential equation (PDE) that is associated to the
forward process. In particular, they rely on the results of
Feller [74]. These require the existence of the stochastic
moments

mk(ut , t) = lim
h→0

1

h

∫
p(ut+h, ut )(ut+h − ut )k dut+h (4)

with k ∈ {1, 2}. Under this assumption, the probability den-
sity of the Markov process from Eq. (2) is a solution of the

Fig. 1 Forward DPM
Trajectory. Starting from each
sample of the initial distribution
p(u0), infinitely many
trajectories exist. In each step of
the trajectory, noise is added
according to the transition
probability p(ui |ui−1)
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partial differential equation

∂

∂t
p = 1

2

∂2

∂ut∂ut
(m2(ut , t)p(uτ , ut ))

+ ∂

∂ut
(m1(ut , t)p(uτ , ut )) . (5)

Here, p(uτ , ut ) denotes the probability density for a transi-
tion from uτ to ut with τ < t . In Sect. 6.1, we use the fact that
Eq. (5) is a drift-diffusion equation to discuss connections to
osmosis filtering.

For practical purposes, it is important that Feller has
proven that a solution of Eq. (5) also solves the backward
equation

∂

∂τ
p = 1

2
m2(uτ , τ )

∂2

∂uτ ∂uτ

p + m1(uτ , τ )
∂

∂uτ

p . (6)

Here, the backward perspective is obtained due to the
exchange of roles of the earlier time τ with the later time
t . Sohl-Dickstein et al. [1] exploit the close similarity of the
backward equation to the forward equation. It implies that
the reverse process from the normal distribution to the target
distribution also has Gaussian transition probabilities. How-
ever, the mean and standard deviation are unknown and are
estimated with a neural network instead. In particular, the
training minimises the cross entropy to the target distribu-
tion p(F). We discuss the reverse process in more detail in
Sect. 5.2.

The capabilities of diffusion probabilistic models go
beyond merely using the reverse process to sample from the
target distribution. Additionally, it is possible to condition
this distribution with side information such as partial image
information or textual descriptions of the image content. This
is useful for restoringmissing image parts with inpainting [1,
3] or for text-to-image models [3]. However, our main focus
are theoretical properties of multiple different forward pro-
cesses. Since the estimation of the parameters for the reverse
process is not relevant for our contributions, we refer to [3,
5, 6, 9] for more details.

5 Generalised Diffusion Probabilistic
Scale-Spaces

In our previous conference publication [21], we introduced
scale-space properties for the original forward diffusion
probabilistic model (DPM) of Sohl-Dickstein et al. [1]. We
generalise these results in Sect. 5.1 to a wider variety of noise
schedules. Moreover, we introduce a generalised scale-space
theory for the corresponding backward direction in Sect. 5.2.
Finally, we address the recent inverse heat dissipation [13]
and blurring diffusion models [14] in Sect. 5.3.

Before we discuss scale-space properties, we need to
establish some preliminaries that allow us to rewrite transi-
tion probabilities in a useful way. The transition probabilities
from Eq. (3) allow us to express the random variable at time
ti in terms of the random variable at time ti−1 according to

U i = αi U i−1 + βi G . (7)

Here, G denotes Gaussian noise from the standard normal
distribution N (0, I). This generalises the model of Sohl-

Dickstein et al. [1] who use αi =
√
1 − β2

i . Kingma et al. [6]

also investigate variance-exploding diffusion [7] with α2
i =

1. We discuss both types of models in Sect. 5.1.

Proposition 1 (Transition Probability from the Initial Distri-
bution) We can directly transition from U0 to U i by

U i = U0

i∏

�=1

α� +
(

i−1∑

k=1

βk

i∏

�=k+1

α� + βi

)
G (8)

Proof For i = 1, the statement is fulfilled according to

U1 = α1 U0 + β1 G . (9)

We prove the statement by induction. Applying the hypoth-
esis for the step from i to i + 1, we obtain

U i+1 = αi+1 U i + βi+1 G (10)

= αi+1

(
U0

i∏

�=1

α� +
( i−1∑

k=1

βk

i∏

�=k+1

α� + βi

)
G

)
+ βi+1G

(11)

= U0

i+1∏

�=1

α� +
(

i∑

k=1

βk

i+1∏

�=k+1

α� + βi+1

)
G . (12)

��
Thereby, we have established the transition probability from
time 0 to time ti as

p(ui |u0) = N (λiu0, γ 2
i I) (13)

where the mean λi and standard deviation γi of this multi-
variate Gaussian distribution are

λi :=
i∏

�=1

α� , γi :=
i−1∑

k=1

βk

i∏

�=k+1

α� + βi . (14)

An interesting special case of the proposition above arises

for the parameter choice αi =
√
1 − β2

i of the variance-
preserving case [1]. Ho et al. [5] have shown that under this
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Fig. 2 Semigroup Property for
Forward DPM. Due to the
Markov property, each
intermediate scale i can be
reached either from the training
distribution p(u0) in i steps, or
from p(ui−k) in k steps. Note
that this property does not apply
to individual images as in
classical scale-spaces. Instead, it
refers to probability
distributions which are
visualised by samples from four
different trajectories

condition, the transition probability becomes

p(ui |u0) = N
⎛

⎝

√√√√
i∏

j=1

(1 − β2
j ) u0, I −

i∏

j=1

(1 − β2
j )I

⎞

⎠ .

(15)

These insights are helpful for establishing a generalised
scale-space theory for diffusion probabilistic models.

5.1 Generalised-Scale-Space Properties for Forward
DPM

In the following, we propose central architectural proper-
ties for a generalised DPM scale-space and also discuss
invariances. To this end, we consider the sequence of the
marginal distributions of the random variable U(t). These
can be obtained by integrating over all possible paths from
the starting distribution to scale i according to

p(ui ) =
∫

p(u0, ..., ui ) du0 · · · dui−1 . (16)

Thus at each scale i , we consider the marginal distribution of
U(ti ). Individual images are samples from the distributions
at a given scale.

Property 1: Initial State

By definition, the initial distribution for the Markov process
is the distribution p(F) of the training database. Thus, it also
defines the initial state p(u0) of the scale-space.

Property 2: Semigroup Property

One central architectural property of scale-spaces is the abil-
ity to recursively construct a coarse scale from finer scales,
i.e. the path from the initial state can be split into interme-
diate scales. This concept has been already established by
Iijima [18] in the pioneeringworks onGaussian scale-spaces.
Intuitively, diffusion probabilistic models fulfil this property

since they are Markov processes. The property is visualised
in Fig. 2.

Proposition 2 (Semigroup Property) The distribution p(ui )
at scale i can be reached equivalently in i steps from p(u0)
or in � steps from p(ui−�).

Proof The probability density of the forward trajectory is
defined in a recursive way in Eq. (2). Thus, we have to show
that this property also carries over to the marginal distribu-
tions of the scale-space. We can reach p(ui ) either directly
from u0 or from an intermediate scale � by using the defini-
tion of the joint probability density of the Markov process:

p(ui ) =
∫

p(u0)
i∏

j=1

p(u j |u j−1) du0 · · · dui−1 (17)

=
∫

p(ui−�)

i∏

j=i−�+1

p(u j |u j−1) dui−�· · · dui−1 .

(18)

��

Property 3: Lyapunov Sequences

In classical scale-spaces (e.g. with diffusion), Lyapunov
sequences quantify the change in the evolving image with
increasing scale parameter. They constitute a measure of
image simplification [20] in terms of monotonic functions.
In practice, they often represent the information content of an
image at a given scale. Here, we define a Lyapunov sequence
on the evolving probability density instead.

To this end, we consider the conditional entropy of the
random variable U i at time ti given the random variable U0.
It constitutes a measure for the gradual removal of the image
information from the initial distribution p(u0).
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Proposition 3 (Increasing Conditional Entropy) The condi-
tional entropy

Hp(U i |U0) = −
∫∫

p(ui , u0) ln p(ui |u0) du0 dui .
(19)

increases with i under the assumption β j ∈ (0, 1) for all j
with β j+1 ≥ (1 − α j+1)γ j with γ j as defined in Eq. (14).

Proof We can reduce the problem of showing that the condi-
tional entropy is monotonically increasing to a statement on
the differential entropy of p(ui |u0) since

Hp(U i |U0) =
∫

p(u0)
(

−
∫

p(ui |u0) ln p(ui |u0) dui
︸ ︷︷ ︸

=:Hp (W i )

)
du0 ≥Hp(U i−1|U0)

(20)
⇔ Hp(W i ) ≥ Hp(W i−1) . (21)

According to Eq. (13),W i is fromN (λiu0, γ 2
i I). Therefore,

the entropy ofW i only depends on the covariance matrix γi I
and yields

Hp(W i ) = 1

2
ln

((
2π e γ 2

i

)n)
. (22)

Thus, the entropy is increasing if γi+1 ≥ γi . Furthermore,
due to Eq. (14) we have

γi+1 =
i∑

k=1

βk

i+1∏

�=k+1

α� + βi+1 = αi+1

⎛

⎝
i−1∑

k=1

βk

i∏

�=k+1

α� + βi

⎞

⎠

+ βi+1 = αi+1γi + βi+1 . (23)

Since βi > 0 and γi > 0, we require

αi+1γi + βi+1 ≥ γi ⇔ βi+1 ≥ (1 − αi+1)γi . (24)

Again, we can also consider αi = √
1 − σi , βi = √

σi as in
[1]. This gives us more concrete expressions for γi according
to Eq. (15). With this we obtain

γi+1 =
√√√√1 −

i+1∏

j=1

(1 − β2
j ) =

√√√√1 − (1 − β2
i+1)

i∏

j=1

(1 − β2
j ) > γi .

(25)

Since βi+1 ∈ (0, 1), this holds without further conditions
with the noise schedule of Sohl-Dickstein et al. [1]. ��

Property 4: Permutation Invariance

The 1-D drift-diffusion process acts independently on each
image pixel. Therefore, the spatial configuration of the pixels

does not matter for the process. In the following we provide
formal arguments for a permutation invariance of all distri-
butions created by the trajectories of the drift-diffusion.

Let P( f ) denote a permutation function that arbitrarily
shuffles the position of the pixels in the image f from the
initial database. In particular, such permutations also include
cyclic translations as well as rotations by 90◦ increments.

Proposition 4 (Permutation Invariant Trajectories) Let u0
denote an image from the initial distribution and v0 :=
P(u0) its permutation. Then, any trajectory v0, ...vm
obtained from the process in Eq. (7) is given by vi = P(ui )
for a trajectory u0, ..., um starting with the original image
u0.

Proof Consider the transition of vi−1 to vi via a realisation
gi of the random variable G in Eq. (7). Then g̃i := P−1(gi )
is also from the distribution N (0, I) and we can obtain ui
from ui−1 by using this permuted transition noise.

Since v0 = P(u0) holds by definition, we can inductively
show the claim by considering

vi = αivi−1 + βi gi = αi P(ui−1) + βi P( g̃i ) = P(ui ) .

(26)

��
Any permutation P is a bijection. Thus every trajectory

from a permuted image corresponds exactly to one trajec-
tory starting from the original image. This directly implies
permutation invariance of the corresponding distributions.

Corollary 5 (Permutation Invariant Distributions) Let u0
denote an image from the initial distribution and v0 :=
P(u0) its permutation. Then, for any image v from p(vi )
there exists exactly one image u from p(ui ) such that v =
P(u).

Property 5: Steady State

The steady-state distribution for i → ∞ is a multivari-
ate Gaussian distribution N (0, β2 I) with mean 0 and a
covariance matrix β2 I with β < 2. Convergence to a noise
distribution is a cornerstone of diffusion probabilistic models
and thus well known. For the sake of completeness, we pro-
vide formal arguments for this property. Moreover, we verify
that for the noise schedule of Sohl-Dickstein et al. [1], we
obtain β = 1. Thus, we verify that their steady state is the
normal distribution.

Proposition 6 (Convergences to a Normal Distribution) Let
αi and βi be bounded from above by a, b ∈ (0, 1), i.e.
αi ∈ (0, a] and βi ∈ (0, b]. Moreover, let the assump-
tions of Proposition 3 be fulfilled. Then, for i → ∞, the
forward process from Eq. (2) converges to a normal distri-
bution N (0, γ 2 I) with γ ≤ b

1−a .
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Proof According to Eqs. (8) and (14), we have

U i = λiU0 + γiG (27)

with G from N (0, I). For i → ∞, we can immediately
conclude λi → 0 for themean of the steady-state distribution
since it is the product of i factors α� < 1.

Under the assumptions of Proposition 3, we have already
shown that γi is increasing. Now let us consider the bound-
edness of γi , starting with definition Eq. (14) and using the
assumptions 0 < αi ≤ a and 0 < βi ≤ b:

γi =
i−1∑

k=1

βk

i∏

�=k+1

α� + βi ≤
i−1∑

k=1

b
i∏

�=k+1

a + b (28)

= b

(
i−1∑

k=1

i∏

�=k+1

a + 1

)
= b

i−1∑

k=0

ak
i→∞−−−→ b

1 − a
.

(29)

Overall, this shows that for i → ∞, every trajectory con-
verges to γ G with a γ ≤ b

1−a and G from N (0, I). ��
We have only specified an upper bound for the variance

γ 2 of the steady-state distribution so far. The original DPM

model [1] with αi =
√
1 − β2

i does not only act as an exam-
ple that verifies reasonable parameter choices are possible
under the assumptions of our proposition. Additionally, we
can also explicitly infer that γ = 1 in this special case. Due
to

γi =
√√√√1 −

i∏

j=1

(1 − β2
j ) (30)

and 0 < 1 − β2
j < 1, we obtain γi

i→∞−−−→ 1. Thus, the
original DPM model convergences to the standard normal
distribution.

Note that the variance-exploding model is not covered
by the steady-state criterion without additional assumptions.
Due to the parameter choice α� = 1, the sequence γi is given
by

γi =
i∑

k=1

βk . (31)

As the name of the model suggests, the variance is thus not
necessarily bounded for i → ∞. For special choices of βi ,
e.g. βi = β i−1

0 with β0 = 1, we can however still get conver-
gence to a normal distribution with a fixed variance. In the
case of the example it would be (1 − β0)

−1. Also note that
due to α� = 1 in Eq. (14), λi = 1 for all i . Thus, the mean
remains constant in this case.

The noisy steady state marks a clear difference to tradi-
tional scale-spaces. For instance, diffusion scale-spaces on
images [20] converge to a flat steady state instead. How-
ever, the new class of diffusion probabilistic scale-spaces
still underlies the same core concept: It removes information
from the initial state recursively and hierarchically, leading
to a state of minimal information w.r.t. the initial distribution.

5.2 Generalised Scale-Space Properties for Reverse
DPM

Sohl-Dickstein et al. [1] argue via results of Feller [74] that
for infinitesimal βt , the distribution of forward and reverse
trajectories becomes identical. However, these results are
also tied in an inverse proportional way to the length of the
trajectory. For arbitrary small βt , the number of steps goes to
infinity. For such a case of identical distributions, our results
for the forward process would carry over to the reverse pro-
cess: Initial and steady state are swapped and our Lyapunov
sequences are decreasing instead of increasing. The remain-
der of the properties carry over verbatim.

In practice, however, the time-discrete reverse process
used for DPMs is an approximation. Neural networks esti-
mate the parameters for this reverse process. In the following,
we comment on properties that can be established under these
conditions.

To this end, we consider the reverse process of Sohl-
Dickstein et al. [1] and denote its distributions with q. It
takes the normal distribution N (0, I) as a starting distribu-
tion q(uM ). Transitions in the reverse direction from ti to
ti−1 fulfil

q(ui−1|ui ) = N (μ(ui , i),�(ui , i)) . (32)

While these learned distributions are still Gaussian, they are
significantlymore complex than in the forward process. Both
the learned mean and variance do not reduce to common
scalars for all pixels. Furthermore, they depend on the cur-
rent time step and on the image ui itself. Therefore, we can
establish less properties for the reverse process than before,
but central ones still carry over.

Property 1: Normal Distribution as Initial State

By definition, the distribution q(uM ) at time tM is given by
N (0, I).

Property 2: Semigroup Property

The distribution q(ui ) at time ti , i < M can be reached in
M−i steps from p(uM ) or inM − � − i steps from p(uM−�)

with M − � > i . Since the Markov property is fulfilled, the
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proof for the semigroup property is analogous to the forward
case in Sect. 5.1.

Property 3: Lyapunov Sequence

As a by-product of their derivation of conditional bounds for
the reverse process, Sohl-Dickstein et al. [1] have already
concluded that both the entropy Hq(ui ) and the conditional
entropy Hq(u0|ui ) are decreasing for the backward direction,
i.e.

Hq(ui−1) ≤ Hq(ui ) .

This is plausible, since the evolution starts with noise, a state
ofmaximumentropy, and sequentially introducesmore struc-
ture to it.

Property 4: Steady State

DPM reverse processes have the goal to enable sampling
from the unknown initial distribution p(u0). Convergence to
this distribution is only guaranteed for the ideal case with
identical distributions p and q. However, even if this is not
strictly fulfilled, the parametersμ and� are chosen such that
they maximise a lower bound of the log likelihood

∫
q(u0) log p(u0) du0 . (33)

In this sense, the reverse process approximates the distribu-
tion of the training data at time t = 0.

Property 4 from Sect. 5.1, the permutation invariance,
does in general not apply to the reverse process. Since the
parameters μ and � depend on the previous steps ui of the
trajectory, the configuration of the pixelsmatters. Invariances
will only be present if the network that estimates the param-
eters enforces them in its architecture.

5.3 Generalised Scale-Space Properties for Blurring
Diffusion

Inverse heat dissipation [13] and blurring diffusion [14]mod-
els do not solely rely on adding noise in order to destroy
features of the original image. Instead, they combine it with
a deterministic homogeneous diffusion filter [18] to gradu-
ally blur this image. Such diffusion filters are well known
as the origin of scale-space theory [18] and also constitute a
special case of the osmosis filters we consider in more detail
in Sect. 6.1. First, we discuss equivalent formulations of blur-
ring diffusion in the spatial and transform domain [13, 14].
These allow us to transfer our scale-space results for DPM
to this new setting.

A discrete linear diffusion operator can be interpreted
either as the discretisation of a continuous time evolution
described by a partial differential equation (see also Sect. 6.1)
or as a Gaussian convolution. In the following, we con-
sider only greyscale images with N = nxny pixels. Colour
images can be processed by filtering each channel sepa-
rately. Rissanen et al. [13] use an operator Ai = exp(ti�),
where � ∈ R

N×N is a discretisation of the Laplacian
�u = ∂xxu + ∂yyu with reflecting boundary conditions. By
adding Gaussian noise, they turn the deterministic diffusion
evolution into a probabilistic process given by

ui = Aiu0 + εi , εi ∈ N (0, β2
i I) (34)

In particular, they make use of a change of basis. To this
end, let V ∈ R

N×N denote the basis transform operator
of the orthogonal discrete cosine transform (DCT). Fur-
thermore, we use the notation ũ = Vu to denote the
DCT representation of a spatial variable u. Then, the diffu-
sion operator At = V�BtV reduces to a diagonal matrix
Bt = diag(α1, ...,αN ) in the DCT domain. The entries
of Bt result from the eigendecomposition of the Lapla-
cian. Let the vector index j ∈ {1, ..., N } correspond to the
position (k, �) ∈ {0, ..., nx − 1} × {0, ..., ny − 1} in the two-
dimensional frequency domain. Then the entries of Bt are
given by

α j = exp

(
−tπ2

(
k2

nx
+ �2

ny

))
. (35)

Note that for the frequency (k, �)� = (0, 0)�, α0 = 1.
Hence, the average grey value of the image is preserved.
Moreover, for all j = 0, we have α j < 1 for t > 0. Addition-
ally, since V is orthogonal and V T V = I , it also preserves
Gaussian noise: For a sample ε from the normal distribu-
tion N (0, I), the transform ε̃ is from the same distribution.
These properties are important for some of our scale-space
considerations later on.

Rissanen et al. [13] proposed the DCT representation of
their process for a fast implementation. However, Hooge-
boom and Salimans [14] used it to derive a more general
formulation in the DCT domain. Since Bt is diagonal, a step
from time ti to time ti+1 can be considered for individual
scalar frequencies j :

ũi+1, j = αi, j ũi, j + βiε . (36)

Here, ε is from N (0, 1). In contrast to Rissanen et al. [13],
they do not limit the noise variance σt tominimal observation
noise, but also allow to choose a noise schedule as in the
DPM from Sect. 5.1. This formulation is particularly useful
for us since it constitutes another 1-D drift-diffusion process
as in Eq. (7). It allows us to transfer some of our previous
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findings to the new setting. However, note that compared
to the model in Eq. (7) we operate on frequencies instead
of images as realisations of the random variable. Moreover,
each frequency has its own individual parameters αi, j . In
addition, βi could be made frequency specific. However, in
practice, Hoogeboom and Salimans [14] choose the same βi

for all frequencies. This also entails that theMarkov criterion
for this process in DCT space is given by

p(ũi+1|ũi ) = N (ũi |Bi ũi−1, β
2
i I) . (37)

In the following we consider a scale-space that is defined
by the marginal distributions of the random variable U t :=
V�Ũ t , i.e. the backtransform of the trajectories in DCT
space. Note that every trajectory in the frequency domain has
exactly one corresponding trajectory in the spatial domain.
Therefore, we can argue equivalently in the DCT domain or
the spatial domain, depending on what is more convenient.
As in Sect. 5.1, the process starts with the distribution of the
training data or, respectively, the distribution of its discrete
cosine transform.

Property 1: Initial State

By definition, the distribution p(u0) at time t0 = 0 is given
by the distribution p(F) of the training data.

Property 2: Semigroup Property

The distribution p(ui ) at scale i can be reached equivalently
in i steps from p(u0) or in � steps from p(ui−�). TheMarkov
property is fulfilled in the DCT domain. Thus, the proof for
the semigroup property is analogous to the DPM model in
Sect. 5.1. For each intermediate scale, we can switch back to
the spatial domain by multiplication with V�.

Property 3: Lyapunov Sequence

To establish this information reduction property, we require
an analogous statement to Eq. (8). By using a similar induc-
tion proof for each frequency, we obtain

Ũ i = M i Ũ0 + �iG . (38)

Here, G is from N (0, I), M i = diag(λi,0, ..., λi,N ) with

λi, j =
i∏

�=1

α�, j , (39)

and �u = diag(γi,0, ..., γi,N ) with

γi, j =
(

i−1∑

k=1

βi

i∏

�=k+1

α�, j + βi

)
. (40)

This is a frequency-dependent analogue statement to the
direct transition from time t0 to time ti in the DPM setting in
Eq. (14).

Proposition 7 (Increasing Conditional Entropy) The condi-
tional entropy

Hp(Ũ i |Ũ0) = −
∫ ∫

p(ũi , ũ0) ln p(ũi |ũ0) dũ0 dũi
(41)

increases with i under the assumption that for all frequencies
j and βi ∈ (0, 1) we have βi+1 ≥ (1 − αi+1, j )γi, j .

Proof As in Sect. 5.1, the statement is equivalent to show-
ing that the entropy Hp(W i ) of the distribution p(ũi |ũ0)
is increasing. Thus, we need to show that Hp(W i ) ≥
Hp(W i−1). The probability distribution of p(ũi |ũ0) can be
inferred from Eq. (13), but it is more complex than in the
DPM case due to the frequency dependent parameters.

Fortunately, the entropy of the multivariate Gaussian
distribution N (M t ũ0,�t ) only depends on its covariance
matrix �t and is given by

Hp(W i ) = 1

2
ln

((
2π e

)n det�i

)
= 1

2
ln

((
2π e

)n
N∏

j=1

γi, j

)

(42)

If γi+1, j ≥ γi, j holds for all frequencies j , the entropy is
increasing. For a fixed frequency j , we can transfer the pre-
vious result from Eq. (23) to the scalar setting:

γi+1, j = αi+1, jγi, j + βi+1 . (43)

Since βi > 0 and γi > 0, we require

αi+1, jγi, j + βi+1 ≥ γi, j ⇔ βi+1 ≥ (1 − αi+1, j )γi, j
(44)

This is a direct extension of our previous result in Sect. 5.1
to the frequency setting. ��

Note that there are also previous results for deterministic
diffusionfilters that use entropy as aLyapunov sequence [20].
However, there the entropy is defined on the pixel values
of the image instead of an evolving probability distribution.
Individual trajectories rely on a deterministic diffusion filter.
However, due to the added noise, the entropy statements of
classical scale-spaces do not transfer to the trajectories of
blurring diffusion.
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Property 3: Preservation of the Average Grey Value

The DPM scale-space from Sect. 5.1 ensures convergence to
Gaussian noise with zero mean, independently of the initial
image. This requires the mean of the image to change. The
behaviour of blurring diffusion scale-spaces is significantly
different.

Proposition 8 (Preservation of the Average Grey Value) Let
u0 denote an image from the initial distribution p( f ). Then,
all images in the trajectory u0, ..., um have the same average
grey value.

This statement directly follows from an observation on the
spatial version of the process. In every step, we add Gaus-
sian noise with mean zero to a diffusion filtered image. Since
diffusion filtering preserves the average grey value [20], this
also holds for blurring diffusion. In colour images, the preser-
vation of the average colour value applies for each channel.

Property 4: Rotation Invariance

In contrast to the forward DPM scale-space, blurring dif-
fusion takes into account the neighbourhood configuration
in the spatial domain due to the blurring of the homoge-
neous diffusion operator. Thus, permutation invariance does
not apply to blurring diffusion scale-spaces.

However, in a space-continuous setting, the diffusion
operator is rotationally invariant. The same applies to Gaus-
sian noise samples:Under rotation, they remain samples from
the same noise distribution. In the fully discrete setting, this
rotation invariance is typically partially lost since only 90◦
rotations align perfectly with the pixel grid. However, this
depends on the concrete implementation of the process. From
this observation, we can directly deduce the following state-
ment.

Proposition 9 (Rotation InvariantTrajectories) Letu0 denote
an image from the initial distribution and v0 := R(u0) a
rotation by a multiple of 90◦. Then, any trajectory v0, ...vm
obtained from the process in Eq. (7) is given by vi = R(ui )
for a trajectory u0, ..., um starting with the original image
u0.

Property 5: Steady State

Due to the preservation of the average grey value in Property
3, a blurring diffusion scale-space cannot converge to a noise
distribution with zero mean unless the initial image already
had a zero mean. Images typically have nonnegative pixel
values (e.g. a range of [0, 255] or [0, 1]). Thus, a zero mean
would be only possible for a flat image or after a transforma-
tion to a range that is symmetric to zero (e.g. [−1, 1]). We do

not make any such assumption. However, for the sake of sim-
plicity, we consider greyscale images in the following. For
colour images, the same statements apply for each channel.

Proposition 10 (Convergence to a Mixture of Normal Dis-
tributions) Under the assumptions of Proposition 7, αi, j ∈
(0, a j ] with 0 < a j < 1, βi ∈ (0, b] with 0 < b <

1, and i → ∞, the forward process from Eq. (2) con-
verges to a mixture of normal distributionsN (μk I,�) with
� = diag(σ1, ..., σN ) and σi ≤ b

1−a j
. The value μk with

k ∈ {0, ..., n f } assumes all possible average grey levels from
the training database.

Proof Consider a trajectory starting from an arbitrary image
u0 from the training database with mean μ. As in the proof
for Proposition 7, the findings from Eq. (8) and Eq. (14) for
DPM carry over to our setting in the scalar case for each
frequency j :

ũi, j = λi, j ũ0, j + γi, jε (45)

with ε fromN (0, 1). For the convergence of λi, j , we have to
consider the product of all frequency specific αi, j according
to Eq. (39). Here we have the special case αi,0 = 1 for the
lowest frequency, i.e.λi,0 = 1 for all i . This is consistentwith
our previous findings in Proposition 8: The lowest frequency
represents the average grey level, which remains unchanged.

For j > 0, we have αi, j < 1 and thus λi, j → 0 for
i → ∞. Thus, for all other frequencies the contribution of ui
vanishes and only its mean μ is preserved. The convergence
ofγi, j toσi ≤ b

1−a j
is analogous to the proof of Proposition6.

This determines the standard deviation of the noise for each
frequency. ��

Overall, blurring diffusion constitutes a scale-space that
resembles theDPMscale-space in its architectural properties.
The key difference lies in the incorporation of 2-D neigh-
bourhood relationships between pixel values in the spatial
domain. In the DCT domain, this translates to an individual
set of process parameters for each frequency.

6 Diffusion Probabilistic Models and
Osmosis

All diffusion probabilistic models considered in Sect. 5 have
in common that they are connected to drift-diffusion pro-
cesses. In imageprocessingwith partial differential equations
(PDEs), osmosis filters proposed by Weickert et al. [16] are
successfully applied to image editing and restoration tasks
[16, 63–65]. Since they share their originwith diffusion prob-
abilisticmodels, namely the Fokker-Planck equation [60],we
discuss connections in the following. First, we briefly review
the PDE formulation of osmosis filtering. Afterwards, we
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discuss common properties as well as differences between
both classes of models. Finally, we compare all four models
experimentally.

6.1 Continuous Osmosis Filtering

Unlike the first part of the manuscript, we consider a grey
value image as a function f :  → R+ defined on the image
domain ⊂ R

2. It maps each coordinate x ∈  to a positive
grey value. In the following we limit our description to grey
value images for the sake of simplicity. The filter can be
extended to colour or arbitrary other multi-channel images
(e.g. hyperspectral) by applying it channel-wise.

As in diffusion probabilistic models, osmosis filters con-
sider the evolution of an image u :  × [0,∞) → R+ over
time. However, here the evolution is entirely deterministic.
Its initial state is given by a starting image f , i.e. for all
x we have u(x, 0) = f (x). In addition, the second major
factor that influences the evolution is the drift vector field
d :  → R

2 that can be chosen independently of the initial
image and is typically used for filter design.

Given these two degrees of freedom, the image evolution
fulfils the PDE [16]

∂t u = �u − div (du) on  × (0, T ] . (46)

At the boundaries of, reflecting boundary conditions avoid
any exchange of information with areas outside of the image
domain. There is a direct connection of this model to the
inverse heat dissipation [13] and blurring diffusion [14]: All
of these processes build on homogeneous diffusion [18],
which is a special case of osmosis with d = 0.

However, a non-trivial drift vector field enables to describe
evolutions that do not merely smooth an image. The Lapla-
cian �u, which corresponds to the diffusion part of the PDE
in Eq. (46), represents a symmetric exchange of information
between neighbouring pixels. This symmetry can be broken
by the drift component −div (du) = −∂x (d1u) − ∂y(d2u).
This is also vital for our own goal of relating osmosis image
evolutions to diffusion probabilistic models and will allow us
to introduce stochastic elements without any need to modify
the PDE above.

6.2 Relating Osmosis and Diffusion Probabilistic
Models

As noted in the previous section, for d = 0, osmosis is
directly connected to blurring diffusion. For the original
DPMmodel, the connection is less obvious, but equally close.
To this end, it is instructive to consider a 1-Dosmosis process.
Its evolution is described by the PDE

∂t u = ∂xxu − ∂x (du) on  ⊂ R × (0, T ] . (47)

A comparisonwith the PDE formulation of theDPM forward
process in Eq. (5) reveals a significant structural similarity.
Both equations describe an evolution w.r.t. the time t : 1-
D osmosis considers an evolving image u, while the DPM
evolution is defined on a probability density p. The derivative
∂ut w.r.t. positions of individual particles in the diffusion
probabilistic model corresponds to the spatial derivative ∂x
in Eq. (47). The moments correspond to diffusivity and drift
factors for the osmosis PDE and thus we can interpret 1-D
osmosis as the deterministic counterpart to the probabilistic
drift-diffusion process of DPM.

While both models are derived from the same physical
principle, a 1-D osmosis filter would typically act on a 1-
D signal instead of an image. In this 1-D setting, it also
considers neighbourhood relations and exchanges informa-
tion between neighbouring signal elements. In contrast, the
1-D drift-diffusion of DPM acts on individual pixels of a
2-D image which correspond to positions of individual parti-
cles. Thus, 1-D osmosis creates evolving 1-D signals, while
a DPM trajectory consists of 2-D images.

For a meaningful comparison between the properties of
osmosis filtering and the three diffusion probabilistic mod-
els, we require 2-D osmosis as in Eq. (46). Moreover, we
need to add a stochastic component. Ideally, every trajec-
tory of this new probabilistic osmosis process should inherit
the theoretical properties of the deterministic model. Inverse
heat dissipation [13] can be seen as a similar approach in
that it provides a stochastic counter part to homogeneous
diffusion [18]. However, there the addition of noise marks
a clear departure from the PDE model and also implies that
properties of the deterministic model do not carry over to the
trajectory.

Instead of adding noise, we design the drift vector field d
in such a way that the osmosis evolution naturally converges
to a noise sample. Weickert et al. [16] have shown that osmo-
sis preserves the average grey value. Thus, for a given image
f from the training data, we choose a noise image ε, where at
every location x ∈ , ε(x) is from N (μ f , σ

2). Here, μ f is
the average grey value of f . Note that osmosis requires posi-
tive images. In practice,we clip the noise sample to [10−6, 1].
While this truncates the tails of the Gaussian distribution, it
has little impact for small standard deviation σ .

Now we can use another result of Weickert et al. [16] and
consider the compatible case for osmosis. Our noise sam-
ple ε acts as guidance image for the osmosis process. The
corresponding canonical drift vector field is defined by

d = ∇ε

ε
(48)

with the spatial gradient ∇. Since μ f = με , the osmosis
process converges to
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μ f

με

ε = ε . (49)

Considering intermediate results of the evolution at times
ti yields a trajectory u0, ..., um of the probabilistic osmosis
process with u0 = f . Even though the intermediate marginal
probabilities or the transition probabilities are not known, the
process starts with the target distribution p(F) and converges
to an approximation to a normal distribution. In the follow-
ing, we can empirically compare trajectories of this osmosis
process to trajectories of diffusion probabilistic models.

6.3 Comparing Osmosis Filters and Diffusion
Probabilistic Models

For concrete experiments, we require a discrete implemen-
tation of the continuous osmosis model from Sect. 6.1. As
Vogel et al. [63], we use a stabilised BiCGSTAB solver [75].
For the noise guidance images, we use a standard deviation
of σ = 0.1. All experiments are conducted on the Berkeley
segmentation data set BSDS500 [76].

We compare to the three models from Sect. 5. According
to Eq. (7), we implement forward DPM [1] by succes-
sively adding Gaussian noise with the standard parameter

choice αi =
√
1 − β2

i and βi = 0.1. Inverse heat dissipa-
tion [13] and blurring diffusion [14] can be implemented in
many equivalent ways. We based our implementation on the
reference code of Rissanen et al. [13], which implements
the Laplacian in the DCT domain according to Eq. (35).
For inverse heat dissipation, we use the standard parame-
ter βi = 0.01. For blurring diffusion, we choose βi = 0.1
such that it coincides with the guidance noise of our proba-
bilistic osmosis. Furthermore, we also include homogeneous
diffusion [18] without any added noise in our comparisons.

6.3.1 Visual Comparison

Figure 3 reveals visual similarities and differences between
model trajectories. All five models successively remove fea-
tures of the initial training sample: They are drowned out by
noise, by blur, or a combination of both. For the probabilis-
tic models, we have shown that this information reduction
is quantified by entropy-based Lyapunov sequences. A sim-
ilar statement holds for images in an osmosis trajectory. As
shown by Schmidt [62], the relative entropy of u w.r.t. the
noise sample ε is increasing:

L(t) := −
∫



u(x, t) ln

(
u(x, t)

w(x)

)
dx . (50)

This also reflects the transition from the initial image f to
the steady state ε. Similar statements on an unconditioned
entropy apply to homogeneous diffusion [20].

Notably, only DPM does not preserve the average colour
value of the initial image and converges to noise with mean
zero. For visualisation purposes, the images of the DPM tra-
jectory have therefore been affinelymapped to [0, 1]. DPM is
also the only process that does not take neighbourhood rela-
tions between pixels into account. Therefore, edge features,
such as the stripe pattern in Fig. 3a, remain sharp until they
are completely overcome by noise.

This observation directly results from the 1-D drift-
diffusion: DPM models the microscopic aspect of Brownian
motion with colour values as particle positions. All other
models consider the macroscopic aspect of drift-diffusion
instead which considers colour values as particle concen-
trations per pixel cell. Consequentially, all other models
apply 2-D blur in the image domain. Due to the very small
amount of observation noise added by Rissanen et al. [13],
the trajectory of heat dissipation is visually very similar to
homogeneous diffusion.

Similarly, osmosis and blurring diffusion lead to visually
almost identical trajectories. They mainly differ in the way
how noise is added: Blurring diffusion uses explicit addition,
while osmosis transitions to noise due to the drift vector field.
In the following, we verify these observations quantitatively.

6.3.2 Variance Comparison

On the entire BSDS500 database, we evaluate the evolution
of the image variance over time in Fig. 4a. As expected,
the pairs homogeneous diffusion/heat dissipation and osmo-
sis/blurring diffusion exhibit very similar evolutions of the
variance. On the way to the flat steady state, homogeneous
diffusion and heat dissipation approach zero variance. Osmo-
sis and blurring diffusion converge to a noise variance defined
by the input parameters while DPM very slowly converges to
the standard distribution. These observations coincide with
the expectations from our theoretical results.

6.3.3 FID Comparison

Additionally, we can judge the similarity of intermediate
distributions in the scale-space with the Fréchet-Inception
distance (FID) [77]. It is widely used to judge the quality
of generative models in terms of the approximation quality
towards the target distribution. We use the implementation
clean-fid [78] that avoids discretisation artefacts due to sam-
pling and quantisation. Note that we measure the FID of
probabilistic osmosis distributions relative to results of the
other four models. Thus, a low FID indicates how closely
each filter approximates osmosis.

Figure 4b also confirms our previous hypothesis: Heat
dissipation and blurring diffusion consistently differ most
fromosmosis results since they relymostly on blur and not on
noise. DPM comes close to osmosis in its noisy steady state,
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Fig. 3 Visual comparison of trajectories. The diffusion probabilis-
tic model (a) behaves distinctively different compared to the other
approaches since it does not perform blurring in the image domain.

Due to the minimal amounts of added noise, inverse heat dissipation
(b) closely resembles homogeneous diffusion (c). With a suitable noise
schedule, blurring diffusion (d) closely resembles osmosis filtering (e)
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Fig. 4 Quantitative Comparison of Diffusion Probabilistic Models and
Model-based Filters. Both the variance evolution over time in (a) and
the FID w.r.t. the osmosis distributions in (b) suggest that DPM differs

significantly from the classical diffusion and osmosis filters. Heat dis-
sipation approximates diffusion, while blurring diffusion approximates
osmosis

but differs significantly in the initial evolution due the lack
of 2-D smoothing. Blurring diffusion approximates osmosis
surprisingly closely over the whole evolution.

Hoogeboom and Salimans [14] have found that heat dis-
sipation improves the overall quality of generative models
compared to DPM. Blurring diffusion yields even better
results. Given our findings, we can interpret these observa-
tions from a scale-space perspective: The integration of 2-D
neighbourhood relationships in the scale-space evolution is
important for good diffusion probabilistic models. However,
also the addition of sufficient amounts of stochastic pertur-
bations is vital. Overall, recent advances can be interpreted
as an increasingly accurate approximation of osmosis filter-
ing, with an approximation to diffusion scale-spaces as an
intermediate model. Using such an approximation instead of
directly applying 2-D osmosis is convenient due to the more
straightforward relation to the reverse process.

7 Conclusions and Outlook

Inspired by diffusion probabilistic filters, we have proposed
the first class of generalised stochastic scale-spaces that
describe evolutions of probability distributions instead of
images. While the setting differs significantly from classical
scale-spaces, central properties such as gradual, quantifiable
simplification and causality still apply. These results suggest
that in general, sequential generativemodels fromdeep learn-
ing are closely connected to scale-space theory. Therefore,
we hope that in the future, the scale-space community will
benefit from the discovery of new scale-spaces that might
also be used in different contexts. In particular, existing gen-
erative models are mostly focused on the steady states as

the practically relevant output. The intermediate results of
the associated scale-spaces could however also be useful in
future applications.

On the flip side, trajectories of recent diffusion probabilis-
tic models approximate well-known classical scale-space
evolutions. This suggests that in the opposite direction, the
deep learning community can potentially benefit from exist-
ing knowledge about scale-spaces by incorporating them into
deep learning approaches.
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