Please use this identifier to cite or link to this item: doi:10.22028/D291-42445
Title: SingmiR: a single-cell miRNA alignment and analysis tool
Author(s): Engel, Annika
Rishik, Shusruto
Hirsch, Pascal
Keller, Verena
Fehlmann, Tobias
Kern, Fabian
Keller, Andreas
Language: English
Title: Nucleic Acids Research
Volume: 52
Issue: W1
Pages: W374-W380
Publisher/Platform: Oxford University Press
Year of Publication: 2024
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: Single-cell RNA sequencing (RNA-seq) has revolutionized our understanding of cell biology, developmental and pathophysiological molecular processes, paving the way toward novel diagnostic and therapeutic approaches. However, most of the gene regulatory processes on the single-cell level are still unknown, including post-transcriptional control conferred by microRNAs (miRNAs). Like the established single-cell gene expression analysis, advanced computational expertise is required to comprehensively process newly emerging single-cell miRNA-seq datasets. A web server providing a workflow tailored for single-cell miRNA-seq data with a self-explanatory interface is currently not available. Here, we present SingmiR, enabling the rapid (pre-)processing and quantification of human miRNAs from noncoding single-cell samples. It performs read trimming for different library preparation protocols, generates automated quality control reports and provides feature-normalized count files. Numerous standard and advanced analyses such as dimension reduction, clustered feature heatmaps, sample correlation heatmaps and differential expression statistics are implemented. We aim to speed up the prototyping pipeline for biologists developing single-cell miRNA-seq protocols on small to medium-sized datasets. SingmiR is freely available to all users without the need for a login at https://www.ccb.uni-saarland.de/singmir.
DOI of the first publication: 10.1093/nar/gkae225
URL of the first publication: https://doi.org/10.1093/nar/gkae225
Link to this record: urn:nbn:de:bsz:291--ds-424456
hdl:20.500.11880/38093
http://dx.doi.org/10.22028/D291-42445
ISSN: 1362-4962
0305-1048
Date of registration: 25-Jul-2024
Description of the related object: Supplementary data
Related object: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/52/W1/10.1093_nar_gkae225/1/gkae225_supplemental_files.zip?Expires=1724917149&Signature=RNC9sWu8e4XTUlzWeIpTODZs58a9u4UwL8l3F2GHsRTo13SbUaxqeu2MSRapTjeA8ONPWJlqKWN84qfxygWZ4TzKIun2wqpP-QDSYr2nB74HyEEv15f99rx-mhRvpNPyHpRYnpbJ4UK7vSNAUmOgT6RYIKE4FRz1aVAD5Y2LH9zsVBmh7xZxAJm9bUuyIkH2CYArZfZcXfJ26ebx0oPh1pkJd76btRWjTQRhD5amELyRfB1-5q6bki4AiqY8iy0cXax9GUgRE0QPt3j25Ip1wStirDyOu7YYoU4neoPgsGr8UK1UHa7VXVVBeERy2iaaUjSo18DH9etLiJUe8nopUg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
Faculty: M - Medizinische Fakultät
Department: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professorship: M - Univ.-Prof. Dr. Andreas Keller
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
gkae225.pdf1,32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons