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Abstract 

Single-cell RNA sequencing (RNA-seq) has re v olutioniz ed our understanding of cell biology, de v elopmental and pathoph y siological molecular pro- 
cesses, paving the way toward novel diagnostic and therapeutic approaches. However, most of the gene regulatory processes on the single-cell 
le v el are still unknown, including post-transcriptional control conferred by microRNA s (miRNA s). Like the established single-cell gene expression 
analy sis, adv anced computational expertise is required to comprehensively process newly emerging single-cell miRNA-seq datasets. A web 
serv er pro viding a w orkflo w tailored f or single-cell miRNA-seq data with a self-explanatory interface is currently not a v ailable. Here, w e present 
SingmiR, enabling the rapid (pre-)processing and quantification of human miRNAs from noncoding single-cell samples. It performs read trimming 
for different library preparation protocols, generates automated quality control reports and provides feature-normalized count files. Numerous 
standard and advanced analyses such as dimension reduction, clustered feature heatmaps, sample correlation heatmaps and differential expres- 
sion statistics are implemented. We aim to speed up the prototyping pipeline for biologists developing single-cell miRNA-seq protocols on small 
to medium-sized datasets. SingmiR is freely available to all users without the need for a login at https:// www.ccb.uni-saarland.de/ singmir . 
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Introduction 

One of the best studied classes of noncoding RNAs is mi-
croRNAs (miRNAs), 20–25 nt long molecules that regulate
potentially up to 60% of the coding genes found in humans,
either degrading messenger RNA (mRNA) or repressing pro-
tein translation, mainly through 3 

′ -UTR (untranslated region)
binding ( 1 ,2 ). miRNAs play a key role in the regulation of cell
states and are increasingly relevant biomarkers in new disease
diagnostic and therapeutic approaches, e.g. the overexpres-
sion of miRNAs in lymphomas ( 3 ) or in cancer ( 4 ). Despite
their importance and possible improvement to diagnostics, we
are currently limited to quantifying miRNAs with bulk se-
quencing experiments only. For instance, we know the mRNA
expression patterns of circulating tumor cells from single-
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cell studies ( 5 ) but so far could not study in detail, through 

bulk sequencing alone, how the miRNome is shaping rare 
cell populations. Besides, miRNAs regulate genes and path- 
ways ( 6 ), the analysis of which is typically accomplished with 

software tools ( 7 ,8 ) that are well established for bulk stud- 
ies but so far are not tailored for single-cell sequencing data.
To date, depth and availability of single-cell miRNA sequenc- 
ing (miRNA-seq) datasets are lacking behind their mRNA 

counterparts, primarily due to persisting experimental chal- 
lenges, which render the selective enrichment and subsequent 
sequencing of miRNA molecules an intricate affair . However ,
a few protocols exist that are continuously optimized for a 
better quantitative yield, while there is no commercial op- 
tion currently on the market. Attempts to estimate miRNA 
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Table 1. Trimming parameters and met adat a from the case study re- 
quired for SingmiR 

Protocol 3 ′ Adapter 5 ′ Adapter Method UMI length 

SB Sandberg Sandberg SB 8 
SB_4N 4N 4N SB 8 
SB_CL CleanTag CleanTag SB 8 
SB_C3 Sandberg C3 SB 6 
SBN Sandberg Sandberg SBN 8 
SBN_4N 4N 4N SBN 8 
SBN_CL CleanTag CleanTag SBN 8 
CL CleanTag CleanTag CleanTag 8 
CL_16C CleanTag CleanTag CleanTag 8 
CL_4N 4N 4N CleanTag 8 
CL_Block CleanTag Block CleanTag 6 
CL_C3 CleanTag C3 CleanTag 6 
CL_Rand Rand CleanTag CleanTag 6 
CL_SB Sandberg Sandberg CleanTag 8 
CL_UMI6 CleanTag CleanTag UMI6 CleanTag 8 
4N 4N 4N 4N 0 
4N_C3 4N C3 4N 0 
4N_CL CleanTag CleanTag 4N 0 
CATS CATS CATS CATS 0 
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bundance in isolated cells based on primary miRNA ex-
ression in single-nucleus sequencing data have produced ex-
remely sparse count matrices that show high variability ( 9 ).
ven at the higher RNA quantities of standard bulk sequenc-

ng approaches, it can be challenging to quantify miRNA lev-
ls accurately. For example, the presence of other classes of
oncoding RNA ( 10–12 ) and the formation of adapter dimers
 13 ) are inevitable sources of bias. Existing technical issues
re further complicated by the small RNA input quantities
ypically required for high-resolution single-cell libraries. The
rimary ideas to tackle these challenges are to remove excess
dapters by combining digestion and size selection ( 14 ,15 ), re-
uction of adapter dimer formation by adapter chemical mod-
fication ( 16 ), mitigation of ligation bias by introducing degen-
rated bases to adapters ( 11 ) and polyadenylation ( 17 ). Perfor-
ance optimization is therefore an ongoing effort, for which a

ecent benchmark provided new quantitative and qualitative
rounds ( 18 ). 

There exists a whole ecosystem of tools to analyze miRNA
ata: stand-alone tools such as miRDeep* ( 19 ) and web ser-
ices such as miRMaster2.0 ( 20 ), sRNAbench / sRNAtoolbox
 21 ), CBS-miRSeq ( 22 ) and others [a complete list is provided
n miRMaster ( 20 )]. However, currently no such tools exist
or single-cell data analysis, which is projected to rapidly in-
rease in the next few years due to newly developed proto-
ols ( 18 ). The above-mentioned standard tools cannot be used
ight away for the single-cell analysis because they do not sup-
ort the specific parameters used in such protocols, especially
egarding the different adapter and barcode sequences as well
s unique molecular identifier (UMI) layouts required. 

We thus made our analysis pipeline available through a web
erver. We include the option to perform common compara-
ive analyses, for instance embeddings by popular dimension
eduction techniques, correlation and expression-based clus-
ering, differential expression (DE) analyses and more. We aim
o enable life science researchers planning to analyze and com-
are different single-cell miRNA-seq datasets with the neces-
ary toolset, without requiring any computational or bioinfor-
atics expertise. 

aterials and methods 

he computational workflow of SingmiR consists of two
ain stages. First, the alignment and trimming pipeline,
hich removes the adapters specific to the library prepara-

ion method used, aligns the reads to the human genome
nd quantifies miRNA abundances. Second, an optional anal-
sis pipeline computes overview plots and statistics for the
rocessed user dataset. A comprehensive submission inter-
ace guides the user through the necessary steps, such as pro-
iding data and specifying details for an optional in-depth
nalysis. The results page allows to download all results for
oth computational pipelines and displays multiple adjustable
isualizations. 

lignment pipeline 

ingmiR accepts inputs in the form of gzip compressed fastq
les with the option to include a metadata file for down-
tream analysis. In the current implementation, each fastq
le corresponds to one biological cell. Once uploaded, the
ata are extracted and the UMI sequence is added to the
astq file headers using a Python (version 3.12) script. It is
trimmed using cutadapt, version 2.10 ( 23 ), which utilizes
the Illumina Universal adapter sequence, pcr primer sequence
and truseq adapter sequences along with the adapter param-
eters uploaded with the fastq files. The details of the trim-
ming are stated in Table 1 . Fastqc, version 0.11.8 ( https://
www.bioinformatics.babraham.ac.uk/ projects/ fastqc/ ) is used
to perform quality metric checking for trimmed and raw reads.
For the miRNA quantification, the cutadapt cleaned reads are
mapped using bowtie, version 1.3.1 ( 24 ) against the human-
derived miRNA from miRBase V22 ( 25 ) with 15-bp flanks.
Fumi_tools, version 0.12.2 ( https://ccb- gitlab.cs.uni- saarland.
de/ tobias/ fumi _ tools ) is used to deduplicate the resulting bam
files and in-house scripts were used to produce count and
normalized matrices. Due to the recent emergence of trans-
fer RNA-derived fragments (tRF) as a noncoding RNA reg-
ulator and their structural similarity to miRNAs ( 26 ), tRFs
were detected by mapping against transfer RNA with bowtie,
subsequent deduplication with Fumi_tools and finally quanti-
fied using MINTmap 1.0 ( 27 ). The quantification for tRFs is
made separately available as downloadable count matrix. 

To quickly quantify all other classes of RNA,
the cutadapt cleaned reads are also mapped us-
ing the STAR algorithm, version 2.5.3a ( 28 ) against
an index of the human genome (GRCh38) using
the parameters –outSAMstrandField intronMotif –
outFilterMultimapNmax 50 –outFilterScoreMinOverLread
–outFilterMultimapScoreRange 0 –outFilterMatchNmin
18 –outFilterMatchNminOverLread 0 –
outFilterMismatchNoverLmax 0.04 –alignIntronMax 1.
Next, the generated bam file is compared against the
GRCh38 annotation in order quantify the reads mapped
to any gene in the human genome. The deduplicated and
mapped reads are compared against annotations extracted
from GENCODE v25, piRBase v1 and GtRNAdb v18.1,
overall containing rRNA, Mt rRNA, snoRNA, snRNA,
sRNA, scaRNA, scRNA, piRBase, misc RNA, ribozyme,
coding exons, lncRNA, ncRNA and protein-coding genes,
using the featureCounts [included in subread in version 1.5.2
( 29 )] using the options -F SAF -O -M -f –fracOverlap 0 -s
0. We perform a reads per million mapped miRNA normal-

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://ccb-gitlab.cs.uni-saarland.de/tobias/fumi_tools
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ization to account for the differences in reads per file and
coverage per miRNA. The trimming, mapping and feature
count statistics are compiled into a MultiQC summary report
in version 1.20.0 ( 30 ) and shared with the user. The rpmmm-
normalized matrix is used to produce further downstream
analyses according to the user selection. Both the MultiQC
and the expression matrix files (miRNAs, other RNAs and
tRFs) are available for download. 

Analysis pipeline 

In addition to the raw data, a metadata sheet must be up-
loaded containing important sample parameters (one sample
per row) and additional but optional descriptive information
(column variables) for each sample. The user can select cate-
gories from the metadata sheet for an optional analysis of the
miRNA features, as outlined in the following. To gain a deeper
understanding of the dataset, we employ principal component
analysis (PCA) and uniform manifold approximation and pro-
jection (UMAP) ( 31 ) as dimension reduction techniques. The
resulting scatter plots are colored according to selected cate-
gories. In addition, a UMAP analysis is available for various
preselected parameters to reveal higher order relationships be-
tween the samples and cells. We aim to discover batch effects
and biologically relevant parameters by performing a princi-
pal variance component analysis (PVCA) on the selected cat-
egories. The residual category sums the variance in the data
that cannot be associated with any of the categories provided
in the metadata sheet. 

A hierarchical clustering using the Euclidean distance and
a complete linkage is performed on the standardized rpmmm-
normalized log 2 -transformed expression values and on the
sample correlation values calculated according to either Pear-
son or Spearman. When using the expression values, we per-
formed clustering for different feature sets, all miRNAs, only
expressed miRNA and top miRNAs determined by the high-
est coefficient of variation. We also provide the correspond-
ing P -values calculated with the R function cor.test and ad-
justed with the Benjamini–Hochberg procedure, which con-
trols the false discovery rate at an alpha level, together with
a correlation plot indicating the significance of each value
( *** P < 0.001, ** P < 0.01 and 

* P < 0.05). All results are pre-
sented in the form of a heatmap. 

Performing DE analysis for all possible categories comes
at increased computational costs. Therefore, DE analysis is
performed in an interactive manner where the user selects a
comparison, and the results are calculated on demand. This
way, any comparison deemed valuable can be explored later in
more detail. Besides the fold changes, we provide the P -values
and adjusted P -values for t -tests and Wilcoxon signed-rank
tests. The user can choose between the Benjamini–Hochberg
procedure and the Bonferroni correction at a default alpha
level of 0.05, the latter of which is known for its strong regu-
lation of family-wise error levels. Additional measures include
the effect size according to Cohen’s d and the area under the
receiver operator curve. Graphical representations in the form
of volcano and scatter plots accompany the DE analysis in ta-
ble form. 

Web server implementation 

The web server providing the front end and the underlying
mechanics utilizes the Django Python web framework, ver-
sion 2.1.7 ( https:// djangoproject.com/ ) inside Docker contain-
ers ( https:// www.docker.com/ ). Following data submission, we
use the task queue manager Celery, version 5.2.7 ( http://docs. 
celeryproject.org ) together with the in-memory data structure 
store Redis, version 5.0 ( https:// redis.io/ ) to efficiently han- 
dle concurrent tasks. Both the alignment and analysis em- 
ploy a Snakemake pipeline, version 7.30.1 ( 32 ). Additionally,
the front end of the website uses Bootstrap, version 5.1.3 

( https:// getbootstrap.com/ ) and Font Awesome, version 6.1.1 

( https:// fontawesome.com/ ) for design purposes, as well as 
jQuery, version 3.7.1 ( https:// jquery.com/ ). 

Results 

To test the capabilities of our web server, raw data from a pre- 
viously published high-quality single-cell miRNA-seq dataset 
were re-analyzed with SingmiR ( 18 ). This study covers differ- 
ent sample types, of which we first process the samples from 

the second stage. In detail, these are 48 samples equal to 48 

single-cell profiles obtained from the human breast cancer cell 
line MCF7, generated with eight different protocols (six sam- 
ples each). To visualize expression profiles, we consider the re- 
sults of the downstream analysis module. In addition to this,
users have several quality measurements available through the 
MultiQC report. We restrict our re-analysis here to a single 
category also examined by the original study, i.e. comparing 
different versions of the experimental protocol. PCA (Figure 
1 A) and UMAP (Figure 1 B) provide an initial overview of 
the sample variability and clustering. Color legends of UMAP 

plots can be modified by various preselected parameters; to 

exemplify this, we show a single parameter specification. We 
recognize a clustering for some of the protocols, for exam- 
ple for the protocol ‘SBN_CL’. The PVCA indicates that the 
largest variance in the data can be found for the combination 

of the 5 

′ adapter and the method (33.8%) variables, next to 

the combination of the 5 

′ adapter with the UMI length (23%) 
(Figure 1 C). A clustered heatmap of the log 2 -transformed ex- 
pression reveals miRNA clusters across the samples / cells. Sep- 
arately clustered heatmaps for different feature sets, i.e. us- 
ing all given miRNAs, only the expressed miRNAs or the top 

miRNAs based on the highest variance across all cells, respec- 
tively , are computed automatically . Annotation bars above the 
plot highlight the sample / cell clustering of the individual cat- 
egories for the top 250 miRNAs (see the ‘Materials and meth- 
ods’ section) (Figure 1 D). To investigate cell similarity, we cal- 
culate the Pearson correlation values for all miRNAs between 

all cell combinations and display a row- and column-clustered 

heatmap (Figure 1 E). We observe a strong correlation between 

samples of the protocols ‘4N’, ‘SBN_CL’, ‘SBN’ and ‘SB’. DE 

analysis can be performed on demand for any category of in- 
terest with at least two groups. We compare ‘SBN_CL’ against 
‘4N_CL’ using volcano plots for fold change against raw and 

adjusted P -values of a t -test (Figure 1 F and G) and a Wilcoxon 

rank-sum test (Figure 1 H and I). In addition, the effect size,
which is calculated using Cohen’s d , is plotted against the fold 

change (Figure 1 J) and indicates a considerable upregulation 

of seven miRNAs for the protocol ‘SBN_CL’. Yet only one 
significantly deregulated miRNA (hsa-miR-21-5p) remains for 
the adjusted P -value from the Wilcoxon rank-sum test and five 
significant deregulated miRNAs (hsa-miR -182-5p, hsa-miR - 
25-3p, hsa-miR -92a-3p, hsa-miR -183-5p and hsa-miR-21-5p) 
in the case of the t -test. 

In the study by Hücker et al., another high-quality dataset is 
presented, consisting of 48 samples from 8 different cell lines 
(6 samples each), which was obtained using the most promis- 
ing protocol ‘SBN_CL’. Thus, we also use this dataset to test 

https://djangoproject.com/
https://www.docker.com/
http://docs.celeryproject.org
https://redis.io/
https://getbootstrap.com/
https://fontawesome.com/
https://jquery.com/
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Figure 1. SingmiR results of the stage 2 dataset from ( 18 ) using the downstream analysis module. The comparison selected for the DE analysis is 
protocol ‘SBN CL’ versus ‘4N CL’. ( A ) Results of PCA. ( B ) Results of a UMAP analy sis. ( C ) R esults of the PVCA. ( D ) Results of the hierarchical clustering of 
the top 250 standardized log 2 -transformed rpmmm-normalized miRNA values selected by the coefficient of variation. ( E ) Sample correlation calculated 
with Pearson and grouped by hierarchical clustering. ( F ) Volcano plot of the raw P -values from a t -test. ( G ) Volcano plot of the adjusted P -values from a 
t -test (used adjusting method is the Benjamini–Hochberg procedure). ( H ) Volcano plot of the raw P -values from a Wilcoxon rank-sum test. ( I ) Volcano plot 
of the adjusted P -values from a Wilcoxon rank-sum test (used adjusting method is the Benjamini–Hochberg procedure). ( J ) Scatter plot showing the 
effect size (Cohen’s d ) and the log 2 -transformed fold change. 
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Figure 2. SingmiR results of the first stage 3 dataset from ( 18 ) using the downstream analysis module. The comparison selected for the DE analysis is 
cell line ‘HT29’ versus ‘KG1’. ( A ) Results of PCA. ( B ) Results of a UMAP analysis. ( C ) Results of the hierarchical clustering of the expressed standardized 
log 2 -transformed miRNAs selected by the coefficient of variation. ( D ) Sample correlation calculated with Pearson and grouped by hierarchical clustering. 
( E ) Volcano plot of the raw P -values from a t -test. ( F ) Volcano plot of the adjusted P -values from a t -test (used adjusting method is the 
Benjamini–Hochberg procedure). ( G ) Volcano plot of the raw P -values from a Wilcoxon rank-sum test. ( H ) Volcano plot of the adjusted P -values from a 
Wilco x on rank-sum test (used adjusting method is the Benjamini–Hochberg procedure). ( I ) Scatter plot showing the effect size (Cohen’s d ) and the 
log 2 -transf ormed f old change. 
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ur web server. The resulting embedding for PCA and UMAP
hows a good separation of the samples by cell line origin (Fig-
re 2 A and B). This is also reflected in the clustering of the ex-
ression values and the correlation values (Figure 2 C and D).
s for this dataset there is only one categorical metadata vari-
ble with more than one level available, no PVCA can be per-
ormed. A DE analysis between the two cell lines ‘HT29’ and
KG1’ shows strong and significant fold changes, thus yield-
ng numerous significantly deregulated miRNAs (Figure 2 E–
). The results table for the comparison of the cell line ‘HT29’
o all other cell lines (‘A549’, ‘BJ’, ‘HepG2’, ‘Jurkat’, ‘KG1’,
REH’ and ‘THP-1’) is included in the supplementary mate-
ial ( Supplementary Table S1 ). By filtering for features that
re significantly deregulated across all comparisons, we ob-
ain three upregulated miRNAs (hsa-miRNA-200b-3p, hsa-
iRNA-10a-5p and hsa-miRNA-141-3p). Remarkably, these
iRNAs have been previously associated with human disease,
amely in the context of colorectal and ovarian cancers ( 33–
6 ). Consequently, it is plausible to observe a high expression
redominantly in ‘HT29’, which had been derived from a hu-
an colon adenocarcinoma ( 37–40 ). While not pursued fur-

her in this work, the presented downstream analysis can serve
s a starting point for further investigations. 

iscussion 

he current absence of a graphical user interface (GUI) based
ingle-cell RNA-seq analysis pipeline for noncoding RNAs so
ar required researchers to have sufficient computational ex-
ertise to eventually generate reliable results. As a compre-
ensive best-practice and easy-to-use workflow, the here pre-
ented web server will hopefully enhance comparability be-
ween novel datasets and facilitate fast pilot studies where the
nalysis is currently conducted by the experimenter ( 41 ,42 ).
fter having demonstrated the capabilities of SingmiR with
reviously published datasets ( 18 ), the here presented web
erver is well positioned to serve as a useful tool for upcom-
ng and larger single-cell miRNA-seq studies. Additionally, the
evelopment of techniques that aim to predict miRNA activ-
ty based on single-cell mRNA data ( 43 ) indicates interest in
his field. Recent advancements in sequencing technology ( 44 )
nd the need to study miRNA activity in complex tissues con-
ribute to the increasing emergence of single-cell studies ( 45 ).
herefore, we anticipate that our server will not only simplify

he analysis of initial pilot stage projects but also serve as a
tepping stone to a greater understanding of the single-cell
iRNA landscape. Therefore, we hope to provide a useful

ool to enable benchmarking studies for single-cell miRNA-
eq, as previously done for small RNA-seq methods ( 11 ).

hile we currently only support low-throughput sequencing
ata, generating up to a few hundred thousand reads for one
ell replicate per fastq file, the expansion to high-throughput
ata marks a promising way forward, supporting novel high-
hroughput protocols once they have been established in the
ingle-cell community. To further advance the development of
ingmiR, we encourage the community to provide us feedback
nd to propose new features of interest. 

ata availability 

ata for the case study were made available by Hücker et al.
n European Nucleotide Archive ( https:// www.ebi.ac.uk/ ena/
rowser/home ) under the project PRJNA659784. 
Supplementary data 

Supplementary Data are available at NAR Online. 
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