Please use this identifier to cite or link to this item: doi:10.22028/D291-42444
Title: EpiSegMix: a flexible distribution hidden Markov model with duration modeling for chromatin state discovery
Author(s): Schmitz, Johanna Elena
Aggarwal, Nihit
Laufer, Lukas
Walter, Jörn
Salhab, Abdulrahman
Rahmann, Sven
Language: English
Title: Bioinformatics
Volume: 40
Issue: 4
Publisher/Platform: Oxford University Press
Year of Publication: 2024
DDC notations: 004 Computer science, internet
500 Science
Publikation type: Journal Article
Abstract: Motivation: Automated chromatin segmentation based on ChIP-seq (chromatin immunoprecipitation followed by sequencing) data reveals insights into the epigenetic regulation of chromatin accessibility. Existing segmentation methods are constrained by simplifying modeling assumptions, which may have a negative impact on the segmentation quality. Results: We introduce EpiSegMix, a novel segmentation method based on a hidden Markov model with flexible read count distribution types and state duration modeling, allowing for a more flexible modeling of both histone signals and segment lengths. In a comparison with existing tools, ChromHMM, Segway, and EpiCSeg, we show that EpiSegMix is more predictive of cell biology, such as gene expression. Its flexible framework enables it to fit an accurate probabilistic model, which has the potential to increase the biological interpretability of chromatin states. Availability and implementation: Source code: https://gitlab.com/rahmannlab/episegmix.
DOI of the first publication: 10.1093/bioinformatics/btae178
URL of the first publication: https://doi.org/10.1093/bioinformatics/btae178
Link to this record: urn:nbn:de:bsz:291--ds-424449
hdl:20.500.11880/38092
http://dx.doi.org/10.22028/D291-42444
ISSN: 1367-4811
Date of registration: 25-Jul-2024
Description of the related object: Supplementary data
Related object: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/40/4/10.1093_bioinformatics_btae178/1/btae178_supplementary_data.pdf?Expires=1724769975&Signature=n57rmF5nWaG3rRPqUyLQOsB1K02OEHPVPlzQisNeZtkDYLrRse8ROQWtRNgdTW9jjNM2qHHwPj4Cb5rVyu8qHzZGoN~oGyNoU7Y9lC4wFQrKBv7ZWwlh95xBtrIpFI0SGxayjYNLUU1KvMlw2fhTr8l0SOSkpb0MOaYWpVZu470vamc7uBxgCXO8~OMk0zX~oVuLKZI5I2f8Lrv5WHxigStraLpZBECIIG8kAnVfR5uMwFfkvO4CTg6C~j89Rub9fcZmMYLnVSqphWdTc6B0NmlhTmxjrT5bgnIvHRwcZeIKPUaypBXs0wOkQOvpyFLYWR7zuj7YZ1CQa0l9ImVhXQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
Faculty: MI - Fakultät für Mathematik und Informatik
NT - Naturwissenschaftlich- Technische Fakultät
Department: MI - Informatik
NT - Biowissenschaften
Professorship: MI - Prof. Dr. Sven Rahmann
NT - Prof. Dr. Jörn Walter
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
btae178.pdf3,66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons