Please use this identifier to cite or link to this item:
doi:10.22028/D291-42444
Title: | EpiSegMix: a flexible distribution hidden Markov model with duration modeling for chromatin state discovery |
Author(s): | Schmitz, Johanna Elena Aggarwal, Nihit Laufer, Lukas Walter, Jörn Salhab, Abdulrahman Rahmann, Sven |
Language: | English |
Title: | Bioinformatics |
Volume: | 40 |
Issue: | 4 |
Publisher/Platform: | Oxford University Press |
Year of Publication: | 2024 |
DDC notations: | 004 Computer science, internet 500 Science |
Publikation type: | Journal Article |
Abstract: | Motivation: Automated chromatin segmentation based on ChIP-seq (chromatin immunoprecipitation followed by sequencing) data reveals insights into the epigenetic regulation of chromatin accessibility. Existing segmentation methods are constrained by simplifying modeling assumptions, which may have a negative impact on the segmentation quality. Results: We introduce EpiSegMix, a novel segmentation method based on a hidden Markov model with flexible read count distribution types and state duration modeling, allowing for a more flexible modeling of both histone signals and segment lengths. In a comparison with existing tools, ChromHMM, Segway, and EpiCSeg, we show that EpiSegMix is more predictive of cell biology, such as gene expression. Its flexible framework enables it to fit an accurate probabilistic model, which has the potential to increase the biological interpretability of chromatin states. Availability and implementation: Source code: https://gitlab.com/rahmannlab/episegmix. |
DOI of the first publication: | 10.1093/bioinformatics/btae178 |
URL of the first publication: | https://doi.org/10.1093/bioinformatics/btae178 |
Link to this record: | urn:nbn:de:bsz:291--ds-424449 hdl:20.500.11880/38092 http://dx.doi.org/10.22028/D291-42444 |
ISSN: | 1367-4811 |
Date of registration: | 25-Jul-2024 |
Description of the related object: | Supplementary data |
Related object: | https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/40/4/10.1093_bioinformatics_btae178/1/btae178_supplementary_data.pdf?Expires=1724769975&Signature=n57rmF5nWaG3rRPqUyLQOsB1K02OEHPVPlzQisNeZtkDYLrRse8ROQWtRNgdTW9jjNM2qHHwPj4Cb5rVyu8qHzZGoN~oGyNoU7Y9lC4wFQrKBv7ZWwlh95xBtrIpFI0SGxayjYNLUU1KvMlw2fhTr8l0SOSkpb0MOaYWpVZu470vamc7uBxgCXO8~OMk0zX~oVuLKZI5I2f8Lrv5WHxigStraLpZBECIIG8kAnVfR5uMwFfkvO4CTg6C~j89Rub9fcZmMYLnVSqphWdTc6B0NmlhTmxjrT5bgnIvHRwcZeIKPUaypBXs0wOkQOvpyFLYWR7zuj7YZ1CQa0l9ImVhXQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA |
Faculty: | MI - Fakultät für Mathematik und Informatik NT - Naturwissenschaftlich- Technische Fakultät |
Department: | MI - Informatik NT - Biowissenschaften |
Professorship: | MI - Prof. Dr. Sven Rahmann NT - Prof. Dr. Jörn Walter |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
btae178.pdf | 3,66 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License