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Abstract 
Motivation: Automated chromatin segmentation based on ChIP-seq (chromatin immunoprecipitation followed by sequencing) data reveals 
insights into the epigenetic regulation of chromatin accessibility. Existing segmentation methods are constrained by simplifying modeling 
assumptions, which may have a negative impact on the segmentation quality.
Results: We introduce EpiSegMix, a novel segmentation method based on a hidden Markov model with flexible read count distribution types 
and state duration modeling, allowing for a more flexible modeling of both histone signals and segment lengths. In a comparison with existing 
tools, ChromHMM, Segway, and EpiCSeg, we show that EpiSegMix is more predictive of cell biology, such as gene expression. Its flexible 
framework enables it to fit an accurate probabilistic model, which has the potential to increase the biological interpretability of chromatin states.
Availability and implementation: Source code: https://gitlab.com/rahmannlab/episegmix.

1 Introduction
Each cell in a eukaryotic organism contains the same genetic 
information to build all required structural and functional 
gene products. However, cell-to-cell variation is essential for 
having specialized tissues with distinct physiological func-
tions and to adapt to environmental changes (Cavalli and 
Heard 2019, Carter and Zhao 2021). This necessitates an ad-
ditional layer of processes regulating gene expression to en-
able cell differentiation and to maintain cellular identities 
throughout cell divisions (Allis and Jenuwein 2016). Among 
the mechanisms tightly regulating gene expression are tran-
scription factors and epigenetic modifications, like DNA 
methylation and histone modifications.

1.1 Histone modifications
With increasing knowledge about the role of histone modifi-
cations in altering the chromatin structure and DNA accessi-
bility, it became apparent that different histone modifications 
are enriched in chromatin regions with distinct functional 
roles (Baker 2011). For example, modification H3K4me3 [in 
histone protein H3, the lysine at position 4 (K4) is trimethy-
lated (me3)] is enriched in promoters and can be linked to 
transcriptional activation; H3K36me3 is enriched in active 
genes, and H3K27me3 can be associated with gene repression 

by the Polycomb protein complex (Blackledge and Klose 
2021). Densely packed chromatin, called heterochromatin, is 
typically characterized by low levels of acetylation, whereas 
open, actively transcribed chromatin, called euchromatin, 
shows enrichment of acetylated lysine (Bannister and 
Kouzarides 2011). Combinatorial patterns of multiple his-
tone modifications allow us to characterize so-called chroma-
tin states that describe the different functional states of both 
coding and noncoding regions in the genome (Baker 2011).

1.2 Chromatin immunoprecipitation followed 
by sequencing
Chromatin immunoprecipitation followed by sequencing 
(ChIP-seq) enables the generation of genome-wide histone 
maps in high-throughput experiments (Barski et al. 2007). 
For ChIP-seq, DNA-binding proteins of interest, such as spe-
cifically modified histones or transcription factors, are tagged 
with specific antibodies. After chromatin shearing, DNA 
fragments bound to the desired proteins or protein- 
modifications are captured and the bound DNA is extracted 
for sequencing. Reads are mapped to the reference genome to 
infer the positioning of histone marks across the genome 
(Park 2009). The positional enrichment of reads is compro-
mised by a certain amount of noise.
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1.3 Probabilistic models for segmentation
The availability of genome-wide ChIP-seq data led to the de-
velopment of automated methods for genome segmentation 
and annotation. These methods use a probabilistic model to 
detect recurrent patterns of epigenetic marks using the 
aligned reads to determine the signal intensity at different 
positions in the genome (Fig. 1). HMMSeg (Day et al. 2007), 
ChromHMM (Ernst and Kellis 2010), and EpiCSeg 
(Mammana and Chung 2015) are based on hidden Markov 
models (HMMs), Segway, and Segway 2.0 (Chan et al. 2018) 
fit a Gaussian mixture model using a dynamic Bayesian 
network and Daneshpajouh et al. (2022) developed a state– 
space model assuming that the observed data is a linear func-
tion of the state-specific parameter matrix plus Gaussian 
noise. Marco et al. (2017) proposed a hierarchical HMM to 
simultaneously generate two segmentations at different 
length scales. The first (nucleosome level) segmentation 

works similarly to ChromHHM and captures histone modifi-
cation patterns. The second (domain level) segmentation 
interprets sequences of nucleosome states (e.g. a super- 
enhancer domain state combining strong, weak, and flanking 
enhancer nucleosome states). In the present work, we focus 
on the accurate modeling of the nucleosome level. For a more 
comprehensive review, we refer to Libbrecht et al. (2021).

1.4 HMMs
Multivariate HMMs capture both combinatorial patterns of 
multiple histone marks and adjacency relations between dif-
ferent genomic elements, which makes them a prominent tool 
for chromatin state discovery (Lee and Park 2014). An 
HMM describes two stochastic processes, an invisible 
Markov chain consisting of a finite set of hidden states and a 
visible process of observable signals. Here, the hidden states 
correspond to chromatin states and the observable signals to 

Figure 1. Chromatin segmentation: the reads of a ChIP-seq experiment are converted into a count matrix by counting the number of reads mapping to 
each nonoverlapping 200-bp genomic interval. The states of a multivariate HMM capture patterns in the multivariate read count distribution of the histone 
marks, and the transition probabilities between states capture the relations between adjacent chromatin states.
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the observed read count vector per genomic region. Each hid-
den state has state-specific probabilities of emitting an obser-
vation, called emission probabilities. For chromatin 
segmentation, the genome is divided into nonoverlapping 
intervals (of typical length 200 bp), such that each observa-
tion is a vector of counts corresponding to the number of 
reads assigned to the interval per histone mark. Thus, the 
emission probabilities of a single hidden state capture a spe-
cific combinatorial pattern of multiple histone marks. 
Different states may hence define different functional geno-
mic elements, such as promoters, enhancers or gene bodies. 
In addition, the relations between adjacent chromatin states 
are modeled via transition probabilities, which determine, for 
each state, the probabilities to either stay in the same state or 
to transition to another state.

1.5 Modeling assumptions
The ability of an HMM to detect patterns that correspond to 
biologically meaningful chromatin states is constrained by 
the modeling assumptions underlying the emission and tran-
sition probabilities. These assumptions are thus a distinguish-
ing feature of existing HMM-based methods. For example, 
ChromHMM fits an HMM on binarized data (high versus 
low read count), where the emission probabilities are as-
sumed to be independent Bernoulli experiments, and EpiCSeg 
models the emission probabilities using a Negative 
Multinomial distribution. Previous analyses of ChIP-seq data 
have shown that the read count distributions in some states 
and for some histone marks may be overdispersed and 
skewed, partly caused by differential protection against soni-
cation, unequal binding affinity of distinct antibodies, se-
quence dependent PCR amplification and discrepancies when 
mapping to repeat-rich regions, which all introduce bias to 
the data (Diaz et al. 2012). Not all observed combinations of 
overdispersion and skewness can be captured by the com-
monly used probability distribution families, such as the 
Negative Binomial distribution. Furthermore, Beacon et al. 
(2021) showed that histone marks that are enriched in short 
domains, like promoters or TSS, are typically characterized 
by narrow peaks with high signal intensities, while histone 
marks enriched in broad domains, like heterochromatic 
regions, have lower signal intensities. Thus, regions in the ge-
nome covered by the same chromatin state may have different 
lengths, e.g. short promoters and long heterochromatic 
regions. Existing tools only model a single duration distribu-
tion type (Geometric) with exponentially decreasing proba-
bilities, and can only fit the mean length of a region, but not 
its shape to the observed data. Hyperparameters, such as in-
troduced by Segway, allow to place a prior on the expected 
segment length, but are still prone to the above limitations 
due to the unchanged geometric distribution type (Hoffman 
et al. 2012). Furthermore, they are either limited to the same 
parameters for all states or can be set for each numeric label, 
which may require extensive manual fine tuning.

1.6 Novel contributions
We propose a new flexible HMM architecture that relaxes 
the modeling assumptions of existing HMM-based methods 
in two ways. First, we allow to choose, for each histone mod-
ification, a different discrete distribution type from a broad 
selection (Table 1). This allows us to model more flexible 
read count distribution shapes, including overdispersed and 
skewed distributions. Second, we provide flexible duration 

modeling (using an automated state extension technique) to 
capture the characteristics of broad and narrow chromatin 
domains in a single segmentation with nucleosome resolu-
tion. By applying our method to publicly available ChIP-seq 
data, we show that such a flexible HMM leads to a better 
model fit and may increase segmentation accuracy and bio-
logical interpretability.

2 Methods
2.1 Probabilistic model
An HMM is formally defined as a quintuple ðN; π;Σ;A;BÞ, 
where f1;2; . . . ;Ng is a finite set of hidden states, π is a prob-
ability vector with the starting probabilities for each state, Σ 
is a set of observable emission values, A is an N × N matrix, 
where each entry aij denotes the transition probability to 
move from state i to state j, and B ¼ ðbjð�Þ j j 2 f1; 2; . . . ;NgÞ
is the complete collection of parameters required to calculate 
the emission probabilities of an observation in each state j 
(Lee and Park 2014). For a sample with T observations or 
time points, the collection of random variables is thus given 
by (O, Q), where O ¼ ðO1; . . . ;OTÞ denotes the observed se-
quence and Q ¼ ðQ1; . . . ;QTÞ denotes the hidden 
state sequence.

Due to the HMM independence assumptions [Q is a 
Markov chain, Ot is conditionally independent of everything 
else, given Qt; Bilmes (1998)], the probability that an HMM 
with parameters θ ¼ ðπ;A;BÞ generates the combination 
ðQ ¼ q;O ¼ oÞ is 

PθðQ ¼ q;O ¼ oÞ ¼ πq0

YT

t¼1

aqt−1qt bqtðotÞ: (1) 

For given fixed O¼o, the Viterbi algorithm (Rabiner 
1989) determines the state sequence q that maximizes this 
probability (for fixed transition and emission probabilities).

For chromatin segmentation, the emission alphabet is given 
by the multivariate, countable infinite set 

Σ ¼ fðx1; . . . ;xMÞ jxm 2 N0;m 2 f1; . . . ;Mgg; (2) 

where M is the dimension of the emission alphabet, corre-
sponding to the number of histone modifications in the input 
data. Hence, the natural choice is to model the emission 
probabilities using a multivariate discrete distribution. Under 
the assumption that the read counts of all histone modifica-
tions are conditionally independent of each other given a 
state, the emission probability for an observation ot ¼

ðot1; . . . ;otMÞ in state j is given by 

Table 1. Overview of available discrete distributions (Johnson 
et al. 1993).

Name Parameters

Binomial n 2 N; p 2 ½0; 1�
Poisson λ 2 Rþ
Negative binomial r 2 Rþ; p 2 ½0; 1�
Beta binomial n 2 N; α 2 Rþ; β 2 Rþ
Beta negative binomial r 2 Rþ; α 2 Rþ; β 2 Rþ
Sichel μ 2 Rþ; σ 2 Rþ; v 2 R
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bjðotÞ ¼ PθðOt ¼ ot jQt ¼ jÞ (3) 

¼ PθðOt1 ¼ ot1; . . . ;OtM ¼ otM jQt ¼ jÞ (4) 

¼
YM

m¼1

PθðOtm ¼ otm jQt ¼ jÞ: (5) 

This leads to a flexible framework in which different distri-
bution types may be selected to model the read counts of dis-
tinct histone marks. Table 1 gives an overview over the 
univariate discrete distributions available in EpiSegMix (see 
Supplementary Section S1 for details). Distributions with 
more parameters are more flexible and hence lead to a more 
accurate model fit: One-parameter distributions (Poisson) 
may fit the mean of the observed read counts, but not vari-
ance or skewness; two-parameter distributions (e.g. Negative 
Binomial) may fit both mean and variance but not skewness; 
three-parameter distributions may fit all three moments. 
With data from several thousand genomic intervals per state, 
there is no danger of overfitting three parameters. Still, each 
distribution has its own limitations and dependencies be-
tween moments, so having a variety of options is beneficial. 
The best performing distribution may vary for histone modi-
fications and between experiments with different data qual-
ity. Therefore, we provide a workflow to find for each mark 
the distribution that maximizes the log-likelihood of a three- 
state HMM with univariate emissions. For further informa-
tion, see Supplementary Section S4.

2.2 Duration modeling
The typical HMM topology is a fully connected graph, in-
cluding self-loops on states. Hence the sojourn time X in a 
state follows a Geometric distribution PðX ¼ kÞ ¼
p � ð1−pÞk−1 for some p>0, with exponentially decreasing 
probabilities for longer durations (Rabiner 1989). Although 
the mean of a Geometric distribution can be made arbitrarily 
large, the variance increases with it and the mode stays at 
PðX ¼ 1Þ. Geometric distributions model durations that are 
short with higher probability, but have limited flexibility 
when modeling longer durations with a mode far away from 
1. We therefore propose to use an extended-state HMM ar-
chitecture, in which each state is internally represented as a 
sub-HMM. Each sub-HMM has a linear left-to-right topol-
ogy with a different number of sub-states, but with the addi-
tional constraints that all sub-states have the same emission 
probabilities and same self-transition probabilities (Russell 
and Cook 1987) (see Fig. 2A). With this topology, the state 
duration is the sum of a number of independent 
Geometrically distributed random variables, which has a 
Negative Binomial distribution. It has two parameters: the 
state-exit probability P (same as for a Geometric distribu-
tion), and the copy number r (where r¼ 1 gives the 
Geometric distribution). In contrast to a Geometric distribu-
tion, the mean and variance of a Negative Binomial distribu-
tion can be controlled independently, and the mode can be 
placed at an arbitrary duration (Fig. 2B). Therefore, both 
long and short durations can be modeled flexibly.

The number of sub-states is fitted automatically during pa-
rameter estimation. Starting from a standard ergodic topol-
ogy (each state is represented by one sub-state), the segment 
lengths are computed for each state under the current model. 

The number of sub-states is then given by the estimated pa-
rameter r of a Negative Binomial distribution under the addi-
tional constraint that r is a natural number between 1 and 5. 
Each state may hence have a different number of sub-states 
depending on the observed segment lengths. By default, the 
topology is adjusted twice. Before the adjustments, the 
parameters of the HMM are estimated for a fixed number of 
iterations (default 5) and until convergence for the 
final topology.

2.3 Parameter estimation
Before an HMM can be used to estimate the state sequence, 
its parameters (transition and emission probabilities) must be 
estimated. As we typically do not have labeled training data, 
parameter estimation must proceed in an unsupervised man-
ner using the Baum–Welch algorithm, which is a concretiza-
tion of the general expectation maximization (EM) algorithm 
tailored to the structure of HMMs (Rabiner 1989). It alter-
nates between estimating the model parameters (M-step), 
given a (fuzzy or probabilistic) assignment of observations to 
states, and re-estimating the state membership probabilities 
of each observation (E-step) until convergence (details in 
Supplementary Section S1).

3 Implementation
The flexible distribution HMM and parameter estimation is 
implemented in Cþþ as a command-line tool EpiSegMix. 
Its source code is at https://gitlab.com/rahmann 
lab/episegmix.

All steps of the surrounding workflow are incorporated in 
a Snakemake workflow (M€older et al. 2021).

By default, we estimate parameters on the ENCODE pilot 
regions which contain a good representation of the whole ge-
nome and are thus commonly used to fit the model (Hoffman 
et al. 2012, Daneshpajouh et al. 2022). Alternatively, the 
user may specify a list of chromosomes to be used for model 
fitting. The segmentation is performed genome-wide.

The main output of chromatin segmentation is a file that 
assigns one state to each position in the genome, and an 
HTML report with plots that characterize the model and seg-
mentation, enabling their biological interpretation. For exam-
ple, the heatmap showing the normalized histone 
modification intensities of each state (as in Fig. 6B) is central 
to determine the genomic function of the states.

4 Results
We evaluated EpiSegMix on publicly available ChIP-seq data 
for the human cell lines K562, HepG2, GM12878, IMR90, 
H1, and SJCRH30 provided by the ENCODE consortium 
(Dunham et al. 2012) using the most recently processed data. 
With the selected cell lines, we evaluate our method on ChIP- 
seq experiments that were performed over the last decade 
(from 2010 to 2020) with different data properties (e.g. the 
mapped read length ranges from 36 to 100 bp). To analyze 
the robustness of all methods, we generated the count matrix 
for two replicate experiments each (see Supplementary 
Section S6). To reproduce the results, all accession numbers 
are provided in Supplementary Section S9 and the script to 
create the count matrix is part of the code repository. We re-
stricted our analysis to the six core histone marks H3K9me3, 
H3K27me3, H3K36me3, H3K4me1, H3K4me3, and 
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H3K27ac defined by the IHEC consortium (Bujold 
et al. 2016).

Since chromatin segmentation is an unsupervised method 
and no ground truth is available, we evaluate the perfor-
mance of EpiSegMix by comparing it to three established 
chromatin segmentation tools ChromHMM (Ernst and Kellis 
2012), EpiCSeg (Mammana and Chung 2015), and Segway 
(Chan et al. 2018).

We first perform a quantitative comparison by evaluating 
how well the different methods can predict gene expression 
and ATAC-seq data. Afterwards, we analyze how the differ-
ent methods reflect known genome biology by showing fur-
ther characteristic plots for one exemplary dataset.

4.1 Data processing
In a preprocessing step, we convert the aligned reads into a 
count matrix using the bamsignals package (Mammana and 
Helmuth 2023). In the count matrix, each row corresponds 
to a consecutive, nonoverlapping region with a fixed window 
size (default 200 base pairs), called bins, and each column 
corresponds to a distinct histone mark. Each read is assigned 
to exactly one genomic bin depending on the position of its 
5’ end.

For all methods, we fitted a 10-state model. EpiSegMix 
and Segway were trained on the ENCODE pilot regions of 
hg38. For EpiSegMix, three-state HMMs were fitted individ-
ually for each mark and different distributions. We then 

chose the distribution with the highest log-likelihood, listed 
in Supplementary Section 4. For Segway, the resolution was 
set to 200 bp, the track-weight to 0.01, and the segtransition- 
weight-scale and prior-strength to 1. For ChromHMM and 
EpiCSeg, the default parameters were used (200 bp resolu-
tion, 10-state model).

4.2 Advantages of flexible distribution modeling
To show the advantages of flexible emission and duration 
distribution types for chromatin segmentation, we compare 
fitted models using different emission distributions and with 
and without duration modeling. Narrow marks, such as 
H3K4me3, often have skewed read count distributions. 
Fitting the Negative Binomial (2 parameters) and Sichel (3 
parameters) distribution to the read counts of H3K4me3 
shows the limitation of the Negative Binomial distributions 
to model highly skewed and overdispersed data (Fig. 3A). 
Further evaluation of the effect that emission modeling has 
on the segmentation is provided in Supplementary Section S4.

Figure 3B shows that the state duration, determining the 
segment length (number of consecutive bins assigned to the 
same state), does not follow a Geometric distribution for 
most chromatin states. In comparison, the Negative Binomial 
distribution, as fitted by our flexible duration model, leads to 
a more accurate description of the real segment length 
distribution.

Figure 2. Duration modeling. (A) Extended-state HMM with different numbers of states in the sub-HMMs for a univariate four-state HMM. (B) 
Comparison of state duration distribution for a state in a classical HMM (r¼1) and in a topology HMM with two or four sub-states to achieve the same 
mean of 5 (left) or 20 (right).
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4.3 Evaluation of gene expression prediction
Since a biologically meaningful segmentation should have 
states that correlate with different gene expression levels, we 
compared how well the chromatin states of EpiSegMix, 
EpiCSeg, ChromHMM, and Segway can predict gene expres-
sion. To measure the gene expression in each 200 bp bin 
that contains (part of) a protein-coding gene, we used total 

RNA-seq experiments for the different cell lines provided 
by ENCODE and assigned each bin the log(FPKM þ 1) 
normalized expression value of the gene (FPKM: fragments 
per kilobase of transcript per million mapped reads). We per-
formed linear regression with the state labels as categorical 
predictors, i.e. for each bin i’s true expression xi, we used the 
state-specific mean expression as predictor x̂i and measured 

A

B

Figure 3. Flexible emission and duration modeling. The histograms show the sample distribution and the curves show the theoretical distribution fitted 
by the model. (A) Results of fitting a three-state HMM to the mark H3K4me3 using the Negative Binomial and Sichel distribution (for the state with high 
H3K4me3 in HepG2_1). (B) State duration in the HepG2_1 promoter state for an HMM with a classic (Geometric) and extended (Negative 
Binomial) topology.

Figure 4. Prediction of transcription levels from chromatin state labels: coefficient of determination R2 (y-axis) using state labels as categorical predictors 
for logðFPKMþ1Þ expression values for the different methods (x-axis) on different cell lines (color). Black lines indicate mean R2 for each method.
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the mean quadratic regression error versus the mean 
quadratic error using the global mean �x as predictor 
and computed the coefficient of determination R2 ¼

1−½
P

i ðxi−x̂iÞ
2
�=½
P

i ðxi−�xÞ2� (between 0 and 1, where 1 is 
perfect). The R2 values vary for the different cell lines, which 
can partly be explained by the unequal data quality. Figure 4 
compares the R2 values of the different methods across cell 
lines. On average, EpiSegMix has the highest predictive 
power among the methods.

4.4 Evaluation of ATAC-seq prediction
We performed a similar analysis predicting ATAC-seq read 
counts instead of gene expression levels for all cell lines with 
available ATAC-seq experiments. We counted how many 
reads of the ATAC-seq experiment map to each nonoverlap-
ping 200 bp bin in the genome to generate a count matrix in 
the same way as for the histone counts. In the same way as 
for gene expression, we performed linear regression to predict 
log-transformed ATAC-seq read counts using the state labels 
as categorical predictors. Since ATAC-seq measures the chro-
matin accessibility, active states, like promoter or transcrip-
tion states, should be predictive of high ATAC-seq counts, 
while heterochromatic states should be predictive of low 
ATAC-seq counts. Figure 5 shows that EpiSegMix and 
EpiCSeg have a similar predictive power of chromatin acces-
sibility, as measured by the coefficient of determination R2, 
while ChromHMM and Segway have lower R2 scores 
on average.

4.5 Evaluation of reflected genome biology
We perform a qualitative analysis of the different methods by 
comparing the similarities of the genome-wide segmentation 
and functional assignment of states, their genome coverage, 
overall segment length, and enrichment around protein cod-
ing genes (Fig. 6). An in-depth example (genome browser 
view) is provided in Supplementary Section S7. For better 
comparability, we manually assigned a label that best 
describes the biological function of the state to each numeri-
cal state ID. This facilitates the comparison of state assign-
ments between methods. A description of each label is given 
in Fig. 6E and Supplementary Section S8.

Figure 6A shows that the states assigned by the count- 
based methods EpiSegMix, EpiCSeg, and Segway have a 
similar genome coverage and high overlap between state 
assignments. Moreover, all three methods EpiSegMix, 
EpiCSeg, and Segway provide a deeper epigenomic distinc-
tion of heterochromatic regions that ChromHMM aggregates 
into a single state. EpiSegMix discriminates a “no signal” 
state from a strong and a weak heterochromatic state that 
show distinctive patterns of enriched histone marks. Thereby, 
EpiSegMix better captures transitions from closed to open 
chromatin as compared to ChromHMM (Supplementary 
Section S7). This distinction is also supported by Segway and 
EpiCSeg. In addition, EpiSegMix defines a more consistent 
and accurate label for unmappable regions in comparison to 
all other methods (Supplementary Section S6). While, in a 
10-state model, ChromHMM appears to provide a more 
fine-grained distinction of regulatory states, such as weak 
and flanking promoter regions, the robustness of these classi-
fications is not always given. Thus, a biological interpretation 
of these regions should be taken with caution (Supplementary 
Section S6).

Figure 6B shows the genome wide enrichment of histone 
marks across states for each tool. All methods find similar 
patterns of histone marks: Enrichment of regulatory marks 
such as H3K27ac, H3K4me1, and H3K4me3, is predomi-
nantly observed in promoter and enhancer states, as 
expected. Actively transcribed mark H3K36me3 is enriched 
in transcription states; the repressive mark H3K27me3 is 
most strongly enriched in Polycomb repressed heterochroma-
tin. Overall absolute levels of H3K9me3 are low, but due to 
the column-wise normalization in Fig. 6B, it appears enriched 
in a number of states, possibly reflecting overall back-
ground noise.

Despite the overall high state concordance across tools, 
some differences can be observed particularly in a gene cen-
tered comparison, i.e. across gene bodies, including ±3 kb up-
stream and downstream of the gene transcription start and 
gene end, respectively (Fig. 6C). Coordinates were taken 
from ENCODE reference ENCFF824ZKD. EpiSegMix and 
Segway show a higher enrichment of promoter states around 
TSSs as compared to ChromHMM and EpiCSeg, which 

Figure 5. Prediction of ATAC-seq levels from chromatin state labels. The plot shows the coefficient of variation (R2) using standard linear regression with 
the state labels as categorical predictors to predict log transformed ATAC counts. The black line shows the mean R2 value.
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Figure 6. Comparison between EpiSegMix and EpiCSeg, Segway and ChromHMM for K562_1. (A) State overlap between methods. The bar heights 
correspond to the genomic coverage of the biologically annotated state and the edge thickness to the overlap between the methods. (B) Heatmaps 
showing the histone enrichment per state. The mean counts per state are normalized column wise, such that for each histone modification the state with 
the maximum mean count has a value of one and the state with the lowest mean count has a value of zero. (C) State distribution. The line plots show 
how often each state occurs around protein coding genes. (D) State duration. The plot shows for each biologically annotated state the state length 
distribution in base pairs of the different methods. (E) State description.
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discriminate between weak and strong promoters. This dis-
tinction is not linked to a better prediction of transcrip-
tion levels.

When comparing the segment lengths (i.e. consecutive ge-
nomic bins assigned to the same state) and their genomic dis-
tributions across the different methods we observe that the 
duration flexibility of EpiSegMix helps to capture the wide 
range of short (promoters/enhancers), intermediate (short to 
long genes), and long (heterochromatic regions) state dura-
tions in a more consistent manner as compared to all other 
methods. For example, EpiSegMix’ Tx state most effectively 
covers large genes (i.e. over 40% of all human genes are lon-
ger than 0.8 × 104 bp), allowing for a more accurate annota-
tion of genes among different classes. Another advantage of 
EpiSegMix in comparison to EpiCSeg and Segway can be ob-
served in the longer segment lengths for Polycomb repressed 
genes (Repr_Pc) and for heterochromatic regions (Het_Wk 
and Het_Str), which more closely match the known size of 
broad domains (Steensel and Belmont 2017).

5 Discussion
We developed EpiSegMix, a flexible HMM framework for 
chromatin segmentation. We enhanced the flexibility of exist-
ing HMMs with respect to modeling both emission probabili-
ties and state durations. To account for the overdispersed 
and skewed ChIP-seq read count distributions, the read 
counts of each histone modification can follow a different 
discrete distribution type. We currently support a variety of 
distributions, and further distributions may be added in the 
future. The internal HMM topology was adjusted to be able 
to model state durations that follow a Negative Binomial in-
stead of a Geometric distribution, which better reflects the in-
herent segment length of chromatin states that cover either 
small peaks or broad domains. For example, lamina- 
associated domains (LADs; heterochromatin at the nuclear 
periphery) usually have a size between 104 and 107 bp 
(Steensel and Belmont 2017).

A comparison with ChromHMM, Segway, and EpiCSeg 
suggests that EpiSegMix has the potential to provide segmen-
tations that better reflect genomic annotations and yields 
states that are more predictive of gene expression. Moreover, 
the flexible duration modeling allows to effectively capture 
the reflective state lengths of long gene bodies and hetero-
chromatic domains. The influence of the modified HMM to-
pology on the segmentation suggests that testing other 
topology models is an important aspect to increase the 
modeling accuracy. Another direction of future work could 
be to combine the flexible duration modeling of EpiSegMix 
with a hierarchical HMM, as proposed by Marco et al. 
(2017), which may prove to be a powerful idea to perform 
inter-dependent chromatin segmentation at different 
length scales.

Although our results suggest that flexible distributions 
such as the Sichel or Beta Negative Binomial distribution of-
ten give the best results, we support a variety of distributions 
to deal with changing data properties and provide an easily 
extendable framework to integrate other data, such as 
ATAC-seq, DNase-seq or transcription factor ChIP-seq data.

In summary, we show that the modeling assumptions of 
the HMM have an impact on the segmentation quality and 
biological interpretation. Due to its high flexibility, 
EpiSegMix accurately fits HMM read count data with 

varying distributional properties and provides the additional 
option of flexible duration modeling. Finally, EpiSegMix pro-
vides a widely configurable framework for chromatin seg-
mentation that can be applied to a wide range of data.
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