Please use this identifier to cite or link to this item: doi:10.22028/D291-42382
Title: Reading the log canonical threshold of a plane curve singularity from its Newton polyhedron
Author(s): Paemurru, Erik
Language: English
Title: ANNALI DELL'UNIVERSITA' DI FERRARA
Volume: 70
Issue: 3
Pages: 1069-1082
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Complex singularity exponent
Complex oscillation index
Newton polygon
Remoteness
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: There is a proposition due to Kollár as reported by Kollár (Proceedings of the summer research institute, Santa Cruz, CA, USA, July 9–29, 1995, American Mathematical Society, Providence, 1997) on computing log canonical thresholds of certain hypersurface germs using weighted blowups, which we extend to weighted blowups with non-negative weights. Using this, we show that the log canonical threshold of a convergent complex power series is at most 1/c, where (c,..., c) is a point on a facet of its Newton polyhedron. Moreover, in the case n = 2, if the power series is weakly normalised with respect to this facet or the point (c, c) belongs to two facets, then we have equality. This generalises a theorem of Varchenko 1982 to non-isolated singularities.
DOI of the first publication: 10.1007/s11565-024-00524-6
URL of the first publication: https://link.springer.com/article/10.1007/s11565-024-00524-6
Link to this record: urn:nbn:de:bsz:291--ds-423822
hdl:20.500.11880/38040
http://dx.doi.org/10.22028/D291-42382
ISSN: 1827-1510
0430-3202
Date of registration: 12-Jul-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Jun.-Prof. Dr. Simon Brandhorst
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s11565-024-00524-6.pdf373,35 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons