Please use this identifier to cite or link to this item: doi:10.22028/D291-42352
Title: Reliable anti-cancer drug sensitivity prediction and prioritization
Author(s): Lenhof, Kerstin
Eckhart, Lea
Rolli, Lisa-Marie
Volkamer, Andrea
Lenhof, Hans-Peter
Language: English
Title: Scientific Reports
Volume: 14
Issue: 1
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Reliability
Conformal prediction
Simultaneous regression and classifcation
Drug sensitivity prediction
Drug prioritization
Cancer
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: The application of machine learning (ML) to solve real-world problems does not only bear great potential but also high risk. One fundamental challenge in risk mitigation is to ensure the reliability of the ML predictions, i.e., the model error should be minimized, and the prediction uncertainty should be estimated. Especially for medical applications, the importance of reliable predictions can not be understated. Here, we address this challenge for anti-cancer drug sensitivity prediction and prioritization. To this end, we present a novel drug sensitivity prediction and prioritization approach guaranteeing user-specifed certainty levels. The developed conformal prediction approach is applicable to classifcation, regression, and simultaneous regression and classifcation. Additionally, we propose a novel drug sensitivity measure that is based on clinically relevant drug concentrations and enables a straightforward prioritization of drugs for a given cancer sample.
DOI of the first publication: 10.1038/s41598-024-62956-6
URL of the first publication: https://doi.org/10.1038/s41598-024-62956-6
Link to this record: urn:nbn:de:bsz:291--ds-423524
hdl:20.500.11880/38017
http://dx.doi.org/10.22028/D291-42352
ISSN: 2045-2322
Date of registration: 8-Jul-2024
Description of the related object: Supplementary Information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-62956-6/MediaObjects/41598_2024_62956_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-62956-6/MediaObjects/41598_2024_62956_MOESM2_ESM.pdf
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Hans-Peter Lenhof
MI - Prof. Dr. Andrea Volkamer
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41598-024-62956-6.pdf1,65 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons