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Reliable anti‑cancer drug sensitivity 
prediction and prioritization
Kerstin Lenhof 1,3*, Lea Eckhart 1,3, Lisa‑Marie Rolli 1, Andrea Volkamer 2 & 
Hans‑Peter Lenhof 1

The application of machine learning (ML) to solve real‑world problems does not only bear great 
potential but also high risk. One fundamental challenge in risk mitigation is to ensure the reliability 
of the ML predictions, i.e., the model error should be minimized, and the prediction uncertainty 
should be estimated. Especially for medical applications, the importance of reliable predictions can 
not be understated. Here, we address this challenge for anti‑cancer drug sensitivity prediction and 
prioritization. To this end, we present a novel drug sensitivity prediction and prioritization approach 
guaranteeing user‑specified certainty levels. The developed conformal prediction approach is 
applicable to classification, regression, and simultaneous regression and classification. Additionally, 
we propose a novel drug sensitivity measure that is based on clinically relevant drug concentrations 
and enables a straightforward prioritization of drugs for a given cancer sample.

Keywords Reliability, Conformal prediction, Simultaneous regression and classification, Drug sensitivity 
prediction, Drug prioritization, Cancer

The major goal of personalized medicine is to individually tailor treatments to patients based on their pheno- and 
genotypic characteristics. In cancer therapy, treatment customization can, however, be challenging because of 
the heterogeneity of cancer that profoundly affects the efficacy of anti-cancer drugs.

Machine learning (ML) methods have been developed to elucidate the relationship between the molecular 
properties of cancer cells and observed drug responses and, based on these insights, to optimize anti-cancer 
drug  therapies1–4. Usually, these ML methods are trained on data from model systems such as patient-derived 
xenografts or cancer cell  lines1,2. When applying trained ML models to a previously unseen cancer sample, the 
ultimate goal is to identify the effective drugs and to sort these compounds by their predicted efficiency, i.e. 
to perform drug  prioritization5. To achieve this goal, current research focuses on the more easily manageable 
sub-tasks of developing classification approaches able to identify sensitive samples for a given drug (e.g.,6–8) and 
regression approaches able to quantify the sensitivity of sample to a drug (e.g.,9–13), which are known as drug 
sensitivity prediction tasks. For each drug, the trained models usually predict a single class or single continuous 
drug response value for one sample, i.e. they return so-called point predictions. By comparing these point predic-
tions to the known actual values, the overall model performance during training, validation, and testing can be 
assessed using conventional error measures. While this can already create a certain level of trust in predictions, 
applications in real-world healthcare scenarios where the true response is unknown (i.e., no such metric could 
be evaluated) require the reliability of  predictions14–16. Here, reliability is defined as the level of trust that one can 
have in a prediction for a previously unseen instance during the deployment phase of the ML algorithm. It can, 
for example, be established via p-values or certainty guarantees. Information on the reliability of the prediction 
of ML-based drug sensitivity predictions is typically not provided (cf. Table 1 in Supplement 1 for a thorough 
literature review of reliability estimation in drug sensitivity prediction). Consequently, we have no information 
whether a predicted value is likely to be close to its real but unknown value.

From the related work (cf. Table 1 in Supplement 1), only Fang et al. recently developed an approach to esti-
mate the reliability of a prediction: they suggested a random forest (RF)-based quantile regression approach to 
estimate prediction intervals instead of point  predictions17. Intuitively, the width of the interval defined by two 
quantile predictions indicates the reliability of the prediction (the narrower, the better). While their approach 
highlights the significance of reliability estimation in the healthcare domain, it is limited to RF regression. 
Moreover, their approach does not give a reliability guarantee or confidence level. In drug discovery and tox-
icity prediction, conformal prediction (CP) recently gained  popularity18–21. Conformal prediction provides a 
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mathematical rigorous certainty estimation framework that can sit on top of various machine learning regression 
or classification  approaches22–24. Given a user-specified maximal allowed error rate α and a trained regression or 
classification model, CP applied to a new sample returns the set of classes (classification) or the interval (regres-
sion) that contains the true value with a certainty of almost exactly 1− α instead of a simple point prediction. 
Consequently, single-element sets and narrow intervals correspond to a high certainty, and the sizes of the sets 
and intervals typically increase with growing uncertainty about the prediction. A prerequisite to being fulfilled 
by a model serving as input to CP is that it delivers a notion of (un)certainty about its predictions, e.g., for RF 
classifiers, certainty may be represented by the proportion of trees that voted for the predicted class and for RF 
regressors, quantile regression forests can be employed.

In this paper, we introduce conformal prediction into the anti-cancer drug sensitivity domain. To this end, 
we propose a novel flexible conformal prediction approach for drug sensitivity prediction and prioritization (cf. 
Figs. 1 and 2). Our Python framework is applicable to classification, regression, and, most notably, even joint 
classification and regression methods, which we have demonstrated to outperform classification or regression 
 alone25. We exemplify the capabilities of our CP pipeline by combining it with our state-of-the-art approach 
SAURON-RF (SimultAneoUs Regression and classificatiON Random Forests) and by applying the resulting 
novel method to the GDSC (Genomics of Drug Sensitivity in Cancer) data set, which is one of the largest publicly 
available pharmacogenomic  databases26–28.

As mentioned earlier, a model has to provide a notion of (un)certainty to be eligible for CP. For SAURON-RF, 
this notion is immediately accessible for the classification part: we can simply employ the proportion of trees 
that voted for the predicted class. For the regression part, we had to define and implement a notion of (un)cer-
tainty. To this end, we extended SAURON-RF with a quantile regression functionality adapted from the quantile 
regression algorithm by  Meinshausen29.

To carry out the drug prioritization with our CP pipeline, a drug sensitivity measure that is comparable across 
drugs is necessary. Established measures, e.g. the IC50 and AUC values, are only comparable across cell lines 
but not across drugs. Therefore, we propose the CMax viability, a novel drug sensitivity measure based on the 
highest, clinically relevant drug dose as described  in30. We define drug prioritization as the task of identifying 
and subsequently sorting the list of effective drugs. As such it is similar in spirit to drug recommendation as 
introduced by He et al.31: they define drug recommendation as the task of correctly ranking the v most efficient 
drugs. However, performing drug recommendation as described above suffers from two major drawbacks com-
pared to our approach. Firstly, methods such as KRL by He et al.31 and PPORank by Liu et al.32 cannot evaluate 
whether they only identified effective drugs, i.e., the v most efficient drugs can already contain ineffective ones. 
Secondly, they cannot quantify differences of efficiency since they do not predict sensitivities directly. Apart from 
that, neither KRL nor PPORank provide certainty estimations.

The major contributions of this manuscript are: 

1. We address the demand for reliability of drug sensitivity predictions, i.e., we give guarantees for the cor-
rectness of a prediction for a previously unseen sample under specific conditions (cf. Section "Conformal 
prediction pipeline").

2. To this end, we developed a pipeline for conformal prediction that is applicable to any machine learning 
algorithm given that it provides some notion of uncertainty, e.g., class probabilities for classification or 
quantiles for regression.

3. We developed a novel drug sensitivity measure, the CMax viability, which allows for a comparison between 
drugs as opposed to commonly used measures such as IC50. Consequently, we can prioritize recommendable 
drugs, which is required for medical decision support.

4. We extend SAURON-RF with a quantile regression algorithm and a multi-class formulation.
5. Finally, we combine the CMax viability with extended SAURON-RF and the CP-pipeline to achieve not only 

reliable drug sensitivity prediction but also reliable drug prioritization, which has also not been described 
in the drug sensitivity prediction literature before (cf. Table 1 Supplement 1).

With an extensive evaluation across the complete GDSC database, we show that our novel combined approach 
is superior to state-of-the-art methods, inlcuding SAURON-RF without CP. Moreover, we ultimately perform 
drug priorization. We demonstrate that we can identify effective drugs and subsequently prioritize them with 
SAURON-RF. Beyond that, CP can substantially improve our predictions. In particular, CP not only provides 
guarantees for our predictions, but it successfully diminishes false predictions while retaining correct ones and 
can help prioritize effective drugs. In particular, we could eliminate 52% of the remaining 19% ineffective drugs 
falsely suggested (False Positives) by SAURON-RF. In total, we thus achieved a median overall 92% correctness 
(precision) of our prioritized drug lists. The reduction of false predictions for CP is usually accompanied by a 
reduction of true predictions. Still, the prioritized drug list contained the most efficient drug in 75% of cases, 
and the distance between the first drug in our list and the most efficient drug is within a 10% range of the CMax 
viability scale for 62% of cell lines.

Results
A prerequisite for translating ML models into healthcare decision support systems is to create trust in their 
predictions. To address this demand for drug sensitivity prediction and prioritization, we developed and imple-
mented a conformal prediction (CP) approach. Since we have shown that simultaneously performing regression 
and classification can outperform regression and classification  alone25, the presented CP pipeline is able to handle 
classification, regression, and joint classification and regression tasks.
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In the following, we first briefly describe the used data from the GDSC. Here, we also define our novel drug 
sensitivity measure called CMax viability that enables a comparison of the drug response values not only between 
cell lines but also between drugs. Then, we present the CP pipeline as well as its drug sensitivity prediction and 
drug prioritization capabilities.

Data set processing and definition of novel drug sensitivity measure
For all our analyses, we used the Genomics of Drug Sensitivity in Cancer (GDSC) data set. In particular, we 
downloaded the processed gene expression data, the pre-computed logarithmized IC50 drug responses, and 
the raw drug responses (see Section "Online methods" for further details). In addition to a feature matrix 
corresponding to the gene expression matrix downloaded from the GDSC, SAURON-RF requires a continuous 
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Figure 1.  CP pipeline. This figure depicts how CP can help to perform reliable (simultaneous) regression and 
classification. At first, the given drug data set has to be split into three disjoint data sets: a training, a calibration, 
and a test set. The ML method, e.g., SAURON-RF, is then trained on the training data set. Afterwards, the 
resulting model is applied to the calibration data to derive a distribution of (un)certainty of the predictions. 
Together with the user-specified maximal allowed error rate α , this distribution is used to define a threshold that 
when appropriately applied to the test data set guarantees a certainty of 1− α of the test set predictions.
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and discrete drug response vector per drug as input. For the downloaded continuous IC50 data, we derive a 
discretized response vector per drug by applying a procedure introduced by Knijnenburg et al.7 using a custom 
R-script described  previously8. Established measures such as the IC50 and AUC values, as provided by the GDSC, 
are only comparable across cell lines but not across drugs. Since therapeutically feasible concentration ranges of 
drugs can differ substantially, a smaller IC50 for one drug compared to another does not necessarily indicate a 
stronger sensitivity. On the contrary, an IC50 of one drug may be lower than the IC50 of another drug and still 
be out of the therapeutically feasible range. Likewise, the choice of concentration range over which the dose-
response-curve is integrated can strongly impact and bias resulting AUC values. In Table 2 of Supplement 1, we 
exemplary depict a prioritization of drugs for one particular cell line resulting from a sorting by IC50 values: 6 
out of the 8 highest ranked drugs are out of the feasible concentration range.

GDSC1 + GDSC2 drug data

CP pipeline (cf. Figure 1)
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Figure 2.  Drug prioritization pipeline. This figure shows a drug prioritization pipeline originating from 
combining the CMax viability with SAURON-RF and CP. The output of the CP pipeline (cf. Fig. 1) deployed 
with our SAURON-RF method are sets for the classification task and intervals for the regression task. Here, 
sets that contain only one element indicate that we can be confident about the initial point prediction (single 
class) of the trained model. Thus, we can identify effective drugs by filtering for sets solely comprising the class 
corresponding to drug sensitivity (1: sensitive). Due to the across-drug comparability of the CMax viability, we 
can rank these drugs by their predicted efficiency using, for example, the upper limit of the regression interval 
that represents a value not being surpassed with high probability.
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To address such issues, we propose a novel drug sensitivity measure called CMax viability. We define the 
CMax viability of a drug as the viability at the CMax concentration, which corresponds to the peak plasma 
concentration of a drug after administering the highest clinically recommended  dose30. The CMax viability can 
take values in the range [0, 1]. Here, 0 corresponds to no viability of cancer cells after treatment, and 1 indicates 
100% viability. To derive the viability of a cell line at the CMax concentration, i.e., the CMax viability for a drug-
cell line combination, we determine the intersection point between the dose-response curve of the cell line 
calculated from the raw GDSC response data and the line parallel to the viability (Y) axis passing through the 
CMax concentration. To calculate the CMax viability in practice, we downloaded a list of CMax concentrations 
 from30. For each drug-cell line combination, we compute the intersection point. This yields one response vector 
per drug containing the CMax viabilities for all considered cell lines, which are comparable not only across 
cell lines but also across drugs. Consequently, the CMax viabilities enable drug prioritization. Moreover, since 
the measure is based on clinically relevant drug concentrations, it may facilitate the translation of findings 
into clinical application. To discretize these values, we exploit the across-drug comparability and apply the 
partitioning around medoids (PAM) algorithm to all CMax viabilities across all drugs simultaneously. We then 
either determine one discretization threshold (two classes: sensitive (1) and resistant (0)) or two thresholds (three 
classes: sensitive (1), ambiguous (2), resistant (3)) applicable to all drugs. A more detailed description of the data 
set compilation is provided in the Methods section (cf. Section "Online methods").

Conformal prediction pipeline
CP represents a mathematical rigorous certainty estimation framework applicable to all regression and 
classification ML methods provided that the latter supply a notion of (un)certainty. Given a user-specified 
maximal error rate α ∈ [0, 1] , CP returns prediction sets (classification) or intervals (regression) that contain 
the true response with a certainty, also known as coverage, of almost exactly 1− α . This is called marginal 
coverage property (see Section "Conformal prediction" for more information). We designed and implemented 
a flexible CP framework in Python that can be readily used for regression, classification and joint regression and 
classification methods, e.g., SAURON-RF. In Fig. 1, we give an overview of the developed CP pipeline applied to 
SAURON-RF. In the following, we describe how CP in general and, in particular, our Python framework can be 
leveraged to create trust in ML-based models. To this end, we first outline the functionality of our framework 
and then discuss the results when combined with SAURON-RF. The required extensions to the methodology of 
SAURON-RF are explained in the Methods section (see Section "Extension of SAURON-RF").

Input of CP
In ML, we usually assume that our samples are drawn i.i.d. to guarantee the claimed properties of our methods. 
For the CP guarantee to hold, we only need to assume exchangeability of the data, which is a slightly weaker 
 assumption24. The training and testing of supervised ML methods typically requires at least two disjoint data 
sets: a training data set for parameter selection and a test set for the final evaluation of the trained model. CP 
demands a third disjoint data set, the so-called calibration data set, used to calculate statistics on the (un)certainty 
of the model. Accordingly, the trained model needs to provide a notion of uncertainty (or certainty). In the case 
of SAURON-RF, we employ 1− #trees that voted for predicted class

#trees  as a measure of uncertainty for classification. For 
regression, we quantify the dispersion of response values with quantile regression (cf. Section "Extension of 
SAURON-RF" for a detailed description of the newly developed quantile SAURON-RF algorithm). In addition 
to this notion of uncertainty, the user has to specify a maximal allowed error rate α , which allows for a flexible 
control of the certainty. If a strict error rate cannot be met by a model, increasing α might still help to identify 
the most reliable trends.

Score functions
CP integrates the given notion of uncertainty in a score function, often also called a non-conformity score. By 
applying the score function to the calibration data set, a score distribution can be generated. For classification, 
we implemented three different score functions: True-class (TC), Summation (Sum), and Mondrian (Mon). For 
regression, we implemented a score function called Quantile (Qu). In Sections "Classification scores and Regres-
sion score", we give their exact definitions. It is possible to implement all of the mentioned score functions as 
uncertainty measures, i.e., high values correspond to high uncertainty, and low values correspond to high cer-
tainty. Given a score distribution and the maximal allowed error rate α , CP derives a threshold q̂ that is a modified 
(1− α)-quantile of the score distribution if the score function quantifies uncertainty (see Section "Conformal 
prediction" for details).

Output of CP
After training the ML model on the training data set, and employing its notion of uncertainty in a score function 
to derive a score distribution on the calibration data set, the CP output for the test set can be generated. The 
trained ML model has to be applied to the test set, and the score function must also be evaluated. By combining 
q̂ with the derived score per test set sample (see Section "Conformal prediction" for details), the point prediction 
of the ML model can be exchanged with a valid prediction set (classification) or interval (regression). More 
specifically, CP returns prediction sets (classification) or intervals (regression) that fulfil the marginal coverage 
property. Some scores guarantee special versions of this property. The Mondrian score, for example, provides this 
coverage for every ground truth class, which is especially desirable when there is a considerable class imbalance 
present, as is the case for drug sensitivity prediction in  cancer25. Our CP pipeline can not only return prediction 
sets or intervals but also both simultaneously, making it amenable to joint classification and regression methods 
such as SAURON-RF. Moreover, when combining this capability with our novel drug sensitivity measure that 
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is comparable across drugs, we can leverage the full potential of SAURON-RF and ultimately perform drug 
prioritization: we can first identify effective drugs (classification) and then rank them by their predicted efficiency 
(regression). We depict this application scheme in Fig. 2.

Drug‑centric analysis: drug sensitivity prediction
To achieve a fair performance comparison between the IC50 values and the CMax viabilities, we only considered 
drugs where both values were available, which resulted in 107 (60 from GDSC1, 47 from GDSC2) potentially 
analyzable drugs (cf. Supplement 1, Tables 3+4 for more details). Here, one drug data set consists of the following 
triple: the gene expression matrix, the continuous response of a particular drug, and the discretized response of 
that drug. We randomly partitioned each data set into a training (70%), calibration (15%), and test (15%) set. 
The training set was further subdivided to serve as input for a 5-fold cross-validation (CV). Within each CV step, 
the fold usually employed as test set is partitioned into a disjoint calibration and test set. If the discretized CMax 
viabilities for one drug contained only one class or consisted of an insufficient number of samples per available 
class, we discarded this drug for the CMax viability and the corresponding IC50 analyses (see Supplement 1, 
Figures 3–6 for details). In total, we could thus analyze 41 drugs for the binarized drug responses of GDSC1, 32 
drugs for the binarized drug responses of GDSC2, 37 drugs for the ternary drug responses of GDSC1, and 28 
drugs for the ternary drug responses of GDSC2. For each data set, the final model is trained on the complete 
training data, and the CP pipeline is applied accordingly afterwards. Here, we only report the results for the 
newer GDSC2 data set, which is based on an improved drug sensitivity assay. The results for the GDSC1 data 
set can be found in Supplement 2.

Two classes
IC50 values: At first, we applied SAURON-RF without CP to the IC50 data. In Figs. 3 and 4, we show the 
respective classification and regression performance on the test set. With an average sensitivity of 56%, specificity 
of 87%, Matthew’s correlation coefficient (MCC) of 0.35, and mean-squared error (MSE) of 2.5 across all drugs, 
the performance is similar to what we and others observed  previously8,25. To achieve certainty, we employed our 
CP pipeline with a fixed allowed error rate of α = 10% . We notice that the certainty guarantee for classification 
and regression is indeed fulfilled for each of the three investigated classification scores and the regression score, 
i.e., our sets (classification) and our intervals (regression) contain the actual response with a probability of almost 
exactly 1− α = 90% on average across all drugs (see Supplement 1, Fig. 9). Next, we analyzed whether this also 
holds for each class to investigate the effect of class imbalance on the validity (see Supplement 1, Fig. 9). Indeed, 
we fulfil the marginal coverage property for the majority class (resistant cell lines) for all scores. For the sensitive 
cell lines (minority class), the Summation score delivers valid sets in all cases, while the True-Class score coverage 
fluctuates with a mean of approximately 73%. The Mondrian score, which is supposed to fulfil the coverage 
property for each actual class by definition, exhibits significantly fewer fluctuations than the True-Class score 
and reaches a coverage of 85% across all drugs. For the Quantile regression score, the coverage for the sensitive 
cell lines is 86%. Since the adherence to the CP certainty guarantee depends on the number of available data 
 points24, the sensitive cell line scarcity can cause these fluctuations.

In our current application scenario, a valid prediction set can either stem from a single class prediction or 
the set with all classes. To quantify the number of single-class predictions among all predictions, CP efficiency is 
typically employed. It is defined as the number of single-class predictions divided by the total number of samples. 
In Fig. 3, we depict the per-drug CP efficiency for the classification scores. We note that the True-Class score with 
an average CP efficiency of 80% clearly outperforms the Mondrian and Summation scores. The low CP efficiency 
of the Summation score then directly explains its high coverage: the Summation score almost exclusively predicts 
two-class sets as output (low efficiency), which by definition must contain the actual class in a binary classifica-
tion (high coverage). For regression, the CP efficiency is given by the width of the interval. Consequently, it is 
highly desirable that these intervals are narrow. In Fig. 4, we can, however, see that on average across all drugs, the 
intervals are relatively large (approximately 50% relative to the spanned training range), which indicates that the 
trained models need to be refined in that respect. We discuss improvement strategies in the  Discussion section.

With CP for classification, we pursue the goal of retaining the true positive and true negative predictions 
while minimizing the errors, i.e., false positive and false negative predictions. With the fixed α = 10% , the false 
positive (FP) errors were, on average, reduced from 13 to 9% and the false negative (FN) errors from 44 to 15% 
for the Mondrian score (cf. Fig. 3). However, the true positive (TP) and true negative (TN) predictions also 
decrease: from 56 to 48% for the TP and 87 to 60% for the TN. In general, the True-class score also effectively 
removes FN (from 44 to 25%) and FP (from 13 to 7%). Again, the true predictions are also reduced: from 56 
to 43% for the TP and from 87 to 74% for the TN. In contrast, we note that the Summation score does not only 
almost completely remove the false predictions but also the true predictions, which is in accordance with our 
previous observations for efficiency. Thus, the True-class score and the Mondrian score clearly outperform the 
Summation score, while the Mondrian score seems to perform better for the TP and FN values and the True-
class score for the TN and FP values.

To showcase the capability of our CP pipeline, we applied it to an adjusted classification version of the multi-
task multi-omics deep neural network by Chiu et al.11. To render the approach by Chiu et al. amenable to CP, 
we replaced the activation function of the last layer of the neural network with the sigmoid function, whose 
outputs can be interpreted as class probabilities (cf. Supplement 1 for details of this analysis). Moreover, we use 
the binary cross entropy, a dedicated loss function for classification, instead of the mean-squared error. First, 
we observe the same phenomenon as already demonstrated for various approaches (including neural networks) 
in the SAURON-RF  publication25: without specific countermeasures against class or regression imbalance, the 
minority class (sensitive samples) is predicted poorly (cf. Fig. 27 in Supplement 1). With CP, we achieve the 
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Figure 3.  Classification test set performance GDSC2. The upper row of this figure depicts the classification 
performance of SAURON-RF across the different drugs from GDSC2. The notation on the x-axis of the first 
plot consists of a tuple containing the true class as first element and the predicted class as second element. 
For all predictions where the true class is sensitive (i.e., TP or FN), percents are calculated by dividing by the 
number of all sensitive cell lines (TP + FN). Likewise, for all predictions where the true class is resistant (i.e., 
TN or FP), percents are calculated by dividing by the number of all resistant cell lines (TN + FP). Thus, the 
x-axis labels correspond to the well-known confusion matrix metrics called sensitivity = TP

TP + FN
 , miss-rate = 

FN

TP + FN
 , specificity = TN

TN + FP
 , and fall-out = FP

TN + FP
 , respectively. The middle row shows the effects of CP on the 

performance in terms of true positive/negative predictions. Again, tuples of the true and the predicted class sets 
are shown on the x-axis and percents were obtained as described above. In Supplement 1 Section 7, we provide 
all formulas. In the lower row of this figure, the CP efficiency is presented.
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desired 90% certainty (cf. Figures 28–0 in Supplement 1) and consequently remove false predictions (cf. Fig. 27 
in Supplement 1). It is particularly noteworthy that the class-wise calibration of the Mondrian score helps to 
increase the correctly identified sensitive samples (TP) by 20% on average. In total, SAURON-RF with and 
without CP outperforms our adapted implementation of the approach by Chiu et al.

CMax viabilities: Next, we applied SAURON-RF and the CP pipeline to the newly derived CMax viability 
data set. We find that the CMax viabilities could be predicted with similar sensitivity (64%), specificity (76%), and 
MCC (0.35) compared to the IC50 data. We again ascertain that CP with a fixed error rate of α = 10% delivers 
the desired 90% certainty guarantee on average (cf. Supplement 1, Fig. 10). Indeed, it approximately holds for 
all three classification scores and the regression score on average across all drugs. For the CMax viabilities, class 
imbalance also represents an issue. Contrary to the IC50 data, for some drugs, the sensitive cell lines constitute 
the minority class, and for others, the resistant cell lines do. Still, we discover the same overall trends for the 
validity of the scores of the minority and majority classes (see Supplement 1, Figs. 11 and 12). Regarding CP 
efficiency and the reduction in FP and FN predictions, we could also identify similar tendencies compared to 
our IC50 analyses (see Supplement 1, Figs. 13 and 14). Notably, with an average relative interval size of 0.62, the 
predicted regression intervals are larger for the CMax analyses than for the IC50 analyses. Overall, the CMax 
viability could be predicted with similar performance as the established IC50 value. In general, it can be expected 
that for most ML methods their performance on CMax viabilities will be similar to their performance on IC50 
values, since CMax viabilities and IC50 values are highly correlated (cf. Figs. 7 and 8 in Supplement 1).

In our previous publication, we have already demonstrated that SAURON-RF outperforms a variety of 
 approaches25. To confirm that this holds when trained on CMax viabilities, we applied an adjusted version of 
the approach by Chiu et al.11 to the CMax viabilities (cf. Supplement 1 for details of this analysis). The overall 
achieved MSE is similar to that of SAURON-RF (Chiu: 0.09, SAURON:RF: 0.03, cf. Supplement 1, Fig. 31). 
However, SAURON-RF consistently achieves lower MSEs. Moreover, the correlation results (mean PCC Chiu: 
0, cf. Fig. 32 in Supplement 1) imply that the approach by Chiu et al. is not able to sort the cell lines per drug. In 
contrast, SAURON-RF achieved a decent sorting (mean PCC SAURON-RF: 0.51, cf. Fig. 14 in Supplement 1).

Three classes
In the previous section, we described the results for a division of the CMax viability and IC50 values into two 
classes. However, a more fine-grained division into, e.g. three classes (sensitive, ambiguous, resistant) may more 
accurately reflect the biological variance and uncertainty of the experimental drug response values and may thus 
be even more accurately learned and predicted by models.
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We first applied SAURON-RF without CP to the ternary CMax drug data sets. The results (see Supplement 1, 
Figs. 15–17) reflect all general tendencies we reported for the binary partition. Here, it is particularly noteworthy 
that confusions between the sensitive and resistant classes seem rather rare (9% on average for the sensitive 
samples and 6% on average for resistant samples), which aligns with the goal of improving certainty. Nevertheless, 
both classes displayed a high confusion with the ambiguous class (37% on average for the sensitive class and 39% 
on average for the resistant class), and the average PCC (0.49) and MCC (0.3) are slightly lower than those for 
the binary partition. We also evaluated the validity and efficiency of the CP pipeline (see Supplement 1, Figs. 15 
and 16). Briefly, the efficiency was considerably lower than for the two-class partition. Thus, we decided to focus 
on the binary partition in the following.

Cell line‑centric analysis: drug prioritization
In the previous sections, we investigated the capabilities of CP in the context of drug sensitivity prediction, and, 
we conducted drug-centric analyses, i.e., we assessed the model performance on a per-drug basis. In a more real-
istic application case, the focus is shifted from the drug to the investigated cancer sample, i.e., we are interested in 
identifying and subsequently prioritizing all suitable drugs for one particular sample. To realistically mimic this 
application case for one particular cell line, this cell line must be previously unseen by each drug-specific model 
in the training process. Consequently, all drugs must share the cell lines in the test set, which we ensured for our 
analyses. In total, we analyzed 25 drugs for GDSC1 and 25 drugs for GDSC2 (cf. Supplement 1Section 4 for a 
detailed explanation and the respective sizes of the calibration and test set and Tables 3 and 4 for the investigated 
drugs). Again, we report only the results for the GDSC2 data set here. The respective results for the GDSC1 data 
set can be found in the Supplement 2.

Due to the shared test set and the across-drug-comparability of the CMax viability, we can now assess 
the performance from a cell line-centric perspective, i.e., for each cell line, we can identify effective drugs 
(classification) and then prioritize them (regression). We call a drug effective if its CP class set prediction for 
a particular cell line consists solely of the single class indicating sensitivity (1). We then subsequently rank all 
drugs that fulfil this property for a particular cell line using the upper limit of the CP interval. Figure 5 exemplary 
depicts the results for such a prioritization task for one particular cell line (see Supplement 1, Figs. 23–26 for 
further cell lines). Notably, the SAURON-RF point predictions (without CP) are not only efficiently distinguishing 
between effective and non-effective drugs (MCC 0.66) but also sorting them exceptionally well (PCC 0.9). 
Nevertheless, there still exist FN predictions, which we would like to remove. Both the True-class and the 
Mondrian score expectedly accomplish this task well at the cost of a few TP predictions. Also, in accordance 
with our previous drug-centric analyses, the Summation score removes all single-class predictions. In total, 
the True-class score seems to slightly outperform the Mondrian score, while both are clearly superior to the 
Summation score. The CP regression intervals are again spanning a wide range of values. Nevertheless, they 
are ascending alongside the actual values, which indicates that they can be employed for sorting the drugs. A 
Spearman correlation coefficient (SCC) of 0.87 between the upper limit of the CP interval and the true values 
confirms this impression. In the lower row of Fig. 5, we also depicted the potential prioritizations obtained by 
sorting the sets of effective drugs after CP deployment. For the Summation score, no prioritization is possible 
since no drug was predicted to be effective after CP. However, the rankings introduced by the CP upper limit 
of the interval are reasonably similar to the actual rankings for the restricted sets of drugs from the Mondrian 
(SCC 0.6) and True-class (SCC 0.62) scores.

Finally, we analyzed whether these observations hold for all test cell lines (cf. Fig. 6). With an average MCC of 
0.53, sensitivity of 71%, specificity of 81%, and PCC of 0.81, SAURON-RF performs well in both the classification 
and the regression task. The Mondrian and the True-class score effectively remove the false predictions: 48% 
less FN for Mondrian compared to 53% less FN for True-class as well as 42% less FP for Mondrian and 52% less 
FP for True-class. However, both scores reduce not only the false predictions but also true predictions: 45% less 
TP for Mondrian compared to 26% less for True-class as well as 39% less TN for Mondrian compared to 17% 
for True-class. Indeed, the True-class score does not only reduce the false predictions to a greater extent, but it 
also preserves more correct predictions, i.e., it clearly outperforms the Mondrian (and the Summation) score 
in this analysis. For the regression part of the pipeline, we note that the average SCC between the SAURON-RF 
predictions and the actual values (0.82) is slightly higher than the average SCC between the upper limit of the CP 
interval and the actual values (0.75). The goal of the prioritization task is to obtain a complete list of potentially 
effective drugs sorted by their efficiency. We already noticed that the True-class score retains more TP predictions 
than the Mondrian score, i.e., it yields more complete lists of effective drugs. Furthermore, the effective drug 
list from the True-class score has a higher median precision (92%) than the Mondrian score (83%). Both are 
superior to SAURON-RF only (76%). Despite the fact that the TP predictions are also reduced by performing 
CP, the actual most efficient drug belongs to this list 75% of the time for the True-class score and 56% for the 
Mondrian score. Moreover, the first drug in our effective drug list has still a median rank of three in the original 
drug list for both the True-class and the Mondrian score and is a TP prediction in 85% (TC) and 79% (Mon) of 
cases. The CMax viability difference between this drug and the actual first drug is below 0.1 for 62% of cell lines 
for the True-class score and 56% of cell lines for the Mondrian score. In relation to the CMax viability range 
([0, 1]), this value indicates reasonable proximity of the actual first drug and the drug that we predict to occupy 
rank one. Overall, we find that the True-class score is most convincing concerning correctness and completeness.

Discussion
In this paper, we aimed to address two crucial challenges in the area of anti-cancer drug treatment optimization 
with ML systems: We were interested in (1) reliably predicting anti-cancer drug responses (2) and prioritizing 
drugs for a given cancer sample based on the reliable predictions.
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To tackle the first challenge, we implemented a conformal prediction pipeline providing user-specified 
certainty levels. Our pipeline can handle not only regression or classification methods but also joint classification 
and regression methods, which we had recently shown to perform superior to regression or classification  alone25. 
We have shown that CP can substantially improve predictions. In particular, CP does not only provide guarantees 
for predictions, but it successfully diminishes false predictions, i.e., FP and FN, while retaining TP and TN.

To address the second challenge, we developed a novel drug sensitivity measure called CMax viability that 
is comparable across drugs. Since the CMax viability is based on clinically relevant drug concentrations, it may 
also help to translate findings into clinical application. By deploying the CP pipeline with our joint regression and 
classification method SAURON-RF and the CMax viability, we could finally fulfil the prioritization task: We could 
first use the classification part of our model combined with CP to successfully identify drugs that are very likely 
effective. In particular, by applying CP, we could eliminate 52% of the remaining 19% ineffective drugs falsely 
predicted (FP) by SAURON-RF. In total, we thus achieved a median overall 92% precision of our prioritized drug 
lists, which 75% of the time also contained the most efficient drug. Finally, we could also predict the continuous 
drug sensitivity and, through the extension of SAURON-RF with quantile regression, build intervals that contain 
the correct response with a high probability. Our results indicate, that the first drug of our predicted list has a 
similar CMax viability value as the actual most efficient drug. Thus, the presented CP drug sensitivity prediction 
and prioritization pipeline can serve as a valuable asset in medical decision support systems.

Nevertheless, we recognize several starting points for improvement. We currently train our models on cell 
line-based monotherapy responses because of the relatively high abundance of the corresponding data, which 
is beneficial for training ML models. However, since monotherapy can promote drug  resistance33, integrating 
data from drug combination screens would be highly desirable to increase the value of our tool for actual 
medical decision-making. Here we could leverage information from databases such as  DrugComb33 or combine 
our approach with drug synergy prediction methods such as  DeepSynergy34,  MatchMaker35,  REFLECT36, 
or  TreeCombo37. Similarly, incorporating data from more complex model systems such as patient-derived 
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Figure 5.  Prioritization example GDSC2. This figure exemplifies the performance of our prioritization pipeline 
(cf. Fig. 2) when applied to one particular cell line (COSMIC ID 1240154) from the test set of the GDSC2 data 
set. The upper plot visualizes the classification performance with and without CP for all analyzed drugs. The 
middle plot depicts the regression result for all drugs, including the 90% CP interval, and the lower plot shows 
the resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit prediction. Note 
that no drug was identified to be effective by the Summation score, i.e., no prioritization was possible and, thus, 
no plot is shown.
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Figure 6.  Prioritization results across all test cell lines of GDSC2. In A, we show the classification performance 
of SAURON-RF with and without our CP pipeline. B depicts the regression performance in terms of MSE, PCC 
and SCC. Here, the MSE is given for the effective drugs, the ineffective drugs, and all drugs. We provide the SCC 
for the predicted values using SAURON-RF only (SCC) and the upper limit of the CP interval (SCC upper lim.). 
In C, we plot various measures to evaluate our prioritized drug lists. The upper row of C depicts the precision 
of SAURON-RF without (SAURON-RF class + SAURON-RF continuous prediction) and with CP (TC + 
upper limit, Mon + upper limit, Sum + upper limit). In the middle row, we show the percentage of cell lines for 
which the most efficient drug was detected, the median rank of the first drug in our effective drug list and the 
percentage of cell lines for which this prediction was a TP. The CMax viability difference between our first drug 
and the actual first drug is depicted in the lower row.
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xenografts or organoids may be advantageous because they are assumed to more accurately represent tumour 
 characteristics38. Apart from that, we were focusing solely on the gene expression data as input features. While 
gene expression is assumed to be the most informative data  type5, the interpretability of models can benefit from 
the integration of additional data types such as mutation and copy number variation data, and, in particular, a 
priori knowledge, e.g., in the form of known  biomarkers8, biological pathways and gene interaction  networks12,27, 
or drug-based  features39,40. If those features complement the information from the gene expression data, the 
performance in terms of certainty of the models might also be increased. Besides, we opted for a particular type 
of conformal prediction in this work and implemented three different classification scores and one regression 
score. Since we noted that the regression intervals are rather wide and the prioritization of the effective drug list 
might be negatively affected by this, it might be beneficial to investigate different regression scores. In addition, 
there exists a plethora of CP-based  techniques41, some of which may even further improve classification and 
regression results. Apart from reliability and interpretability, other important aspects of model trustworthiness 
are robustness and generalizability, i.e., performance under distribution  shifts3. We plan to extend our developed 
frameworks and methods so that they perform well and deliver certainty guarantees under various distribution 
shifts.

To conclude, we designed and introduced a CP pipeline as a multi-purpose tool for drug sensitivity prediction 
and prioritization tailored to classification, regression, and simultaneous regression and classification methods. 
Nevertheless, the pipeline can be applied to various regression or classification models and data sets outside the 
anti-cancer drug sensitivity prediction and prioritization domain. By routinely investigating certainty guarantees 
for ML-based decision systems, model weaknesses can be uncovered, and trust in ML may be created.

Online methods
Data acquisition
For all our analyses, we employ release 8.3 (June 2020) of the GDSC cancer cell line  panel27. In particular, we 
downloaded the pre-processed gene expression values (Affymetrix Human Genome U219 Array), the pre-
computed logarithmized IC50 drug responses, and the raw viability data (GDSC1 compounds: Syto60 and 
resazurin assay, GDSC2 compounds: CellTiter-Glo assay). Additionally, we obtained a list of CMax concentrations 
 from30, which represent the peak plasma concentrations of each drug after administration of the highest clinically 
recommended dose. We combined the CMax concentrations with the raw viability data to derive viabilities at 
the CMax concentration of each drug and call this measure CMax viability.

Drug response processing
In our experiments, we use two different drug sensitivity measures, i.e., the logarithmized IC50 value and the 
CMax viability, separately to fit our models. To achieve a fair performance comparison between the two measures, 
we restrict our analyses to drugs with availability for both. Thus, we considered 107 drugs from GDSC1 (60) 
and GDSC2 (47) in total. As a method that simultaneously performs classification and regression, SAURON-RF 
requires a continuous and discrete drug response vector as input. Therefore, we also derive discretized drug 
response vectors for both sensitivity measures.

IC50 value processing
As a continuous measure of drug sensitivity, we employ the logarithmized IC50 values provided by the GDSC. The 
corresponding binarized drug response was obtained by applying a custom R-script as described  previously8,25. 
The script is based on the binarization procedure introduced by Knijnenburg et al.7. For each drug, we thereby 
derive one binarization threshold that divides the cell lines into sensitive and resistant ones, finally resulting in 
one binary drug response vector.

CMax viability processing
Here, we propose a novel drug sensitivity measure called CMax viability. We define the CMax viability of a drug 
as the viability at the CMax concentration, which is the peak plasma concentration for the highest clinically 
recommended drug dose. The CMax viability can take values in the range [0, 1], 0 corresponds to no viability of 
cancer cells after treatment, and 1 indicates 100% viability. To calculate the viability at the CMax concentration, 
we first determined the dose-response curves for all cell line-drug combinations with the multilevel mixed effects 
model by Vis et al.42 using the raw drug sensitivity data from the GDSC. For each drug-cell line combination, we 
then identify the viability at which the corresponding dose-response curve passes through the line parallel to 
the viability (Y) axis through the CMax concentration of the drug. We call this CMax viability (see Supplement 
1, Fig. 1 for examples). The CMax viabilities should be comparable between cell lines and between drugs since 
they are a measure of the maximal effect that a drug treatment has on a given cell line. In particular, they 
are independent of the concentration needed for each drug to achieve its maximal effect. Since SAURON-RF 
demands a discrete and a continuous drug response vector as input, we also discretize the CMax viabilities. In 
contrast to the IC50 data, we do not derive specific thresholds for each drug. Instead, we leverage the across-
drug comparability of the viabilities to determine one threshold (binarization) or even several thresholds 
(discretizations such as threefold division) applicable to all drugs. To this end, we employ the partitioning around 
medoids (PAM) clustering algorithm, which has already been used in drug sensitivity prediction to discretize 
GI50  values5. Using PAM on the complete set of available CMax viabilities across all drugs, we identify either 
two clusters or three clusters of cell lines, which we then interpret to be sensitive and resistant cell lines (in case 
of two classes) or sensitive, ambiguous, and resistant cell lines (in case of three classes). The mid-points between 
the clusters are discretization thresholds (cf. Supplement 1, Fig. 2). When we apply the discretization threshold(s) 
to the continuous CMax viabilities of a particular drug, we obtain a binary (two classes) or ternary (three classes) 
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response vector. In our SAURON-RF analyses, we combine the continuous response vector of one drug either 
with the binary or the ternary response vector of that drug.

Extension of SAURON‑RF
Our recently published method SAURON-RF represents a possibility to simultaneously perform classification 
and  regression25. Similar to HARF by Rahman et al.9, it is a random forest-based approach which pursues the 
strategy to augment regression random forests with class information for the training samples. In particular, 
SAURON-RF still employs the canonical regression random forest algorithm for model fitting with a continuous 
response (e.g., IC50 values). However, a binary response vector (e.g., partitioning into sensitive and resistant 
cell lines) is also used as input. By calculating sample-specific weights or applying upsampling techniques based 
on the binary response, SAURON-RF can counteract class and regression imbalance. Moreover, SAURON-RF 
employs the classes to classify (new) samples and to weight the regression predictions of the trees. In this paper, 
we present two main extensions to SAURON-RF. Firstly, we enable processing more than two classes to allow for 
a more fine-grained analysis of sensitivity levels. Secondly, we adapt the quantile regression algorithm for random 
forests described by  Meinshausen29 to our random forest algorithm. By doing so, we enable the estimation of 
reliabilities for our predictions and, in particular, the implementation of a combined regression and classification 
conformal prediction framework. In the following, we first briefly describe the basic SAURON-RF algorithm. 
Here, we focus on the best-performing versions as determined  in25. We then discuss the novel extensions in detail.

Basic SAURON‑RF algorithm
Let S = {s1, . . . , sN } be the set of samples, F = {f1, . . . , fP} be the set of features, and X ∈ R

N×P the corresponding 
model matrix. Suppose y ∈ R

N is the continuous response vector for the training of the weighted regression 
random forest and d ∈ {0, 1}N is the corresponding binary response vector derived by comparison of y to a 
threshold t. W.l.o.g., let 0 be the majority and 1 the minority class according to d . Moreover, suppose that NMa is 
the number of samples in the majority class and NMi is the number of samples in the minority class. To counteract 
class imbalance, SAURON-RF relies on sample-specific weights, which can initially be set to

and are then propagated through the training procedure of the random forest. In our previous work, we also 
proposed the use of alternative weight functions to this simple weight function, i.e., weight functions that 
emphasize samples based on the distance from the threshold t, such as

with g ∈ {1, 2} . Based on the exponent, we name them linear and quadratic. Given this data, the random forest-
based SAURON-RF procedure builds B trees as described in the following. At first, we draw a bootstrap sample 
of size N for each b ∈ {1, . . . ,B} . For each bootstrap sample, a decision tree is then built by repetition of the 
following steps until some stopping criterion is fulfilled:

• For each current leaf node not yet meeting the stopping criterion, draw m < P features without replacement 
from the set of features F.

• For each drawn feature, find the best splitting point based on the improvement in the used error measure, e.g., the 
mean squared error (MSE), between the known and predicted response of the samples in that particular node.

• The splitting criterion of the feature with the overall highest improvement in error becomes a new internal 
node that divides the samples into two groups, which then represent the children of the internal node.

To calculate the prediction of a single tree b for a new sample x ∈ R
P , a route from the root to a leaf is traced. 

The continuous prediction is then the weighted average of the response values in the reached leaf. Let µ be this 
particular leaf node and δ(µ) be the bootstrap samples that fall into this node. The prediction of tree b is given by

Here, the node-specific sample weight wµ
n  is determined from the initial sample weights by applying the formula

Usually, the prediction of a random forest is then obtained by a (weighted) average of the predictions over all 
trees. For SAURON-RF, we chose to employ tree-specific weights that reflect the data-inherent class distribution. 
To this end, we add the class assignments to the training samples in the leaf nodes and determine the per-leaf 
mode of the assignments. As a consequence, each tree can classify a sample; hence, the complete forest can also 
predict the class of a sample via majority vote over all trees. Based on this class prediction, we then weight a tree b 
as follows: We use the conventional RF weight if a sample is predicted to belong to the forest majority. Otherwise, 
we employ a tree only if its prediction agrees with RF class prediction. In total, we can express this by the formula

(1)w∗
i =

{

1, if sample i belongs to the majority
NMa
NMi

, if sample i belongs to the minority

(2)w∗
i =

|yi − t|g

2 ·
∑

∀n∈{1,...,N}:dn=di
|yn − t|g

(3)f̂b(x) =
∑

n∈δ(µ)

wµ
n · yn .

(4)wµ
n =

w∗
n

∑

i∈δ(µ) w
∗
i

.
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Here, the indicator variable Ib(x) is 1 iff tree b agrees with the vote of the forest and 0 otherwise. Subsequently, 
we calculate the total random forest prediction as the weighted average of all trees

Multi‑class extension
In our previous work, we only considered a binary division into sensitive and resistant cell lines, i.e., we gave 
definitions for the sample-weight functions of the binary case. However, especially for drug sensitivity prediction, 
allowing for a more fine-grained class division can be advantageous to more accurately reflect the biological 
variance and uncertainty of drug response. Thus, we provide straightforward extensions for the Equations 1 and 2.

Let C = {c1, . . . , ck} be a set of k classes. Furthermore, suppose that Ncj with j ∈ {1, . . . , k} is the number 
of samples of class cj . W.l.o.g., let ck be the class containing the relative majority (mode) of samples. The simple 
sample weights can be determined by the formula

To define the linear and quadratic weight function for the multi-class setting, we additionally assume that 
the classes are ordered in ascending order of the thresholds that divide the corresponding class pairs. To this 
end, let tj,r ∈ {t1,2, . . . , tk−1,k} be the threshold that divides the samples from class j and r. The weight function 
in Equation 2 remains unaltered for samples belonging to class c1 and ck since these classes have only one 
neighbouring threshold. For all other samples, the distances from the two thresholds are averaged. In total, the 
following formula provides the sample weights

Quantile regression for SAURON‑RF
Statistical learning algorithms aim to to express the relationship between a predictor variable, e.g., in our case, 
the p-dimensional random variable X, and the real-valued response variable Y, such that the resulting model 
approximates Y with minimal error. To this end, standard regression algorithms often employ a squared-error 
loss function with which the conditional mean E(Y |X = x) is  estimated29. Random forests also approximate 
the conditional  mean29. However, there exist cases in which not only the conditional mean but the complete 
conditional distribution F(y|X = x) is of interest, e.g., outlier detection or reliability  estimation29,43. In our 
application case, for example, it might be of interest to obtain a drug response value for a specific cell line that 
is not surpassed with high probability or to estimate the dispersion of response values to assess the reliability 
with which the drug response of that specific cell line can be predicted. Quantile regression has been developed 
to address such  questions44. In particular, Meinshausen proposed quantile regression forests, a generalisation 
to random forests, as a possibility to infer conditional quantiles. This algorithm estimates the conditional 
distribution function F(y|X = x) . In the next sections, we provide an adjusted quantile regression algorithm 
for SAURON-RF. Thereby, we can, later on, define conformal prediction for our method, which ultimately even 
delivers guarantees for the reliability of the prediction.

Let the conditional distribution function F(y|X = x) be defined by the probability that Y is at most y for X 
equal to x, i.e.,

The α-quantile for X = x is then defined as the minimum y for which the conditional distribution function is 
at least α:

Hence, we need an estimate of the conditional distribution function to perform quantile regression. Meinshausen 
shows that this is indeed possible with random forests by interpreting them as proposed by Lin and Jeon, which 
view them as an adaptive neighbourhood classification or regression  algorithm45. In particular, Meinshausen 
employs the fact that the final prediction of an ordinary random forest is an estimate of the conditional mean 
and that it can be viewed as a weighted sum of the response values of the training observations. To this end, let 
y ∈ R

N be the response vector as defined in Section "Basic SAURON-RF algorithm". Then, the final prediction 
of the ordinary RF can be expressed as

(5)wb(x) =

{

1
B , if sample x is predicted to belong to the majority

Ib(x)
∑B

β=1 Iβ (x)
, if sample x is predicted to belong to the minority .

(6)f̂ (x) =

B
∑

b=1

wb(x) · f̂b(x) .

(7)w∗
i =

{

1, if sample i belongs to ck
Nck
Ncj

, if sample i ∈ cj , ∀j ∈ {1, . . . , k − 1}

(8)w∗
i =



















|yi−t1,2|
g

k·
�

∀n∈{1,...,N}:dn=di
|yn−t1,2|g

, if sample i belongs to c1
|yi−tk−1,k |

g

k·
�

∀n∈{1,...,N}:dn=di
|yn−tk−1,k |

g , if sample i belongs to ck
|yi−tj−1,j |

g+|yi−tj,j+1|
g

k·
�

∀n∈{1,...,N}:dn=di
|yn−tj−1,j |

g+|yn−tj,j+1|
g , otherwise

(9)F(y|X = x) = P(Y ≤ y|X = x).

(10)Qα(x) = inf {y : F(y|X = x) ≥ α}
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with wi(x) representing a forest-wide weight for each training sample i ∈ {1, . . . ,N}  (see29 for definition in usual 
random forests). In contrast, we calculated the final prediction of SAURON-RF as a weighted average of the 
trees (cf. Equation 6). The equivalence of Equation 6 and 11 for SAURON-RF, can however also be established:

where wi(x) =
∑B

b=1 wb(x) · Iδ(µb)(i) · w
µb
i∗  and Iδ(µb)(i) is equal to 1 iff sample i is in leaf node µb and 0 

otherwise. Note that wµb
i∗  refers to an actual sample from the original data set instead of a bootstrap sample for a 

specific tree, i.e., its definition slightly differs from the one introduced in Equation 4 and is given as

Given this equivalence, we can - in analogy to Meinshausen - estimate the conditional distribution function by

with Iyi≤y being 1 iff yi ≤ y and 0 otherwise.
Finally, the quantile regression forest algorithm for SAURON-RF reads as follows 

1. Train the SAURON-RF regression random forest as explained in 4.3 and 4.3.
2. For a new sample x, trace a route from root to leaf for each tree b ∈ {1, . . . ,B} , which results in the set of 

reached leaf nodes L = {µ1, . . . ,µB}.
3. For each µb ∈ L , calculate the node-specific sample weights (cf. Equations 4 and 12) of all training samples 

xi , i ∈ {1, . . . ,N}.
4. Then, average these weights across L to obtain a forest-wide weight of each training sample i ∈ {1, · · · ,N} , i.e., 

5. Now, an estimate of the distribution function F̂(y|X = x) can be determined for all y ∈ R by using 
Equation 13.

6. By plugging F̂(y|X = x) into Equation 10, calculate the estimate of the conditional quantile Q̂α(x) , i.e., return 
the minimal response value y for which the estimate of the conditional distribution function F̂(y|X = x) is 
at least α.

Conformal prediction
One critical challenge of ML in healthcare is creating trust in the generated models and their predictions. To this 
end, the predictions delivered by the models can readily be employed to assess the overall model performance in 
terms of conventional error measures as long as the true response is known, i.e., during training, validation, and 
testing. However, an estimation for the reliability of the prediction itself is usually not provided, which means 
that we cannot tell if the predictions for new samples with unknown responses will likely be close to their true 
but unknown values. Conformal prediction (CP) is a reliability estimation framework that can sit on top of a 
variety of ML methods given that they provide a notion of (un)certainty for their  predictions24. For random forest 
classifiers, such a notion of certainty can be represented by the proportion of trees that voted for the predicted 
class. For random forest regressors, quantile regression may be used. For a user-specified maximal allowed error 
rate α , CP converts this notion of (un)certainty into a mathematical rigorous certainty guarantee: it constructs 
a so-called valid prediction set (classification) or interval (regression), which then contains the true value with 
a certainty of almost exactly 1− α.

(11)E(Y |X = x) = f̂ (x) =

N
∑

i=1

wi(x) · yi

B
∑

b=1

wb(x) · f̂b(x) =

B
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=
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N
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=

B
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N
∑
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i∗ · yi

=

N
∑
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=
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i∗ , ∀i ∈ {1, . . . ,N}
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In the following sections, we first introduce the conformal prediction procedure that employs a notion of (un)
certainty in a score function to convert it into a rigorous (un)certainty guarantee by delivering valid prediction 
sets and intervals. After describing the conformal prediction algorithm, we present the score functions, we 
evaluated throughout this paper.

Conformal prediction procedure
Training supervised ML models generally includes partitioning the complete data set into a disjoint training 
and test data set. While the training data set usually serves for the training of the parameters of a particular ML 
model, the test set is used to evaluate the performance of this model on data previously unseen by the model. 
Conformal prediction needs a third disjoint data set, the so-called calibration data set employed to calculate 
statistics on the (un)certainty of the model. For our application case, let Z = (X, y, d) be the complete data set 
with X , y , and d being defined as introduced in Section "Basic SAURON-RF algorithm". Let Ztrain , Zcal , and Ztest 
be the corresponding training, calibration, and test set, respectively. Moreover, let Ntrain , Ntest , and Ncal denote 
the number of samples in each of these data sets, and let α ∈ [0, 1] be the desired maximal error rate of the user. 
Then, CP can be divided into the ensuing four  steps24 

1. Train the chosen ML models using Ztrain.
2. Define a score function s(x, d) (classification) or s(x, y) (regression) that is based on the given notion of (un)

certainty by the model.
3. Apply the trained model to Zcal and calculate one score for each calibration sample. Based on the resulting 

score distribution, derive a threshold q̂ that corresponds to the allowed error rate α.
4. Calculate the corresponding scores for Ztest and use q̂ to form intervals (regression) or sets (classification).

By performing CP as outlined above, we construct intervals or sets that contain the true response with a 
probability of almost exactly 1− α , which are also called valid prediction intervals or sets. In particular, let 
C(xi) represent this interval or set for xi ∈ Xtest , using CP it is guaranteed that

for classification. For regression, the same holds with di replaced by the respective continuous response yi . Hence, 
it holds that the more calibration samples are available, the lower the upper boundary becomes, i.e. the certainty 
(also called coverage) would become exactly 1− α for Ncal → ∞ . Indeed, the relationship between Ncal and the 
observed coverage can be described analytically. We refer  to24,46 for in-depth information on this issue.

Equation 15 is also called the marginal coverage property of CP since the certainty is averaged (marginalized) 
over the randomness in the test and calibration data  points24. However, we would usually like to guarantee 
conditional coverage, which means that we can guarantee the coverage for a particular sample, i.e., we would 
like to guarantee

for classification ( di replaced by yi for regression). While it is impossible to achieve conditional coverage with 
CP in all possible scenarios according to  Vovk46, it can be approximated with appropriate  scores24. Therefore, we 
also assessed our models and score functions in that respect.

Classification scores
As mentioned above, CP consists of four steps. In particular, step two requires defining a score function based 
on the notion of (un)certainty given by the model. The choice of score function heavily influences the quality of 
 results24. Angelopoulos and  Bates24 thoroughly discuss a variety of criteria that can play a role in selecting the 
best score function for different application cases. In the following, we will briefly describe the score functions 
evaluated in this manuscript.

True-class (TC) score: Arguably, the most simple scoring function that Angelopoulos and Bates depict 
represents the probability of misclassifying a sample. Given a sample xj from the calibration data set, it is defined 
as

For a random forest, P(dj|xj) is the proportion of trees that voted for the true class dj of the calibration sample 
j. The True-class score results in high values if the true class of sample j had a low probability and vice versa. 
As described in Step 3 of the CP procedure, we calculate this score for each sample in Zcal resulting in a score 
distribution. Based on this distribution, we derive the threshold q̂ that tells us which classes to add to our 
prediction set to fulfil the marginal coverage property in Equation 15. In particular, we calculate q̂ as a modified 
(1-α)-quantile of the distribution. We must modify the usual 1− α quantile to account for the finite number 
of calibration samples Ncal . Thus, we determine q̂ as the ⌈(Ncal+1)(1−α)⌉

Ncal
 quantile. For a new sample xi , we do not 

know the true class. Hence, we calculate the score for all classes and add those with a score smaller or equal to 
q̂ to the prediction set, i.e.,

(15)1− α ≤ P(di ∈ C(xi)) ≤ 1− α +
1

Ncal + 1

(16)P(di ∈ C(xi)|xi) ≥ 1− α

(17)sTC(xj , dj) = 1− P(dj|xj) .

(18)C(xi) = {cl|sTC(xi , cl) ≤ q̂, ∀l ∈ {1, · · · , k}}
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Summation (Sum) score: Angelopoulos and Bates propose another score function based on ideas  from47,48. 
We call this score function Summation score since it builds on the concept of including all classes until their 
sum reaches a particular value. Given a sample xj from the calibration data set, the score is calculated as follows 

1. Firstly, sort the model probabilities for all classes cl ∈ {1, · · · , k} decreasingly from highest to lowest 
probability. For random forest classifiers, this probability is again given by the proportions of samples that 
voted for a class. W.l.o.g., let uj = [c1, · · · , ck] be this sorted list for sample xj.

2. Secondly, add up the probabilities of all classes in this sorted list until the true class dj of sample xj is reached: 

If the Summation score results in high values, it was either because the correct class was predicted with high 
probability or the sample was misclassified. If the score is comparably low, the correct class was predicted with a 
low probability. We calculate the score for each sample in Zcal to obtain the score distribution. To subsequently 
derive the threshold q̂ that we need to decide whether to include a class into our prediction set for a new sample, 
we again calculate the adjusted 1− α quantile q̂ as described in the previous section. For a new sample xi , we 
then determine the prediction set C(xi) by performing the two steps above. At first, we sort the predicted class 
probabilities from highest to lowest. Again, w.l.o.g. let ui = [c1, · · · , ck] be this sorted list for sample i. We obtain 
C(xi) by adding all classes until, in sum, their predicted class probabilities exceed q̂

Mondrian (Mon) score: The Mondrian score, as typically used in drug  discovery18, is a type of class-conditional 
CP in which the marginal coverage from Equation 15 is extended to hold for each available class, i.e., the 
predicted sets for a new sample xi from the test set should  fulfil24,49

The general idea of Mondrian CP is to perform the calibration step in each class separately. Mondrian CP using 
the True-class score can be conducted as follows: we calculate sTC for each sample from the calibration data set 
and divide the resulting distribution into k sub-distributions, one distribution for each class. We then determine 
the modified 1− α quantile for each distribution, resulting in k thresholds q̂l , l ∈ {1, . . . , k} . For a new sample i, 
we add a class cl to the prediction set C(xi) if it fulfills sTC(xi , cl) ≤ q̂l.

Regression score
As outlined in Section "Conformal prediction procedure", regardless of whether classification or regression is 
performed, the CP procedure can be applied as long as an appropriate score function is provided. Romano et al. 
developed a CP method based on quantile  regression50. In principle, we can already employ quantile regression 
itself to provide an estimate of the certainty of the regression: we can train one model f̂ α

2
 that predicts the α2

-quantile and another model f̂1− α
2
 that predicts the 1− α

2-quantile and expect the interval [f̂ α
2
, f̂1− α

2
] to contain 

the true response with 1− α certainty. However, we do not know how accurate the predicted intervals are because 
they were calculated on the training data set. Thus, Romano et al. define a score function, which we also call 
Quantile (Qu) in the following, that quantifies whether the samples from the calibration data set were within the 
signified quantile interval as often as to be expected. For a sample xj from the calibration data set with its known 
response yj , this score function represents the signed distance between yj and the nearest interval boundary

The sign of this score function is positive if yj is outside of the interval and negative if yj is within the interval. 
Again, we calculate sQu for each sample of the calibration data set and receive a score distribution on which we 
determine q̂ as the modified 1− α quantile of the distribution. If the quantile regression achieves the desired 
coverage, q̂ will be approximately 0, and the predicted interval for a new sample xi will remain unaltered. 
Otherwise, the interval will be widened ( ̂q > 0 ) or narrowed ( ̂q < 0 ), i.e., the predicted interval is

Data availability
The drug data sets can be downloaded from the publicly available repository of the Genomics of Drug Sensitivity 
in Cancer (GDSC) database. All other material is made publicly available via the Supplementary Information 
of this paper or the corresponding github page: https:// github. com/ unisb- bioinf/ Confo rmal- Drug- Sensi tivity- 
Predi ction. git.
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l′
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2
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