Please use this identifier to cite or link to this item: doi:10.22028/D291-40796
Title: Computing Presentations for Subgroups of Polycyclic Groups and of Context-Free Groups
Author(s): Kuhn, Norbert
Madlener, Klaus
Otto, Friedrich
Language: English
Year of Publication: 1992
Place of publication: Kaiserslautern
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: Finitely generated context-free groups can be presented by finite, monadic, and λ-confluent string-rewriting systems. Due to their nice algorithmic properties these systems provide a way to effectively solve many decision problems for context-free groups. Since finitely generated subgroups of context-free groups are again context-free, they can be presented in the same way. Here we describe a process that, from a finite, monadic, and λ-confluent string-rewriting system presenting a context-free group G and a finite subset U of G, determines a presentation of this form for the subgroup 〈U〉 of G that is generated by U. For finitely presented polycyclic groups we obtain an analogous result, when we use finite confluent PCP2-presentations to describe these groups.
Link to this record: urn:nbn:de:bsz:291--ds-407964
hdl:20.500.11880/37690
http://dx.doi.org/10.22028/D291-40796
Series name: SEKI-Report / Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI [ISSN 1437-4447]
Series volume: 92,7
Date of registration: 23-May-2024
Faculty: SE - Sonstige Einrichtungen
Department: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Professorship: SE - Sonstige
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.