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Abstract

Finitely generated context-free groups can be presented by finite, monadic, and A-conflu-
ent string-rewriting systems. Due to their nice algorithmic properties these systems pro-
vide a way to effectively solve many decision problems for context-free groups. Since
finitely generated subgroups of context-free groups are again context-free, they can be
presenied in the same way. Here we describe a process that, from a finite, monadic, and
A-confluent string-rewriting system presenting a context-free group GG and a finite subset
U of G, determines a presentation of this form for the subgroup (U} of G that is generated
by U. For finitely presented polycyclic groups we obtain an analogous result, when we
use finite confluent PCP2-presentations to describe these groups.

*This work was performed w/hile this anthor was visiting at the Fachbereich Informatik, Universitat
Kaiserslautern.






1 Introduction

The systematic study of decision problems for finitely presented groups like the word problem,
the conjugacy problem, and the generalized word problem has by now a long tradition. While
all these problems are undc...able i.. _.neral, the_y have been solved successfully for mau,
restricted instances [12].

Each finitely presented group G has infinitely many finite presentations of the form (X; R).
Here ¥ is a finite alphabet (set of generators), ~ : ¥ — ¥ is a bijection that is involutory,
and R is a finite string-rewriting system (set of defining relations) containing the trivial
relations {a@ — A,aa — A | a € ¥}, where A denotes the empty word. If Pr is a decision
problem, e.g. the word problem, then we say that Pr is decidable for a group G if, for some
finite presentation (X; R) of G, there exists an algorithm that solves Pr for this presentation.
For many decision problems such an algorithm can in theory be carried over to each other
finite presentation (I'; S} of G based on an isomorphism between the two presentations;
unfortunately, such an isomorphism can in general not be constructed effectively. In fact,
given two finite presentations it is undecidable in general whether they define the samec group.
Therefore, one is often particularly interested in certain uniform versions of these decision
problems. ‘

Let C be a class of finite presentations (X; R) that satisfy some syntactic restriction. The
uniform word problem for C is then the following decision problem:

INSTANCE': A finite presentation (X; R) from C, and two words u,v € ¥*.
QUESTION: Do u and v present the same element of the group defined by (X; R) 7

Analogously, the uniform versions of the other decision problems are defined. For example,
the word problem is decidable for the class of presentations that involve a single non-trivial
relation (i.e., the so-called one-relator groups [12]), and it is decidable for the class of finite
presentations that involve a noetherian and confluent string-rewriting system. However, for
the latter the generalized word problem is still undecidable [18]. Finally, for the class of finite
presentations (X; R) with R monadic and confluent, the generalized word problem is decidable
[5]. In fact, given a finite presentation (¥; R) of this form and a finite set U C £*, a prefix-
rewriting system P := Py U Pp can ve constructed effectively such that the prefix-rewriting
relation =>p defined by P is confluent, and the right congruence <=% induced by —p
coincides with the relation ~y, which is defined as follows: z ~y y iff zy~! € (U) [10]. Here
(U) denotes the subgroup of the group presented by (X; R) that is generated by U. Thus, w
belongs to this subgroup if and only if w =} A, i.e., the generalized word problem can be
solved by prefix-rewriting. Actually, since = p is confluent, the irreducible words mod —=p
form a set of coset representatives for the subgroup (U), and given a word w, prefix-rewriting
will reduce w to the representative of its coset. Finally, it should be mentioned that a group
G has a presentation (¥; R) involving a finite, monadic, and confluent string-rewriting system
R if and only if G is a “plain” group, i.e., G is isomorphic to the free product of a free group
of finite rank and finitely many finite groups [2].

In this paper we are mainly interested in the class of finitely presented polycyclic groups
and the class of context-free groups, which properly contains the plain groups. It is known
that a finitely presented group is polycyclic if and only if it can be presented through a finite
confluent PCP2-presentation [22]. A group G given through a finite presentation (X; R) is
called context-free if the congruence class [A]g is a context-free language. It is known that
a group is context-free if and only if it is a finitely generated virtually free group [19], i.e.,
it contains a free subgroup of finite index. On the other hand, a group is context-free if and



only if it has a presentation of the form (X; R) such that R is finite, monadic, and A-confluent
[1]. For these presentations many decision problems, among them the word problem and
the generalized word problem, can be solved efficiently [16]. Therefore, they are particularly
useful when dealing with decision problems for context-free groups. Accordingly, a specialized
completion procedure has been proposed that, given a finite monadic presentation (X;R)
as input, tries to transform this presentation into a finite p...catation (X;S) such that S
is monadic and A-confluent [13]. Unfortunately, even if the group presented by (X;R) is
context-free, this procedure may not succeed.

Here we are concerned with finitely generated subgroups of polycyclic groups and context-
free groups. Our work is motivated by the observation that many algebraically defined classes
of groups are closed under the operation of taking finitely generated subgroups. For éxample,
each subgroup of a free group is free, and each subgroup of an abelian group is abelian.
Now this also holds for the class of polycyclic groups and the class of context-free groups.
Since the polycyclic groups, respectively the context-free groups, are presented through the
finite confluent PCP2-presentations, respectively through the finite, monadic, and A-confluent
presentations, this observation leads to the following task:

INSTANCE: A finite confluent PCP2-presentation (X;R), respectively a ﬁnite,'
monadic, and A-confluent presentation (¥; R), and a finite subset U C
.

TASK: Determine a finite presentation (I'; T') of the same type as (X; R) for the
subgroup (U)!

Reidemeister and Schreier have dealt with this task in a general setting [17]. Let (X; R)
be a finite presentation, and let U C £* be a finite set. Based on a set of minimal represen-
tatives for all the cosets of (U) the process described by Reidemeister and Schreier yields a
presentation for (U). Unfortunately, this presentation is ﬁ_ﬁite in general only in case (U) has
finite index in the group G presented by (X; R). In fact, there are finitely presented groups
with finitely generated subgroups that are not finitely presented [12]. Also for each coset a
unique representative is required, and there must be an effective process that, given a word
w € ¥* as input, determines the representative of the coset containing w. Here-we will solve
the above task without the aid of these restrictions. '

In Section 3 we restate some results of [3,22] in short on how to associate a prefix-rewriting
system P = P(Q) U Pr with each finitely generated subgroup H of a finitely presented
polycyclic group such that the prefix-rewriting relation = p is A-confluent, i.e., w € H if
and only if w =% A. Exploiting these results we then effect:vely construct a finite confluent
PCP2-presentation for the subgroup H. In Section 4 we describe a construction that, given a
presentation (X; R) involving a finite, monadic, and A-confluent string-rewriting system R and
a finite set U C X", results in a prefix-rewriting system P = Py U P such that <=% =~yp,
and such that the prefix-rewriting ielation =>p is A-confluent. This gives an alternate way
for solving the generalized word problem in this setting. This construction is analogous to a
construction presented in [9] for the class of finite presentations that involve length-reducing
and confluent string-rewriting systems. However, since finite, length-reducing, and confluent
presentations only present a proper subclass of the context-free groups [15], the situation
cotsidered here is more general. In addition, we present a rewrite process o : (U) — U*
that transforms each word w € (U) into an equivalent word o(w) in the given generators U.

Then, based on some ideas that Gilman describes for the class of groups presented by fi-
nite, monadic, and confluent string-rewriting systems [8], we adopt the Reidemeister-Schreier



process to the class of finite, monadic, and A-confluent presentations of context-free groups.
We present a construction that consists of three major steps. First, from (X; R) and U we
construct a deterministic finite-state acceptor (dfsa) A such that AR(U*) C L(A) C (U),
where AR(U*) denotes the set of descendants of products from U* mod R, and L(A) de-
notes the language accepted by A. From A we extract = “nite set REP that forms a partial
and ambiguous set of coset representatives for (). Applying the process of Reidemeister
and Schreier to (¥; R) and U using the set RE P of coset representatives then yields a finite
monadic presentation (I'; S) for the subgroup (U). In general, the string-rewriting system .S
is not A-confluent; however, by normalizing this system [14] we obtain an equivalent finite
system T that is monadic and A-confluent. Thus, (I'; T) is the intended presentation of (U).
A nice aspect of this construction is the fact that the presentation (I';T) is obtained from
(Z; R) and U in polynomial time. Along with (I';T) a mapping  : (U) — T'* is constructed
that rewrites each word w € (U) as a word in the new generators such that w and 7(w)
describe the same element of the group (U). This construction is presented in Section 5.

Finally, in the concluding section we discuss related results from Kuhn’s doctoral dis-
sertation [4] about the task of constructing presentations of finitely generated subgroups for
other restricted classes of presentations.

2 Definitions and notation

Here we restate in short the definitions and results on string-rewriting systems, prefix-
rewriting and context-free groups that this paper is based upon.

Let ¥ be a finite alphabet. Then £* denotes the set of words over ¥ including the empty
word A. The length of a word w is written as | w |, and the concatenation oi two words u
and v is simply written as uv.

A string-rewriting system R on X is a subset of ¥* x ¥*. Its elements are refered to
as (rewrite) rules, and they are often written in the form (! — r). By dom(R), respectively
range( R), we denote the set of words that occur as the left-hand side, respectively the right-
hand side, of a rule of R. The system R is called length-reducing, if | { | > | r | holds for
each rule (I — r) € R, and it is called monadic if range(R) C £ U {A} and ! > r holds
for each rule (I — r) € R, where > denotes the length-lexicographical ordering induced by a
fixed linear ordering on L.

The single-step reduction relation — g is the following relation on T*:

u —pgvifand only if 3z,y € 2*3(l > r) € R:u = zly and v = zry.

Its reflexive transitive closure —% is the reduction relation induced by R, and its reflexive,
symmetric, and transitive closure «——% is the Thue congruence generated by R. For
w € X*, [w]gr denotes the congruence class {u € £* | v —} w}. The factor monoid
¥*/ «—Fg is denoted by Mg, and whenever a monoid M is isomorphic to Mg, the ordered
pair (X; R) is called a (monoid-) presentation of M with generators ¥ and defining
relations R.

If the monoid Mg presented by (X; R) is a group, then one can determine a set of words
{uq | @ € B} effectively such that, for each a € X, au; — A —} usa holds [20]. This
gives a function “! : £* — ¥* such that w™! is a formal inverse of w, i.e., ww™!
A —% w”lw holds for each word w. However, in combinatorial group theory groups are
usually presented through group-presentations rather than through monoid-presentations.

Let ¥ be a finite alphabet, and let = : £ — X be a bijection such that @ = a for all a € .
We define a function ~! : £* — £~ through A~! := A, (wa)™! := aw™ (w € £*,a € ).

*
R
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Further, let R be a string-rewriting system on I that includes the “trivial rules” {ad@ — A |
a € £}. Then, for each letter a € X, @ € T is a “forml inverse” of length one for a, and so
wne monoid Mp presented by (X; R) is a group. Accordingly, the ordered pair (X; R) is called
a group-presentation. )

Since group-presentati. .5 are a special class of monoid-presentations, we state the fllow-
ing definitions only in terms of the latter. In the following, whenever we restrict our atention
to group-presentations, we will explicitly say so.

Let G be a group given through the presention (¥; R), and let U be a finite subset of £*.
By (U) we denote the subgroup of G that is generated by U. A word w € £* belongs to
(U) if there exist uy,...,u, € U and €y,...,&, € {1, —1} such that w —§ uj' ---uZ*. The
generalized word problem for G can then be stated as follows:

INSTANCE : A finite subset U C £*, and a word w € ™.
QUESTION: Does w belong to the subgroup (U) of G 7

To simplify the notation we will usually assume that the finite set U is closed under
taking inverses, i.e., for each u € U, there exists a word v € U such that v —} u~l. We
consider the following binary relation ~y on X* :

g ~y yif and only if Ju € (U) :  —} uy.

This relation is a right-congruence on £*, and for w € £*, [w]y denotes the equivalence class
of w mod ~y. Obviously, [y = (U), i.e., w € (U) if and only if w ~y A.

We can express this relation in a different way. To this end we associate a prefix-rewriting
system P := Py U Pgr with (£;R) and U. Let

Py = {(u,v)| Jw € U : wv™! —} w}

be a finite set such that, for each 2 € U, Py contains at least one pair (u,v) satisfying
wl —3 R W, and let

Pg:={(zl,zr)|z € X" and (I - r) € R}.
Then the,single-step prefix-reduction relation —=p on X* is defined as follows:
u=p vif and only if I(z,y) € PIz€ " :u =22z and v = y2.

The reflexive transitive closure =% of —»p is the prefix-reduction relation induced by
P, and the reflexive, symnietric, and transitive closure <=7} is the right-congruence induced
by P. :

Lemma 2.1 [10]. For every finite set U C T* and every set of prefiz-rules P := PU U Pr
associated with (X; R) and U, the right-congruences ~y and <=p coincide.

A string-rewriting system R is called
- noetherian if there is no infinite sequence of the form vo —pg u; —R ...;

- confluent if, for all u,v,w € £*, ¥ —% v and v —} w imply that v —} 2 and
w —'y z for some 2z € ¥*; '

- A-confluent if, for all u € ¥*, u «——% A implies that u —} A.



These notions immediately carry over to prefix-rewriting systems. If the prefix-rewriting
system P = Py U Pp is noetherian and (A-) confluent, then a word w belongs to the subgroup
(U) if and only if A is the only irreducible descendant of w mod = p.

For a string-rewriting system R on ¥, IRR(R) is the set of irreducible words. If R
is finite, then TRR(R) is a regular set. For u € £*, Ax(u) is the set of descendants of «,
ie, Ax(u) = {v|u —}% v}, and for L C £*, AR(L) = Uyer AR(u). For a prefix-rewriting
system P, IRR(=>p) is the set of irreducible words mod ==p. Again, in the situation
considered here this set is regular.

Next we turn to the context-free groups. Let R be a finite string-rewriting system on X
such that the monoid Mg is a group. This group is called context-free if the congruence
class [A]Jg C L* is a context-free language. An algebraic characterization for the class of
context-free groups has been given by Muller and Schupp.

Proposition 2.2 [19].
A finitely generated group is contezt-free if and only if it is virtually free.

A group G is virtually free if it contains a free subgroup of finite index. Autebert,
Boasson, and Senizergues have obtained the following important result on presentations of
context-free groups.

Proposition 2.3 [1]. A group G has a presentation of the form (X; R), where R is a finite
monadic string-rewriting system on ¥ that is A-confluent if and only if G is a finitely generated
contezt-free group.

While in general a finite, monadic, and A-confluent string-rewriting system has an unde-
cidable word problem [21], for those systems of this form that present groups many decision
problems can be solved efficiently [16]. Underlying these decidability results is the following
fundamental technical result.

Proposition 2.4 [16]. Let R be a finite monadic string-rewriting system on ¥ such that
R is A-confluent, and the monoid Mg is a group. Then, for each regular set L C X*, the
set Ir(L) = [L]r N IRR(R) of irreducible words that are congruent to some element of L is
regular. In addition, from R and a nondeterministic finite-state acceptor (nfsa) for the set
L, an nfsa for Ir(L) can be constructed in polynomial time.

As a consequence it is shown in [16] that Book’s technique of linear sentences [5] applies to
context-free groups. Since this technique can be used to solve the generalized word problem,
we have the following resuit.

Corollary 2.5 [16]. For contert-free groups given through finite monadic string-rewriting
systems that are A-confluent, the generalized word problem is uniformly solvable in polynomial
timie.

Finally, we consider the polycyclic groups. A group G is called polycyclic if there exist
a finite sequence of normal subgroups

G=G1bGy > ...>Gp b Gy = {1}
and elements g1,92,...,9m € G such that, forall i =1,...,m,

G: = ({g:} UGisr),



i.e., G; is the subgroup of G that is generated by the subgroup G;4; and the element g;.
Wimann [22] has shown that finitely presented polycyclic groups can be presented by
finite, noetherian, and confluent string-rewriting systems of a very special form.
Let £ = {a1,@1,...,8n,8n}, let ; = {a;,@;,...,an, 8} fori = 1,2,...,n,and let Ty =
. We define sevcral particular classes of rulcs over £. A rule (I — r) is called

- a CP2-ruleif! = afaf and r = afz for some j > i, 6, € {1,~1} and z € I},,,

- a positive P-rule if | = af‘ and r-€ EY,, for some ¢ € {1,...,n} and k > 0,

- a negative P-rule if ! = @; and r = afz for some i € {1,...,n},k > 0 and z € Z},,.
A set § of rules over X is called

- a P-system, if it contains P-rules only, and for each i € {1,...,n}, S either contains
exact)v one rule with left-hand side a¥ for some k > 0 and exactly one rule with left-
hand side @;, or S contains no rule with left-hand side from {u;,@;}",

- a CP2-system, if it contains CP2-rules only, and for each i,7 € {1,...,n}, 7 > i, and
each é,e € {1, -1}, S contains exactly one rule with left-hand side af-af.

Now a presentation (X; R) is called a PCP2-presentation if R = RoU PUC, where Rg
is the set of trivial rules Ry = {a;3; — A, @a; — A| i =1,...,n}, P is a P-system, and C is
a CP2-system.

Using a particular ordering Wimann shows that, if (£; R) is a PCP2-presentation, then
the string-rewriting system R is noetherian. Further, a finitely presented group G can be
presented through a PCP2-presentation if and only if G is a polycyclic group [22]. In fact,
WiBmann proves the following result using a specialized form of the Knuth-Bendix completion
procedure.

Proposition 2.6 [22] Given a finite PCP2-presentation (X;5) of a polycyclic group G,
another finite PCP2-presentation (X; R) can be constructed effectively such that R and S are
equivalent, and R is confluent.

Here two string-rewriting systems on the same alphabet are called equivalent if they
generate the same Thue congruence. We close this section with a characterization of the set
of irreducible strings with respect to a PCP2-presentation.

Let (X; R) be a PCP2-presentation. We define certain sets ORD(X;) of ordered strings,

1=1,.. L+, recursively as follows:

ORD(X,41) := {A},and
ORD(X)) = {z€ZX|z=uvforsomeuc€ {a;}* U {@;}*andv € ORL(Zi41)}.

Wext we define some constants ¢g(i),i € {1,...,n}:

en(i) = 00 if R contains no P-rule (¢, 7) with ¢ € {a;}*,
A B if R contains a positive P-rule (af, r) for some (unique) & > 0.

Obviously, the strings in ORD(X) := ORD(X,) are irreducible with respect to the trivial
rules Ry as well as with respect to the CP2-rules in R, while each string aF is irreducible with
respect to the P-rules in R, if eg(¢) = oo or if ep(?) < o0 and 0 < k < €g(z). This shows that

the set IRR(R) of irreducible strings with respect to R can be described as follows:



IRR(R) = {z € ORD(E) | Vi € {1,...,n} : ifeg(i) < oo, thenl < |z|,; <
er(i) and|als, = 0}
= {al'a?...ad* | j1,52,-+-1Jn € Z,and, foralli = 1,...,n,ifer(i) <
%, then0 < j; < eg(t)}.

3 Prefix-rewriting systems and PCP2-presentations for sub-
groups of polycyclic groups

Let (X; R) be a finite confluent PCP2-presentation of a polycyclic group G, let V be a finite
subset of £*, and let H denote the subgroup of G that is generated by V, i.e., H = (V). We
are interested in particular sets of generators for H. To define these we need the following
technical notions.

Let v = aI(l)a;(2)--~a;(n) € IRR(R) — {)\}, ie., for i = 1,...,n, if er(i) < oo, then
0 < 7(?) < egr(?). Then we define the following functions:

- AB(v) = a,ifr(i)#0and r(j)=0forallj=1,...,i—-1,

- IAB(v) = g, ifr(i)#0and 7(j)=0forall j=1,...,i—1,

- KO(v,1) = r(i)foralli=1,...,n,

- KOAB(v) = KO(v,IAB(v)),

- AT(v) = AB(v)K0A4BW)

- REST(v) = o). al™if 14B(v) =1,

- AT Y(v) = AT((v™!) |), where w | denotes the irreducible descendant of
w mod R, ~

- REST Y(v) := REST((v™!))}).

Thus, fof v € IRR(R) — {\}, AT(v) is the first nonempty syllable of v, and REST(v) is
v without this syllable.

If ep(?) < oo, where i = IAB(v), then there exists a positive integer p such that
IAB((v*) |) > IAB(v). By EXPl(v) we denote the smallest positive integer with this
property. It is easily seen that

EXPl(v) = lem(KOAB(v),er(i))/ KOAB(v),

where lem(i, j) denotes the least common multiple of 7 and j. Finally, if eg(?) = oo, we take
EX P1(v) := oo. Using these technical notions we can now state the following definition
which is fundamental to our treatment of subgroups of polycyclic groups.

Definition 3.1 . '
Let @ = (uy,...,u,), where uy,...,us € IRR(R) — {A}. Then Q is a canonical base for
the subgroup H of G, if the following four conditions are satisfied:

1. Vv e HIiy,...,is €Z: v g uf---ul, where EXP1(uj) < oo implies that 0 < i; <
EXPl(u;), j=1,...,s,

2. TAB(u;) < IAB(uit1),i=1,...,s—1,
3. KOAB(u;)>0,i=1,...,s, and

4. if IAB((u) |) = TAB(u;), then KOAB(u;) < |[KOAB((u™) )| foralli = 1,...,s
and m € Z.



From this definition the following properties of a canonical base can be derived in a fairly
straightforward manner.

Lemma 3.2 .
Let (X; R) be a finite confluent PCP2-presentation of G, and let Q = (uy,...,u,) be a canon-
iccl base for the subgroup H of G.

(a) AT((u] D6V u]®) |) = AT(w)™® for all i € {1,...,5}, (i) € Z~ {0} and
(i +1),.. T(s) €Z, proviaed 0 < 7(i) < EX P1(u;) if EX P1(u;) < oo.

(b) For alli € {1,...,3}, Q; := (u;,...,u,) s a canonical base for the subgroup H; :=
(uiy...,uy) of G.

(c) Forallie {1,...,s~1},j€{i+1,...,8} and 6, € {1,-1}, u] uu € Hipy.

EXP1(u;

(d) Foralli € {1,...,s =1}, if EX P(w) < 0o, then u; € Hipy.

From part (a) of the above lemma we can ‘draw the following conclusion concerning the
way in which the elements of a subgrou; H are presented through a canonical base.

Corollary 3.3 .

Let (£; R) be a finite confluent PCP2-presentation of a group G, and let Q = (ug,...,Us)
be a canonical base for the subgroup H of G. If ul'ul? ---ul* op, ubtuk . ouks | where
E’XPl(u,) < ® zmplzes that 0 < j,, ki < EXPl(u;), 1 < i < s, then j; = k; for all
1=1,.

Proof. Assume that j; > 0. Then by Lemma 3.2 (a)

AT(up)" = AT((uf - -ulr) |) = AT((uf? - -ub*) }),

which implies that k; = 7,. Hence, ul? ---uls —% ui?...u¥ and proceding inductively we

obtain j; = k; forall j = 1,...,s. ]

Thus, the presentation of an element of the subgroup H through the elements of a canon-
ical base, as described in Definition 3.1 (1), is unique.

One of the main results of [22] states that, given a finite confluent PCP2- presentatlon
(Z; R) of a polycyclic group G and a finite set V of generators of a subgroup H of G,
a canonical base @ = (uy,...,us) for the subgroup H can be constructed effectively by
employing a specialized completion procedure. With §} we associate a finite set of prefix-
rules as follows: '

P(Q) := {AT(u,) — ((REST(w)) ™) | |i=1,...,s}
U {ATY(w;) — (REST Y(w;))"1) | |i € {1,...,s}and EX P1(w;) = x}.

It is then easily seen that u <=>*P(Q)UPR v holds if and only if Hu = Huv, i.e., if v and v
define the same right-coset of G mod H. In particular, this implies that u = p(Q)uPr Aif
aud only if u € H. Furthermore, in the setting considered the reduction relation = p(q)up,
is noetherian and A-confluent.

Thus, the relation = p(q)up, vields a way to decide the generalized word problem for the
subgroup H. In addition, if u € H, then a string v € (QU {u; ! | 4; € Q})" satisfying u o} v
can easily be extracted from a reduction sequence v = up =>p(q)uPr Y1 =>P(Q)uPr """

8



=>p(a)uPr A i-e., we also have an effective rewrite process with respect to the canonical
base for H. It remains to show how to extract a PCP2-presentation for H from (X; R) and
Q.

For i = 1,2,...,s, let H; denote the subgroup of G that is generated by the set Q; :=
{ui,...,us}. Tuen §; is a canonical base for H;. Hence, by the above remark we have an
effective rewrite process o; : H; — (Q; U {u7!,...,u;'})* such that, for each w € T*, if
w € H;, then w —% gi(w). From (Z; R), Q and these rewrite processes 01,03,...,0, we now
construct a monoid-presentation (I'; S) for the subgroup H as follows.

Let T =}{b1,...,b,,51,...,5,} be a new alphabet, and let Sp := {b;b; — A, b;b; — A |
j=1,...,s}.

By Lemma 3.2(c) u'su‘u‘; € H;yy for all i € {1,. -1}, 5 € {i+1,...,s} and
8, € {l,-1}, and so a,+1(u u$ uf) € (Qp U {uH_l, ,u,‘l})". Let n;+1(uf6u§uf) €
{b,+1,..‘.,b,,b,.H,...,b,} be the word that is obtained from a,-+1(u;'5uj-uf) by replacing
each facto. u] (k€ {i+1,...,3},7 € {1,—1}) by the letter b]. Then we take S¢ to be the
following set of CP2-ruleson T :

Sc := {6565 — blmipa(u; Puul) | i€ {1,...,s-1},j >4, 6,e € {1,-1}},

i.e., S¢ is a CP2-system on I'.
By Lemma 3.2(d) u; EXP1(w) ¢ Hiyy forallie {1,...,s— 1}, for which EX P1(u;) < o0
'olds, and so ;41 (uEXPl(u' ) € (i U {ui'_:l, ..,y u;1})*. We let Sp denote the following

set Of P ruleS on F
EXP1(u; EXP1(u, T Ez\P u;d— EXP Ui\ —

1€ {l,...,s}such that EXPl(u ) < o}

Sp = — Mit1(y;

Then Sp is a P-system on I'. Thus, if 5 denotes the finite string-rewriting system § :=
SoU Sc U Sp, then (I'; S) is a finite PCP2-presentation. Hence, the group K presented by
(T'; S) is polycyclic. Observe that this presentation has been constructed effectively from
(Z; R) and Q.

Lemma 3.4 .
The presentation (I'; S) describes the subgroup H of G, i.e., K is isomorphic to H.

Proof. We define a mapping a : [’ — £* through b; — u; and b; — u;!,1< i < s. Since

a(b5b8) = ufud o wuitusud o Woun(urtuiul) = a(®ini (urtusud)),
and since
EXP1(u, EXPl ; EX P1{u; EXP1(u;
a(bf ¥ P = ©) o 01 (277 = o (uF ¥ I
and
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a(bE)\Pl(u) 1

!

Q
—
Ca
I
e
L
!
or

(i (uBX P 1)



we have a(f) «} a(r) for all rules (¢,7) € S, i.e., @ induces a group-homomorphism from
the group K onto the subgroup H of G. It remains to verify that this homomorphism is
injective.

Since (I'; §) is a PCP2-presentation, the string-rewriting system S is noetherian. Let
w € I'* be irreducible mod §.

Claim. If w # A, then a(w) f5 A.

Proof. Assume that w # A. We have w = b]'..-bJs, where EX P1{u;) < oo implies that
0 < ji < EXP1(w;), since e5(i) = EXP1(u;), i = 1,...,s. Hence, a(w) = uJ' - - - ul*, where
EX P1(u;) < oo implies that 0 < j; < EXP1(u;). Let k := min{i | j; # 0}. Since w # A,
we have k € {1,...,s}. Then

AT(a(w) |) = AT((ufrultt} - ui*) |) = AT(ug)*

by Lemma 3.2(a), which means that a{w)| # A. Thus, a(w) /4% A, and hence, a(w) #f A,
since R is confluent. ]

Thus, the homomorphism o« : K — H is indeed injective, and therefore K and H are
isomorphic, i.e., (I'; S) is a PCP2-presentatior. for the subgroup H of G. &)

The above proof shows even more. If w € T'*, then there is a striﬁg wo = b{‘w --bl* such
that w —% wo, where - EX P1(u,;) < oo implies that 0 < j; < EXP1(u;), 1 = 1,...,s. Thus,
a(w) «f a(we) = u{‘ .--uls. Now let v € T* be such that w <% v. Then v =% vp =
b’f‘ -+.bks where EX P1(u;) < oo implies that 0 <'k; < EXP1(w;),¢=1,...,s, and hence,

- ‘s - * * * - k ks
u-{l ---'U,'; - a(wo) HR a(w) (——)R a(’v) HR a(fvo) = ull ...us .
By Corollary 3.3 we can concl:de that j; = k;, ¢ = 1,...,s, which means that w —%

bj' ---bi* «% v. Hence, the string-rewriting system S is confluent. We can thus summarize

our results as follows.

Theorem 3.5 . There is an algorithm that solves the following task:

INPUT : A finite PCP2-presentation (£;R) of a group G, and a finite subset
Vcz.

OUTPUT : A finite confluent PCP2-presentation (I'; S) for the subgroup H of G
that is generated by V.

Thus, finite (confluent) PCP2-presentations do not only give a nice combinatorial charac-
terization for the class of finitely presented polycyclic groups, but they also give a means to
effectively perform calculations of subgroups of these groups. This completes our investigation
of polycyclic groups. We now turn to the context-free groups.

4 Prefix-rewriting systems for context-free groups

Let R be a finite, monadic, and A-confluent string-rewriting system on ¥ such that the monoid
Mp is a group, and let U C ¥* be a finite et of words that is closed under taking inverses.
“Further, let P = Py U Pr be a prefix-rewriting system associated with (X; R) and U such
that u > v holds for each rule (u,v) € P{ where > again denotes.the length-lexicographical
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ordering on £*. Then the prefix-rewriting system P is noetherian. If, in addition, P is -
confluent, then (U)NIRR(=>p) = [NlunNIRR(=>p) = {A}, and hence, membership in (U)
can simply be decided by prefix-rewriting mod P.

In [11] the authors present a test for A-confluence of prefix-rewriting systems of this form
for the particular case that the underlying string-rewriting system R is finite, length-reducing,
and confluent, and that it presents a group. This test reduces the proliem of deciding A-
confluence of P to the problem of verifying the equality of certain regular sets. It can be
carried over to the case considered here, but it gets much more complicated due to the fact
that the underlying system R is not confluent. However, another much simpler test for
A-confluence of P can be devised based on Proposition 2.4.

Lemma 4.1 . Let R be a finite, monadic, and A-confluent string-rewriting system on ¥ such
that the monoid Mp is a group, let U C £* be a finite set that is closed under taking inverses,
and let P := PyUPpr be a noetherian prefiz-rewriting system that is associated with (X; R) and
U. Then this prefiz-rewriting system is A-confluent if and only if Ip(U*)NIRR(=>p,) = {1}

Proof. If P is A-confluent, then w =>} A holds for each word w € (U) = [A]Jy. Thus, each
word w € Ip(U*) = [U*]rNIRR(R) = (UyNITRR(R) reduces to A mod P, and so each word
w € Ip(U*) ~ {A\} must have a non-empty prefix that is the left-hand side of a rule (u, v) of
Py.

Conversely, assume that Jp(U*)NITRR(=>p,) = {1}, and let w € (U). Then w —} wp
for some wo € Ip(U™), since R is noetherian. If wo # A, then wo € IRR(=>p, ), i.e., a prefix-
rule (u,v) € Py applies to wg, and so wg == p, wy. Since <=p = ~y, we have w;, € (U),
and hence, w; — we for some word w, € TRR(U*). Continuing in this way we obtain a
sequence w —§ Wo =>p w; —f W2 =>p ..., which terminates, since P is noetherian.
Hence, we have a reduction w =>p A. Thus, P is A-confluent. a

From (Z; R) and U we can.construct an nfsa for the set Ir(U*) in polynomial time. If
Py = {(z1,%)s--+»(Tm,Ym)}, then IRR(=>p,) = £* — UiZ; zi - *. Hence, we obtain an
nfsa for the set Ip(U*)NIRR(=> p, ) in polynomial time. This gives the following decidability
result.

Theorem 4.2 . The following problem is decidable in polynomial time:

INSTANCE: A finite, monadic, and A-confluent string-rewriting system R on ¥ such
that Mg is a group, a finite set U C L* that is closed under taking
tnverses, and a noetherian prefiz-rewriting system P = Py U Pg that is
associated with (¥; R) and U.

QUESTION: Is P A-confluent?

Based on the above test for A-confluence we could now develop a Knuth-Bendix-style
completion procedure that, given a prefix-rewriting system P = Py U Pgr that is not A-
confluent as input, tries to construct an equivalent system that is A-confluent by adding
certain rules to Py. However, a A-confluent prefix-rewriting system P associated with (X; R)
and U can immediately be extracted from an nfsa for the set Ir(U*). For the case of groups
presented by finite, length-reducing, and confluent string-rewriting systems this has been
observed by Kuhn [9]. .

Let R be a finite monadic string-rewriting system on ¥ such that R is A-confluent, and
MpPg is a group, and let U C X* be a finite set that is closed under taking inverses. From
R and U we first construct an nfsa B = (Q,X,qo,6, F) that accepts the set Ip(U*) =
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{w € IRR(R) | 3n > 03uy,...,upn € U : w «—} ;- up}. To simplify the following
discussion we identify the nfsa B with its state graph, and ~ we can talk about “paths”

B. From B we extract a set P; of prefix-rules as follows.

(i) For every simple path in B from the initial state go to a final state g; € F, which does
not pass through any final state, we put the rule (z, ) into P;, where z is the label
along the path consxdered .

(ii) For every path pin B from the initial state go to a final state ¢y € F', which does not
pass through any final state, and which can be partitiuned into three parts p = py, p2,p3
such that p; is a simple path and p; is a simple loop, we put the rule (z,22,z,) into
Py, where z; is the label along the path p; (i = 1,2).

Obviously, P; can be constructed effectively from B, and for all rules (z,y) € P, |z |>
| v | holds.

Lemma 4.3 . The system P, has the following properties:
(a) For all (z,y) € P, zy~! € (U),
(b) <% = ~y, where P = P, U Pg, and
(c) =>p is A-confluent.

Proof.

(a) Let (z,y) € P;. If y = A, then z is the label along a simple path in B from ¢ to some
gr € F by (i). Hence, z € L(B) = Ir(U*) implying that zy~! = z € (U). If y # A,
then by (ii) = yz for some nonempty word z, and there is a nonempty word v such that
zv = yzv and yv are both accepted by B. Thus, yzv,yv € (U), and so zy~! = yzy~! «—}
yzv- vy~ = (yzv) - (yv)~t € (U). ‘

(c) Let w € (U). We claim that w =% A. Since R is noetherian, there is a word wp €
IRR(R) such that w —}% wp, and so wo € Ir(U*). If wg = A, nothing remains to be shown;
otherwise, there is a path p in B from go to some final state with label wo. If p is a simple
path that does not pass through any final state, then (w(, ) € P; by (i); otherwise, there is
a proper initial part p; of p that is simple, that ends at a final state, and that does not pass
through a final state, or there is a proper initial part p;, p2 of p such that p, is simple, p; is
a simple loop, and p;, p; does not pass through a final state. In the former case wo = z122
for some rule (z;,A) € Py, in the latter wo = 22223 for some rule (z,z;,;) € Py. In either
case, wg =>p, w) for some w; € £* satisfying | wy | <| wo |. By (a) wo ~y wy, and so by
induction on | w | we obtain w =} A.

(b) Because of (a) we have u ~y v, whenever u <=% v. To prove the converse implication
assume that u ~y v. Then uv~! € (U), and hence, u «—} vv™! - v =} v from the proof
of (c), i.e., u <=p v. a

In general, it can ha,ppen that, for some u € U, the set of rules P, does not contain a rule
(z,y) satisfying zy~! ——% u. In order to also fulfill this formal requirement, we could then
simply add the rule (u, A) to P1 Thus, we have the following result

Theorem 4.4 . For each finite, monadic, and A-confluent string-rewriting system R on X
that presents a group, and for each finite subset U C ¥*, there exists a finite, length-reducing
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set of prefiz-rewrite rules Py such that the prefiz-rewriting system P = Py U Pr presents
the right-congruence ~y, and is A-confluent. In fact, Py can be constructed effectively from
(X;R) and U.

The complexity of this construction is closely related to the number of simple paths
and simple loops in the nfsa B for the set Ir(U*). Wheu-:ver this number is bounded by
a polynomial, then Py is obtainable in" polynomial time. Once we have the system Py,
the membership problem for (U) can be sclved in polynomial time by prefix-rewriting mod
P=PyUPg.

Given a subset U C ¥* and a word w € ¥*, one is not only interested in deciding whether
or not w belongs to the subgroup (U), but in the affirmative one also wants to “rewrite”
w as a product of the given generators U, i.e., determine words uy,...,um € U such that
w ——%f Uy - -Unm. In the following we present such a “rewrite process”. This process will
consist of two phases. In phase 1 a word w € (U) is transformed into a congruent word
v € AR(U*) N TRR(R), and in phase 2 a word u € U* is determined such that u —} v.
Then w «—% u, and hence, u can be taken as the result of rewriting w.

Solet w € (U). By Proposition 2.4 the set Ip(w) = [w]|pNIRR(R) is regular, and from R
and w an nfsa B, for Igr(w) can be constructed in polynomial time. The set U* is regular, and
hence, so is the set of descendants AR(U*). Again, from R and U an nfsa B; for AR(U*) can
be constructed in polynomial time (cf. [5]). Since w € (U), there are words uy,...,u, € U
such that w «—} 4 ---un, and so each irreducible descendant of u, - - - u,, belongs both to
AR(U*) and to Ip(w). Thus, the intersection Ip(w) N AR(U™) is nonempty, and from B; and
B, we can extract the minimal word v(w) with respect to the length-lexicographical ordering
that belongs to this intersection. The word v(w) is uniquely determined, and hence, we can
define a mapping o1 : (U) — AR(U*)NITRR(R) through w — v(w) (w € (U)). Observe that,
given (X; R), U, and w € (U) as input, the word o,(w) is computed in polynomial time.

Now let v € AR(U"). We want to compute a word u € U~ such that u —}% v. Let
Vi(v) := {y € Z* | y — % v}. Since R is wonadic, the set Vi(v) is context-free [6], and
from R and v a context-free grammar G;(v) for this set can be easily determined. Since
v € AR(U*), we know that the intersection V(v) N U* is nonempty. From the grammar
G1(v) and an nfsa for U* we can construct a context-free grammar G3(v) for this intersection,
and from Ga(v) we can determine a word u(v) € Vix(v) N U*. In this way we obtain a
mapping o, : AR(U*) — U~ such that, for v € AR(U*),02(v) —{ v. Unfortunately, since
the construction of the grammar Gy(v) from the grammar G;(v) and U involves the task
of determining the Greibach normal form of G;(v), we see currently no way to perform this
process in polynomial time.

Combining the mappings 0, and o, we obtain an effective rewrite process o : (U) — U*.
Thus, we have the following result.

Theorem 4.5 . Let R be a firite, monadic, and A-confluent string-rewriting system that
presents a group. Given a finite subset U C L*, a rewrite process o : (U) — U™ satisfying
o(w) «—x w can be constructed effectively.

5 Presentations of subgroups of context-free groups

Let (X; R) be a finite group-presentation such that the string-rewriting system R is monadic
and A-confluent, and let U = {uy,...,un} be afinite set of words from £*. Then the subgroup
(U) of Mr _enerated by U is a context-free group [19], and hence, it can be presented by
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some finite, monadic, and A-confluent string-rewriting system T on some alphabet I'. In this
section we present a construction that yields a presentation of this form for (U). As outlined
in the introduction this construction consists of three steps. kirst we derive a dfsa A from
the group-presentation (X; R) and the set U.

Construction 5.1 . A dfsa A for a subset of (U):

INPUT: A finite, monadic, and A-coafluent string-rewriting system R on ¥

such that (X;R) is a group-presentation, and a finite set of words
U={u,- . yun}U{uil,...,uzl} C =%

comment:Since (X; R) is a group-presentation, each letter a € ¥ has an inverse
of length 1, and R contains the rules {aa — A | a € £}. The formal inverses

(1)

(2)

1

..,u, " are included in U to simplify the notation in what follows.

an nfsa Ay = (Qo.X,q.,00,{q0}) is constructed by adding a loop from
qo to go with label u; for each i € {1,...,m}, and by adding state g; to
60(qi,a) whenever ¢; € 60(q;,a);
1:=0; .
comment: A} is an nfsa with L(A}) = U*;
while 3¢ € @;3e€ X: | 8i(q,a)|> 1do
begin choose q,q1,92 € Q; and a € ¥ such that q1,9; € 6;(g,a),
@1 # g2, and g2 # qo;
Qi = Qi —{g};
replace g2 by q in §;
end; ‘
comment: After a finite number of iterations this while-loop termi-
nates with a dfsa A; = (Q,, X, g0, 6i, {g0}), since during each iteration
the number of states is reduced by one;
if 3¢ € Q; 3(Il — r) € R: 6:(q,1) is defined and 6;(¢,1) # é:(g,r) then
begin _
if r € ¥ and §;(q,r) = 0 then
begin
Qit1:=Qi;
biv1 = 6: U {((g,7),6:(q, 1)), ((6:¢, 1), 7)s @) };
+ comment: Together with the transition ¢ —" ¢’
also the transition ¢’ —7 ¢ is introduced

end
else
if r € T and 6;(q,r) is defined chen
begin
if é:(¢,7) = go then {g1:= bi(q,r);
g2 = 6;(¢,1)}
else  {q1:= 6i(q,1);
. g2 = 6i(q,1)};
Qiv1:= Qi — {q2};
6i+1 = 6:' |replaceq2 by gy
end
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else {comment: r = A and 6(q,!) # ¢}
begin if6(q,l)=¢0 then {g ¢,
q := go}
else ¢ i= 6;(¢,!l);
Qit1:= Qi — {q@};

6i+l 1= & Ireplaceqz byq

end;
comment: Al ; = (Qi+1, X, 90,0i4+1,{2}) is an nfsa;
ti=t+1;
goto (1)
end;
(3) A=Ay

OUTPUT: A = (Q, %, 90,6, {q})

end.

In general step (2) will introduce some nondeterminism into A{_,, which is then removed
subsequently by the while-loop (1). In each iteration of the goto-loop two transitions ¢ —"
¢’ and ¢ —T q are added, which can happen only if é(g, ) was undefined before, or a state
is deleted. Thus, the above construction terminates eventually. In fact, it computes a dfsa
A =(Q,%, 40,8, {q}) from (X; R) and U in polynomial time.

Before we can go to the second step of our construction, we must establish certain facts
about the dfsa A.

Lemma 5.2 . Forallq€ Q and all a € X, if 6(q,a) is defined, then 6§(6(q,a),a) = q.

Proof. This property is true for the initial nfsa A after step (0). Obviously, it is preserved
by the while-loop (1) as well as by step (2). a

Lemma 5.3 .
(a) AR(U™) C L(A).
(b) L(A) C(U).

Proof. We have L(Ap) = U*. The dfsa A is obtained from Aj through a finite se-
quence of elementary transformations, i.e., we have a sequence of finite-state acceptors

0, Ao, Ay,...,Ax = A such that, for each i € {0,1,...,k}, the dfsa A; is obtained from
A’ by an execution of the while-loop (1), and the nfsa A!,, is obtained from A; by step (2).
We now establish some claims by induction on i.

Claim 1. Forall : = 0,1,...,k -1, L(A4}) C L(A;) C L(A:-H) C L(Ait1)-
Proof. This is obvious from the construction. a

Claim 2. Let w € L(A), and let u € X* be such that w — g u. Then u € L(A), i.e., L(A)

is closed under the operation of taking descendants mod R.

Proof. Since w — g u, we have w = zly — g zry = u for some rule (I — r) € R. Further,’
since w € L(A), there are states ¢;, ¢z € @ such that we have the following transitions in A:

g0 —° @ —' g2 —Y go.
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By the condition in (2) we have 6(q:,7) = 6(q1,!) = q2, i.e., we also have the following
transitions in A:
g0 —" q —" @2 —Y g0,

which means that u = zry € L(A). . o
Since L(Ag) = U™, Claims 1 and 2 imply that AR(U*) C L(A).

Claim 3. For each i € {0,1,...,k}, if L(A}) C (U), then L(A;) C (U), too.

Proof. Suppose that L(A!) C (U) holds for some ¢ € {0,1,...,k}. If A; happens to be
deterministic, then A; = A}, and there is nothing to show. So assume that there are states
4,q1,92 € Qi and a letter a € X such that ¢1 # g2, ¢2 # qo, and ¢1,¢2 € 6;(q,a). From the
construction we know that each state of A! is accessible as well as coaccessible, i.e., there
exist words u, v, w € £* such that ¢ € 6;(qo,u), go € 6:(q1,v), and go € 6;(¢2, w). Graphically
we can depict this situation as follows:

An execution of the body of the while-loop (1) identifies ¢; and g2, i.e., we obtain the
following situation:

})

We claim that L(A;) C (U). Through induction on the number of times the body of the
while-loop is executed we then obtain Claim 3.
So let z € L(A;), i.e., in A; we have a path of the following form:

9o —z; 1 —z, g1 — x5 " —Ip,e1 q1 —z,, 90,
where z = z122...2., is a factorization of z, and each occurrence of ¢; is displayed. In A}

this path corresponds to a sequence of paths of the following form:
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9 —= 49:(1) qr(2) dr(m-1)

9o
" / ‘ / /
I / 3z . . . Tm—-1 T

qr(1) dr'(2) 9r'(m-1)

where 7(j5),7'(j) € {1,2},j=1,...,m - 1.

I, for some j, 7(j) = 7'(j), then the path ending at ¢,(;) and the path beginning at ¢,(;
form a single path in Af.

If, for some j, 7(7) = 1 and 7'(j) = 2, then

4rr(5-1) "z, @4 —vua 92 41 Ir(54+1)

is a path in A}, and if, for some j, 7(j) = 2 and 7'(j) = 1, then

9r(j-1) ~*z, 92 ~Fwua Q1 "z Gr(+1)

is a path in A}. Thus, for j = 1,...,m — 1, we define a word y; as follows:

) ov i T(G)=1,
YTV w if rG)=2
Then z1y,uaz2y2, ..., ATy 1Ym—1,uaT,m € L(A:) C (U), and uay;,uays,...,uayn-1 €
L(A}) C (U). Hence,

1l

z = r1T2... Ty
—% (ziy) - (e u™h) - (uazayr) - - - (UaTm—1Ym—1) - (Ymiya tu"t) - (uaz,,)
= (1) - (vay) ™ - (wazayz) - - (WaZm—1Ym—1) * (v@Ym—-1)"" - (uazy,) € (U).

Thus, L(A;) C (U). o

Claim 4. For each i € {0,1,...,k — 1}, if L(A;) C (U), then L(Al ;) C (U), too.
Proof. In A; we have the following situation for some rule (I — r) € R:

17



(i) If 6:;(q,r) is undefined, t/}len r € I, and A{,, is obtained from A; by simply adding the
following two transitions:
| ¢—" ¢ and ¢ —"g.

Thus, if w € L(Al,,), then by replacing each transition ¢ —" ¢ in an accepting path in
A’y with label w by the path ¢ —» -+ ... — ¢, and by renlacing each transition ¢ —" ¢
by the path ¢ — -7 ... — ¢, we obtain an accepting path in A; with label u such that
u «——}5 w. By the hypothesis, u € (U), and so w € (U).

(ii) If 6;(q, ) is defined, but 6;(q,r) # 8i(¢,!), then A , is obtained from A; by identifying
the states ¢ and ¢2. Now L(Aj,,) C (U) is shown similar to the proof of Claim 3. Observe
that A; contains the paths

-

_ 1
@2 —" ¢ —'qgand g —'" ¢—"g,,

and that 7l «—{ fr —p A and [7!'r «—— g {71l —% A hold. a

Since L(Ag) = U™ C (U), Claims 3 and 4 together yield that L(A) = L(Ax) C (U). This
completes the proof of Lemma 5.3. a

Now using breadth-first search on the graph underlying the dfsa A, and starting with the
state go, we determine, for each state ¢ € @, the minimal word r(q) with respect to the length-
lexicographical ordering that labels a path from ¢q to ¢. Since each state is accessible, we thus
obtain a word r(q) for each state ¢ € Q. By REP we denote the set REP = {r(¢) | ¢ € Q}-
Observe that, for each ¢ € Q, 6(qo,7(q)) = g, that 6(q,(r(g))”!) = g by Lemma 5.2, and
that 7(go) = A.

Lemma 5.4 . Forall z,ye &*, if 6('qo,x) and 6(qo, y) are defined and equal, then z ~y y.

Proof. Let g denote the state q = 8(qo,z) = 6(qo,y). Since 8(q,(r(q))"!) = go, we have
z(r(9))~, y(r(9))"! € L(A) C (U). Thus, zy~! «—p (2(r(g))™) - (r(@)y~*) = (a(r(9))™1) -
(y(r()) ™))™ € (U),ie, z ~u y. . a

Hence, each word r(q) € REP represents a coset of (U) in Mr. However, different words
7(q) and r(¢') may represent the same coset, and in general, there will be cosets that are not
presented by any of these words. The following technical ohservation will be useful in what
follows.

Lemma 5.5 . The set REP is closed under taking prefizes, i.e., if uv € REP for some
u€e X andve Xt thenu€ REP.

Proof. If uv = r(q), then there is a state ¢; such that 6(go,u) = ¢ and é(qy,v) = ¢2. Since
uv is the minimal word satisfying 6(go, uv) = ¢, and since v # A, we have ¢; # qz\.

Assume that é§(go, w) = ¢; for some word w such that v > w. Then §(qo, wv) = 6(q1,v) =
¢2 and uv > wv, contradicting the minimality of uv = r(g2). Thus, (g;) = u implying that
u € REP. a

The rewriting process of Reidemeister and Schreier uses a complete set of minimal repre- -
sentatives for all the cosets of (U) to construct a presentation for (U) [17]. Here we technically

18



perform the same steps; however, we use the partial and ambiguous set of coset representa-
tives REP.

First, we choose a new alphabet I' as follows. For each state ¢ € () and each letter a € X,
if (g, a) is defined, then we introduce a letter b, ,, i.e.,

['= {balq€Q,ac€ X suchthat §(¢,a)isdefined}.

Further, we define a homomorphism « : I'* — X* through b,, — r(g)a(r(6(g,a)))™? for all
by« € . By Ty we denote the image a(I') C X*. We can establish the following properties
for Xy.

Lemma 5.6 .
(a) Ly C L(A).
(b) (Zu) = (), i.e., for each u € (U), there is some v € I'* such that u —} a(v).

Proof.
(a) Let ¢ € Q and a € ¥ be such that §(¢g,a) = q1 € Q. Then by, € I, and a(by,.) =
r(q)a(r(é(g,a)))™" € Zy. Now

6(g0, 7(q)a(r(6(g,a)))™) é(qo, 7(q)a(r(q1))™")
8(g,a(r(aq1))™")
§(qu, (r(q@))™)

= 4o,

It

i.e., a(byq) € L(A). Thus, Zy C L(A) C (U).

(b) Let u € (U). At the end of Section 4 we constructed a mappirg oy : (U) — AR(U*) N
TRR(R) such that, for w € (U), w <% o1(w). Since AR(U*) C L(A), we may thus assuiie
without loss of generality that u € L(A).

We now describe a function 7 : L(A) — I'* such that, for all v € L(A), u «——§ a(7(u)).
This will then prove our lemma. Solet u = ay---a,, € L(A), a1,...,a, € X. Since u € L(A),
there is a path from ¢g to go with label u. Fori =1,...,m -1, let ¢; := 6(qo,a; - - -a;). Then
8(gi,ei41) = gip1 forall e = 0,1,...,m -2, and 8(¢m-1,am) = go. Observe that this sequence
of states is uniquely determined by u, since A is a deterministic finite-state acceptor. We
define the word 7(u) € I'™ as follows:

T(u) = bQO,axbtn.az o 'qu—n,am'

Then

a(T(u)) = a(bQOvGIbQI az " 'me-l,ﬂ-m)
= (r(go)ar(r(@))™") - (r(q1)az(r(g2)) ") - - - (1(gm-1)am(r(20)) ")

(_'*R ayal - Qy = u.

0
Notice that the above function = : L{A) — I'* is computable in polynomial time. Further,

by combining the three functions 0y : (U) — L(A), 7 : L(A) — I'*, and o : T* — I}, we can
rewrite each word u € (U) in polynomial time as a product of elements of Ty.
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Finally, we define a string-rewriting system S on T. This system will consist of two
subsystems S; and S, which are obtained as foll.ws:_

S1:={bga = A [ g € Q, a € T satisfying r(g)a —} 7(é(q, a))}

and
Sy := {rg(I) = 74(r) [ (I = r)-€ R, q € Q such that §(q,!) is defined}.

Here, for ¢ € @, 7, is the partial mapping 7, : ¥* — I'*, which is defined as follows:
- dom(r;) = {w € * | §(q, w) is defined}, and

- forw = a; ---ay € dom(7y), (a1,...,8m € X), if ¢; := 6(q,a1---a;),i=1,...,m, then
Tq(w) := bg,a,091,05 * Ogpn_1,am-

Thus, the mapping 7 : L(A) — I'* considered in the proof of the previous lemma is
identical to the mapping 7,,. Obviously, | T(w) [=]| w | for all ¢ € Q and all w € dom(7,)
Hence, S := 51 U S, is a finite monadic string- rewntmg system on I' that is constructed in
polynomial time from (3; R) and U.

If by, € T, then 6(q,a) is defined and 6(6(q,a),a) = ¢, i.e., b,z € I' as well, where
p = 6(q,a). Since (a@a — X) € R, this implies that (r,{a@) — A) € Sy, i.e., (bgabpa — A) € 52,
" and analogously, (b, zb,), — A) € S2. Thus, (I'; S) is indeed a group-presentation. We claim
that (T'; §) is a presentation of the group (U). From the proof of Lemma 5.6 we already know
that @ : " — ¥* is a monoid-homomorphism from the free monoid I'* onto the subgroup
(U) of Mpg.

Lemma 5.7 . For all (u — v) € §, a(u) —{ a(v), i.e., a tnduces a homomorphism from
the group Mg presented by (I'; S) onto the group (U).

Proof. Let ¢ € Q and a € ¥ be such that 6(g,a) is defined, and r(g)a «——} 7(8(g,a)), i-e.,
(bga — A) € 51. Then
a(bga) = rg)a(r(6(g,0)))”
—r 1(8(g,a))- (r(8(g,a)))”"
= o))
Now, let ¢ € Q and (I — r) € R be such that §(q,!) is defined, i.e., (4({) — 74(r)) € Sa.

From the construction of A we know that 6(¢,!) = 8(g,r). Suppose that | = a;---ap
(a1y...,am € X), and let ¢; := 6(q,a1---a;),1=1,...,m. Then

To(1) = bg,0,091,02 " * "By sam>
and hence,
é(Tq(l)) = r(@ai(r(@)) - r(@)aa(r(g2) 7 - 7(gm-1)am(r(gm)) ™!
4_—’”‘R r(q)al " 'am(r_(qm))_l

= r(@lr(gm))”"
—r (q)r(r(gm))"
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If r = A, then 7,(r) = X, and g, = 6(¢,1) = (g, ) = §(g, A) = ¢ implying that
ar(1)) — & (Q)r(r(gm)) ™" = r(g)(r(g)™" —k A = a(7y(r)).
If r € %, then 74(r) = b, ,, and
a(1y(r)) = albg,r) = r(q)r(r(6(g, 7)) = r(@)r(r(gm)) ™" —k a(re(1)).

This completes the proof of Lemma 5.7. a

It remains to show that the homomorphism a : Mg — (U) is injective. For this we need
the following two technical lemmas.

Lemma 5.8 . For all u € L(A), if u — g v, then T7(u) — 5, T(v).

Proof. Let u € L(A) be such that ¥ — g v. Then v € L(A), and u = zly — zry = v
for some z,y € £* and (! — r) € R. Since u € L(A), there are states ¢;,q, € Q such that
8(go-z) = @1, 6(q1,!) = q2 = &(q1,r), and 8(q2,¥) = qo. Hence, the rule (7o, (I) — 74, (7))
belongs to 53, and so

T(u) = TQO(Z)T%(I)TQ'.’(?/) -Ss TQO(z)TQI(T)T(D(y) = T(v)-

From Lemma 5.8 we immediately get the following consequence, since a(I'*) C L(A).
Corollary 5.9 . For all w € I'*, if a(w) «—}k A, then T(a(w)) —%, A.

Lemma 5.10 . Forallb,, € T, 7(0a(bga)) —7%, bga-

1

Proof. Let b,, € ', and let p = 6(q,a). Then a(byq) = r(q)a(r(p))~!. Suppose that r(q) =
a1+ @y and (r(p))"' =c1--cn (a;,¢;j € ). Fori=1,...,m—1, let ¢; = 6(go,a;---a;),
and, for j =1,...,n -1, let p; = é(p,c;---¢;). Then

T(a(bq,a)) = 7(ay---anac, - 'Cn)

- bqo,alqu.uz e qu_n,am ) bq,a ) bp.Cn o 'bpn—hCn-

Since r(q) = a;---a, € REP, we have r(gi) =ay---a;, i = 1,...,m — 1, by Lemma 5.5.
Hence, for each i € {0,1,...,m — 1}, 7(gi)ait1 = a1 -+ - @iaiy1 = 7(giy1) (Where ¢,,, = q), and
therefore, (bg; a;y, — A) € ) forall i € {0, 1,...,m — 1}. Further, since (r(p))™! = ¢;--- ¢y,
we have 7(p) = &, ---¢;. Again by Lemma 5.5 this gives r(p;) = ¢, ¢j41,j=1,...,n - 1.
Hence, for each j € {0,1,...,n — 1}, r(p;) = r(pj+1)€j4+1 (where p = po and ¢o = p,), and
therefore, 7(p;)c;+1 <k T(Pj+1) = r(6(pj,cj+1)) implying that (b, ., — A) € S for all
j€{0,1,...,n - 1}. Thus,

— *
"'(a(bq.a)) = bqo,aqux.az o 'qu-xyam : bq,a : bp,q o ‘bpn-x.cn s bq,a-

¢

Combining Lemmas 5.7, 5.8, and 5.10 we can now derive the following result.
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Theorem 5.11 . (I'; §) is a finite monadic presentation of the group (U).

Proof. Because of Lemma 5.7 it remains to prove that, for all w € I'*. if a(w) «——} A, then
w «—% A. Solet w € I'* be such that a(w) «— % A. Then 7(a(w)) —%, A by Corollary
5.9, and by Lemma 5.10 w «—j% 7(a(w)). Thus, w <% A, i.e., the homomorphism o« from
Ms onto (U) is injective, which means that (I'; S} is in fact a presentation of the group (U).

It is easily seen from the proof of Theorem 5.11 that the string-rewriting system S will in
general not be A-confluent. Thus, it remains to transform § into an equivalent finite monadic
system that is A-confluent. However, before continuing with this transformation, an example
is in order. The following example is extremely simple; however, it suffices to illustrate the
construction of a presentation for (U) described so far.

Examplc 5.12 . Let
Y = {a,d,b} and R = {ad@ — A,aa — A, b2 — X bab — a,bab — a,aba — b,aba — b}.

Then R is a monadic and A-confluent system, and hence, the group G presented by (X; R) is
context-free. Let U = {a?, ab,a? ba}. Using Construction 5.1 we get the following dfsa A:

~

By taking @ < a < b, we obtain r(g) = A and v(q1) = @, and
T = {b40.0 b40,5+ 0g0,6+ Ogy,a+ bg1.a: Dy b -
To simplify the notation we just write T as ' = {b, b, b3, b4, bs, bs}. Further, we get
S1 = {by— Abs — A},
and |

Sz = {bybs — A, bobgy — A b3bg — A,
b3bgbs — by, b3bsbs — by, b1bsby — b,
bobgby — b3, baby — A, bsby — A,
bebs — A, beb1be — bs, bebade — by,
byb3by — be,bsbsbs — be}.

Thus, (I'; $1 U S3) is a finite monadic presentation of (U), which, however, is not A-confiuent,
since b2 ——% A, but b2 is irreducible mod §. o
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Let (T'; S) be the presentation of the subgroup (U) constructed above. We define another
string-rewriting system S on I' by ta.kmg $ := S U S3, where S3 contains all the rules of the
form (zy---Tm — r) such that zy:--z,, # A, and (uoT18; - Tmim — 1) € 52 for some
ug, U1, - - -, Uy, € '™ satisfying u; —»fgl A1=0,1,...,m

Lemma 5.13 . The system $ is equivalent to S, and § is A-confluent.

Proof. If (uzv — r) € §3 and z —% A, then clearly uv «—% r. Thus, S and § are
equivalent, i.e., they define the same Thue congruence on re.
To prove that § is A-confluent, we need the following observation.

Claim. Let (I - b) € §; with b€ T. If I —7% A, then (b — A) € 5.
Proof. If | —% A, then b «—% A, and hence, a(b) = r(q)a(r(6(¢q,a)))~! — % A by Lemma
5.7, where b = b, , is taken. Thus, r(g)a —} r(6(g,a)), which yields (b — A) € 5. a

Now let w = by - - - b, € 't be such that w «—% A. Then
w = by by —3% T(a(w)) = uobyuy -+ bpum —%, A

for some words ug, uy,...,um € I'* satisfying u; —% A, ¢ =0,1,...,m (cf. the proof of
Theorem 5.11). If a rule (u,_la,u' ---a;u; — 1) € S is applied to T(a(w)), where ¢ < j,
ui_y = u_,@;—q and u; = u}@;, then the rule (¢;---a; — r)isin S3. Ifarule (I - r) € S,
is applied within one of the factors u;, then either r = A or (r — A) € S} by the above claim,
i.e., no letter b satisfying b #—g, A is introduced here. Thus, using the appropriate rules of
Sz U S3 we can construct a reduction w —% A that is essentially parallel to the reduction
r(a(w)) —3%, A. Hence, for all w € I, if w «—% A, then w —7% A, ie, § is indeed
A-confluent. a

The system § may not be noetherian, since it may contain “cycles” of the form
(by — b2), (b2 — b3),-..,(bme1 = bm), (b > b1) € §

with by,...,b, € . For example, the system § obtained from the system S of Example 5.12
contains the rules (bs — bg) and (bg — b3). However, if > is a fixed linear ordering on the
alphabet ', then we can orient each rule of S according to the induced length-lexicographical
ordering on I'*. If we also replace each letter b in the rules (I — r) € § with | ! |> 2
by the smallest letter b’ such that b —% b, then the resulting finite monadic system S’ is
noetherian, and it is still A-confluent.

A string-rewriting system T is called normalized, if, for each rule (I — r) € T, the
right-hand side r is irreducible, and no rule from T — {{ — r} is applicable to I. In [14]
an algorithm REDUCE-SYSTEM is presented that, given a finite string-rewriting system
T; on ¥ and an admissible well-ordering > on £* as input such that [ > r holds for each
rule (I — r) € Ty, constructs a finite normalized system T, that is equivalent to Tj, and
that still satisfies I > r for all its rules. In particular, if 7 is monadic, then so is T, and
if Ty is A-confluent presenting a group, then T, is also A-confluent. Thus, we could apply
the algorithm REDUCE-SYSTEM to the string-rewriting system 5’ using the fixed length-
lexicographical ordering to obtain a finite, monadic, and A-confluent system T such that T
is normalized, and (I';T) is a presentation for the group (U). However, the steps leading
from the systrm § = S, U S5, to $=58US;to S are already part of this alzo.ithm. Thus,
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simply by fixing a linear ordering on T', and by applying the algorithm REDUCE-SYSTEM
to the string-rewriting system S using the induced length-lexicographical ordering we obtain
a system T in polynomial time that has all these properties. Hence, we have the following
result. ‘

Theorem 5.14 . Given a finite group-prese.lation (X; R) such that R is monadic arnd A-
confluent, and a finite subset U C L*, a group-presentation (I'; T) for the subgroup (U) of Mg
can be constructed in polynomial time such that T is monadic, normalized, and A-confluent.
In addition, we get a rewriting process T : (U) — T'* that rewrites each word u € (U) in
polynomial time into a corresponding word in the new generators.

We conclude with our example.

Example 5.12 (continued). Since Sy = {by — A, b5 — A}, the algorithm REDUCE-
SYSTEM applied to S = S; U 53 yields the following system

T = {b — Abs— A bg — b3,
baby — A, bgby — /\,bg — A,
b3bsbs — b2, b3babs — by,
babsby — b3, bgbsby — b3}

proiring that Mg is isomorphic to its proper subgroup (U). a

6 Conclusion

The class of finitely presented polycyclic groups is exactly the class of groups that can be
presented by finite (confluent) PCP2-presentations. Each finitely gencrated subgroup of such
a group is itself polycyclic, and hence, it can also be presented by @ group-presentation of this
particular form. Exploiting results of [22] on the construction of prefix-rewriting systems that
solve the generalized word problem in polycyclic groups, we have shown how to effectively
derive a finite confluent PCP2-presentation for a finitely generated subgroup of a polycyclic
group. '

The class of context-free groups coincides with the class of groups that can be presented
through finite, monadic, and A-confluent group-presentations. Since each finitely generated
subgroup of a context-free group is itself context-free, it can also be presented through a
group-presentation of this particular form. Here we have described a construction that, given
a finite, monadic; and A-confluent group-presentation (X; R) and a finite subset U C T,
yields a presentation of this very form for the subgroup (U) of Mg in polynomial time. This
construction consists of three major steps: ‘

1. From (X; R) and U, a dfsa A = (Q, X, 0,6, {qo}) is constructed such that AR(U*) C
L(A) C (U). Here the fact that the system R is monadic plays a crucial rols.

2. From the dfsa A a finite monadic group-presentation (I';S) for the group (U) is ob-
tained. This part is to a large extent the rewriting process of Reidemeister and Schreier.
For it to work properly it is crucial that, for each letter a € X, there exists an inverse of
length one, i.e., that we have a group-presentation, and that the system R is A-confluent.

3. Through the process of normalization we finally get a finite, monadic, and A-confluent
group-presentation (I'; T) for (U) from (I'; S). Here the fact that R is A-confluent is
again exploited.
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Since the context-free groups are just the finite extensions of free groups, they can also be
presented through finite string-rewriting systems that are noetherian and confluent [4]. Unfor-
tunately, no syntactic characterization for those finite, noetherian, and confluent systems that
present context-free groups is known at this time; however, we do know that finite, length-
reducing, and confuent systems do not sufficc [15]. Accordingly, it is not known whether
there is a general method to construct a finite, noetherian, and confluent presentation for
(U) from the set U and a presentation ‘of this form for a context-free group. However, in
his doctoral dissertation Kuhn presents constructions of this form for certain classes of finite,
length-reducing, and confluent presentations of groups [9].

A monadic string-rewriting system is called two-monadic if | [ |= 2 holds for each
rule (! — r). A group G can be presented by a finite, two-monadic, and confluent group-
presentation if and only if G is a plain group, i.e., G is isomorphic to the free product of a free
group of finite rank and finitely many finite groups [2]. The class of plain groups is also closed
under taking finitely generated subgroups. Applied to a group-presentation of this form and
a finit= set U our construction yields a presentation of the same form for the subgroup (U).
If we start with a finite, monadic, and (A-) confluent monoid-presentation of a group G, i.e.,
if we do not have inverses of length one for all the given generators, then our construction can
be adopted to still give a finite monadic presentation for the subgroup (U) generated by a
given finite set U, but we have not yet found a way to always get a presentation for (U) that
is (A-) confluent. Only in case R is a confluent system that is special, i.e., each rule is of the
form (I — A), a presentation of the same form for (U) can always be obtained [9]. However,
presentations of this form have just enough expressive power to present those groups that are
isomorphic to free products of finitely many finite or infinite cyclic groups [7].

Finally, in [9] Kuhn describes a construction of a dfsa A for the set of descendants A} (U*)
from a finite, length-reducing, and confluent group-presentation (X; R) and a finite set U C
X*. He proves that this construction terminates whenever the set AR(U™) is regular; however,
it is still an open conjecture that the sets of this form are always regular in this setting. In
case the construction terminates a finite length-reducing presentation for the subgroup (U)
can be obtained from A as in our construction, but in general the process of normalization
does not suffice to transform this presentation into a finite, length-reducing, and confluent
one. Thus, with respect to the problem of constructing presentations of finitely generated
subgroups, the class of finite, monadic, and A-confluent group-presentations is particularly
well-behaved.
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