Please use this identifier to cite or link to this item: doi:10.22028/D291-40888
Title: Machine Learning and Knowledge Acquisition in a Computational Architecture for Fault Diagnosis in Engineering Systems
Author(s): Althoff, Klaus-Dieter
Language: English
Year of Publication: 1992
Place of publication: Kaiserslautern
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: We present a computational architecture in a domain of extraordinary economical importance: fault diagnosis in engineering systems. We describe the underlying domain requirements leading to this architecture with a special focus on the included learning tasks. In the sense of KADS, the presented architecture represents an operational design model for technical diagnosis within which machine learning techniques are used to fill the model with concrete knowledge. We show how the underlying computational architecture constrains the involved learning processes.
Link to this record: urn:nbn:de:bsz:291--ds-408882
hdl:20.500.11880/37680
http://dx.doi.org/10.22028/D291-40888
Series name: SEKI-Report / Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI [ISSN 1437-4447]
Series volume: 92,15
Date of registration: 22-May-2024
Faculty: SE - Sonstige Einrichtungen
Department: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Professorship: SE - Sonstige
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.