
F
a

ch
b

e
re

i c
h

In
fo

rm
a

t i
k

U
n

iv
e

rs
i t

a
tK

a
i s

e
rs

l a
u

te
rn

P
o

s t
f a

ch
30

49
0

-6
7

5
0

K
a

i s
e

rs
l a

u
te

rn

SE
KI

- 
R

EP
O

R
T

Mafchine Learning and Knowledge
Acquisition in a Computational

Architecture for Fault Diagnosis in
Engineering Systems

K.D. Althoff

SEKI Report SR—92-15 (SFB)





Machine Learning and Knowledge Acquisition in a Computational 
.A.rchitecture for Fault Diagnosis in Engineering Systems* 

Klaus-Dieter Althoff
 
Cniversityof Kaiserslautern, Department of Computer Science
 

P.O.Box 3049, D-W-6750 Kaiserslautern, FRG
 
Research Group on Artificial Intelligence and Expert Systems
 

(Prof. Dr. Michael M. Richter)
 
email: althoff@informatik.uni-kl.de
 

Abstract in changing functional dependency with each other. 
Since machining centers are very expensive, because 

We present a computational architecture in a domain of their productive power and the high precision re­
of extraordinary economical importance: fault diag­ quirements they have to meet, their stoppage would 
nosis in engineering systems. We describe the un­ cause a serious loss. 
derlying domain requirements leading to this archi­
tecture with a special focus on the included learning We present an expert system architecture (tech­
tasks. In the sense of KADS, the presented architec­ nical diagnosis shell) which has successfully handled 
ture represents an operational design model for tech­ the problem of fault diagnosis of CNC machining cen­
nical diagnosis within which machine learning tech­ ters (as well as similar problems) on the level of fully 
niques are used to fill the model with concrete knowl­ implemented research prototypes which have been de­
edge. We show how the underlying computational ar­ veloped in cooperation with a mechanical engineering 
chitecture constrains the involved learning processes. research institute (cf. Althoff, Faupel et al., 1989; 

Richter, 1992b). The expert system architecture is
 
embedded in a complete knowledge acquisition work­


1 Introduction bench (the MOLTKE workbench; cf. Althoff, Maurer
 
& Rehbold, 1990; Althoff, Nokel et al., 1988; Althoff,
 

Machine Learning and Knowledge Acquisition are AI 1992a; de la Ossa, 1991; Maurer, 1992; Nokel, 1991) 
subfields which are of fundamental importance for 'which makes use of the three main knowledge sources 
expert system development. From the expert sys­ of the domain: a functional model of the machine, 
tem point of view, machine learning techniques are the mental model (compiled knowledge; abstract em­
a subset of the. necessary knowledge acquisition tech- pirical knowledge) of the respective expert as well as 

I niques. From a machine learning point of view, con­ episodic knowledge (cases; concrete empirical knowl­
crete knowledge acquisition tasks define special re­ edge). Given an operational design model in the sense 
quirements on learning subtasks. In other words: of KADS (cf. Breuker & Wielinga, 1989; Wielinga, 
knowledg~ acquisition tasks represent a "real world Schreiber & Breuker, 1991), machine learning tech­
context" within which machine learning methods can niques are used to "fill this model" with concrete 
play various roles. knowledge (cf. Althoff, Maurer et al., 1991). We 

In production, the quality of the products as well show how requirements, which arise from a complex 
as the availability and reli"ability of the technical real world domain, determine the functionality and 
equipment is of great importance. To avoid under­ architecture of learning procedures. In other words, 
utilization, the effort due to repair and maintenance we give an intuition of what is the meaning of "ma­
must be kept small. Tool machines like CNC machin­ chine learning for the fault' diagnosis of engineering 
ing centers (CNC = computerized numerical control) systems". The applied learning strategies are learn­
play an important role within production because of ing by analogy (the GENRuLE system; cf. Althoff, 
their multi-purpose usability. They are complex sys­ 1992a+b), case-based reasoning (the PATDEX system; 
tems consisting of mechanical, hydraulic, electronic, cf. Althoff & Wess, 1991; Richter & Wess, 1991; 
electric as well as pneumatic components which are Richter, 1992a), learning by forgetting (GENRuLE 

and PATDEX; cf. Althoff, 1992a), and knowledge
• also: Proceedings of the ML92 Workshop on Compu­

tational Architectures for Supporting Maschine Learning & compilation (the MAKE system; cf. Rehbold, 1991; 
Knowledge Acquisition Althoff, Maurer & Rehbold, 1990; Althoff, 1992a). 

Page 1 

i Machine Learning and Knowledge Acquisition in a Computational
Architecture for Fault Diagnosis in Engineering Systems*

Klaus-Dieter Althoff
University of Kaiserslautern, Department of Computer Science

P.O.Box 3049, D—W—6750 Kaiserslautern, FRG
Research Group on Artificial Intelligence and Expert Systems

(Prof. Dr. Michael M. Richter)
email:  althoff@informatik.uni-kl.de

Abstract

We present a computa t ional  archi tec ture  i n  a domain
of extraordinary economical importance: fault diag-
nosis in engineering systems.  We describe t he  un-
derlying domain  requirements leading to t h i s  archi—
tecture with a special focus on the included learning
tasks. In the sense of KADS, the presented architec-
ture represents an operational design model for tech-
nical diagnosis within which machine learning tech—
niques are used to  fill the model with concrete knowl-
edge. We show how the underlying computational ar—
chitecture constrains the involved learning processes.

1 Introduction

Machine Learning and Knowledge Acquisition are AI
subfields which are of fundamental importance for
expert system development.  From the  expert sys-
tem point of view, machine learning techniques are
a subset of the necessary knowledge acquisition tech—
niques. From a machine learning point of view, con-
crete knowledge acquisition tasks define special re-
quirements on  learning subtasks. In  other words:
knowledge. acquisition tasks represent a ”real world
context” within which machine learning methods can
play various roles.

In production, the quality of the products as well
as the availability and reliability of the technical
equipment is of great importance. To avoid under-
utilization, the effort due to repair and maintenance
must be kept small. Tool machines like CNC machin—
ing centers (CNC = computerized numerical control)
play an important role within production because of
their multi-purpose usability. They are complex sys-
tems consisting of mechanical, hydraulic, electronic,
electric as well as pneumatic components which are

‘also: Proceedings of the ML92 Workshop on Compu-
tational Architectures for Supporting Maschine Learning &
Knowledge Acquisition

in changing functional dependency with each other)
Since machining centers are very expensive, because
of their productive power and the high precision re-
quirements they have to meet, their stoppage would
cause a serious loss.

We present an expert system architecture (tech-
nical diagnosis shell) which has successfully handled
the problem of fault diagnosis of CN C machining cen-
ters (as well as similar problems) on the level of fully
implemented research prototypes which have been de-
veloped in cooperation with a mechanical engineering
research inst i tute  (cf. Althofi ,  Faupel et al. ,  1989;
Richter, 1992b). The expert system architecture is
embedded in  a complete knowledge acquisition work-
bench (the MOLTKE workbench; cf. Althofi', Maurer
& Rehbold, 1990; Althoff, Nökel et al., 1988; Althofl,
1992a;  de la  Ossa, 1991; Maurer ,  1992; Nökel, 1991)

‚wh ich  makes use of the three main knowledge sources
of the domain: a functional model of, the machine,
the mental model (compiled knowledge; abstract em-
pirical knowledge) of the respective expert as well as
episodic knowledge (cases; concrete empirical knowl—
edge). Given an operational design model in the sense
of KADS (cf. Breuker & Wielinga, 1989; Wielinga,
Schreiber & Breuker, 1991), machine learning tech-
niques are used to ”fill this model” with concrete
knowledge (cf. Althofl', Maurer et al., 1991). We
show how requirements, which arise from a complex
real world domain,  determine the  functionality and
architecture of learning procedures. In other words,
we give an intuition of what is the meaning of ” ma-
chine learning for the fault'diagnosis of engineering
systems”. The applied learning strategies are learn-
ing by analogy (the GENRULE system; cf. Althoff,
1992a+b), case-based reasoning (the PATDEX system;
cf. Althofi' & Was, 1991; Richter & Was, 1991;
Richter, 1992a), learning by forgetting (GENRULE
and PATDEX; cf. Althofl', 1992a), and knowledge
compilation (the MAKE system; cf. Rehbold, 1991;
Althofl', Maurer & Rehbold, 1990; Althoff, 1992a).
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While GENRuLE's task is the extraction of abstract 
diagnostic knowledge from cases, MAKE extracts such 
knowledge from a functional model of the machining 
center. One of our underlying assumptions is that 
knowledge being directly contributed by the respec­
tive expert or being generated by ~IAKE is (in gen­
eral) more certain than episodic knowledge. There­
fore, cases are mainly used for the learning of strategic 
knowledge (GENRuLE) as well as for exception han­
dling. The latter is performed by the PATDEX case­
based r~asoning system which, additionally, offers a 
learning-apprentice-like support. 

Since going into the very details is beyond the 
scope of this paper, we restrict ourselves to a breadth­
oriented overview. We additionally motivate this kind 
of presentation within the discussion part in stating 
that the MOLTKE learning component significantly 
differs from comparable ones because of the underly­
ing constraints. 

In the following chapter, we introduce the basic no­
tions of of our domain of interest. We then summa­
rize important domain requirements leading to the 
MOLTKE architecture with a special focus on the 
learning aspects. Here we have more general con­
straints for our machine learning component. These 
are complemented by more concrete ones in the suc­
ceeding chapter. Finally, within the discussion part 
we show that, in fact, the mentioned learning con­
straints lead to a functionality and architecture of the 
MOLTKE learning component which is different from 
those known from literature. 

Terminology 

Our area of interest is fault diagnosis and we need 
to introduce the basic notions. We assume a fixed 
num- ber N ofsymptomsSl, ... , SN. \Vith each symp­
tom Si a range R; is associated; in principle, symp­
toms are nothing more than attributes. Typically, 
Ri is either a real interval [a, b] or the boolean do­
main {O, I}, or some other finite set. Symptoms 
may take on values in their range and these values 
are assumed to be the only source of information. 
Values of symptoms are obtained by carrying out a 
test. A test can be an observation, a measurement 
or simply the answer to a question. In some situ­
ations, certain tests may not be allowed. The in­
formation at some stage of the diagnostic process 
is usually incomplete and is expressed in the form 
of an information vector or a situation: A situa­
tion is a vector Sit = (ail, ... , aij, ... , ail:) such that 
1 ~ k ~ N, 1 ~ ij ~ N for all j E {l, 2, ... , N}, aij E 
R;j, ijl = ij2 <==:} ir =h·The components of Sit 

are the known symptom values, whereas the values of 
the remaining symptoms are unknown. A situation 
is complete if every symptom has a value. 

Situations are arranged in the informationgraph. 
Its nodes are labelled with situations and an edge 
goes from Sitl to Sit2 if Sit2 has at least one more 
component than Sitl and there is a test t available 
which can provide the value necessary to extend Sitl 
to Sit2; in this case t is the label of the edge. 

A diagnosis (or fault description) is a formula of 
a subset of the first order predicate calculus using 
constants and relations over the ranges Ri; for our 
purposes here it is sufficient to consider this subset 
as equivalent to the propositional calculus. To avoid 
technical difficulties we assume always a single fault. 
This means that the set of complete situations is par­
titioned into sets representing these faults; a special 
set is "no fault" and, if wanted, another one is "un­
known fault". The applicability of this approach re­
lies on the fact that, at least, the" interesting" faults 
can be fully described. For the diagnostic process 
of even complex machines this assumption is usually 
satisfied (in medical diagnostics this sometimes might 
be doubtful). 

In a diagnostic problem, some complete situations 
have occurred but are only partially known, i.e. one is 
confronted with some incomplete situation Sit. The 
task is to determine the diagnosis of the unknown 

. complete situation (at least with some certainty). At 
first glance this seems to be a pure classification prob­
lem. With equal right one can say, however, that the 
real problem is to find an optimal way to complete 
incomplete situations sufficiently enough such that .a 
diagnosis with a high degree of certainty can be estab­
lished. This task has been attacked less successfully 
in the literature. 

Important elements of MOLTKE's representation 
language are cases and rules. A diagnosticcase is 
the "protocol of the real classification behavior" of 
an expert. 

\ 

It is represented as a list of symptom­
value-pairs (the problem description, namely a situ­
ation Sit) completed by an empirically justified solu­
tion (diagnosis D). Thus, from a simplifying perspec­
tive which is sufficient for our purposes here, a diag­
nostic case C has the syntactic form C = (Sit, D). 
Compared to diagnostic cases, strategiccases differ 
only the included solution, namely a test T which de­
termines which symptom ~hould be ascertained next. 
Therefore, a strategic case S has the syntactic form 
S = (Sit, T). Like diagnostic cases, diagnosticpaths 
are defined as the "protocol of a session with the un­
derlying diagnostic system". From a pure syntactic 
perspective paths and cases are identical, i.e. paths 
can be considered as "special diagnostic cases". The 
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language are cases and rules. A diagnosticcase is
the ”protocol of the real classification behavior” of
an expert. It i s  represented as a. list of  symptom-
value-pairs (the problem description, namely a situ-
ation Sit) completed by an empirically justified solu-
tion (diagnosis D). Thus, from a simplifying perspec-
tive which is sufficient for our purposes here,  a diag-
nostic case C has the syntactic form C 2 (Sit,  D) .
Compared to diagnostic cases, strategiccases differ
only the included solution, namely a test T which de-
termines which symptom should be ascertained next.
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problem description of a path are the list of symp­
tom values given as input to the diagnosic system, 
the solution is the stated diagnosis. 

A diagnosticrule associates a situation with a di­
agnosis, an orderingrule associates a situation with 
a test, whereas a determinationrule associates a sit­
uation with an assignment of a concrete value to a 
symptom. In case of a total determination rule, the 
represented relation is a causal one. Partial deter­
mination rules have determination/actors attached 
which are an approximation of the conditional prob­
ability that the assigned symptom value holds if the 
given situation holds. The relation between determi­
natiori factors and conditional probabilities is similar 
to the relation between certainty factors and ordinary 
probabilities, where the underlying probability distri­
bution is not known, too. 

Domain Requirements 

We now present some important requirements from 
the domain of technical diagnosis which constrain the 
architecture of our learning component from a more 
general perspective. 

Acquisition and representation ofconcrete em­
pirical knowledge as well as modeling of the 
"diagnostic learning behavior" of .the respec­
tive experts 

•	 this leads to the definition of diagnostic cases as 
introduced above, to the development of a case­
based reasoning system for diagnostic problem 
solving in engineering domains (PATDEX) as well 
as to the development of an incremental induc­
tive l~arning system with case-based hypotheses 
generation (partial determination and ordering 
rules) justified by the use of determination fac­
tors (GENRULE) 

Automation of the knowledge acquisition pro­
cess as far as possible 

•	 this leads to the development of a knowledge 
compilation system which generates a partial 
knowledge base (diagnostic and total determi­
nation rules) from the construction plans for 
the electronic/electric and hydraulic components 
(MAKE) 

Understandability of the implemente.d diag­
nostic problem solving behavior 

•	 this leads to a focus on diagnostic strategic 
knowledge and to the decomposition of diagnos­
tic reasoning into" classification plus test selec­
tion". Therefore, the manual improvement of 
MAKE-generated partial knoWledge bases is pos­
sible as well as the learning of strategic knowl­
edge. This results in case-based reasoning being 
the best available learning paradigm for the inte­
gration of problem solving and learning. Another 
important result is that the TDIDT strategies 
are not appropriate with respect to the diagnos­
tic strategies they could represent. 

Representation and processing of a huge 
amount of knowledge 

•	 this leads to the construction of the information 
graph and the further decomposition into dif­
ferent types of knowledge (rule types). This is 
reflected by the (partially introduced) MOLTKE 
representation language. Thus, one (natural) 
constraint of the learnint component is the learn­
ing of elements of this representation language. 
Therefore, simple inductive rule learning strate­
gies are not applicable (for additional drawbacks 
of inductive learning approaches cf. Manago et 
al., 1992). 

4 Constraints on Learning 

Within this chapter we present some selected more 
concrete constraints underlying the MOLTKE learn­
ing component. It is organized as a breadth-oriented 
overview which, as we believe, already makes some 
interesting statements. 

By the use of diagnostic cases, abstract empirical 
knowledge (diagnostic, determination, and ordering 
rules) as well as concrete empirical knowledge (di­
agnostic case memory) have to be constructed. In­
ferences requiring the interaction with the user (e.g. 
being carried out within a diagnostic session) must 
be performed efficiently. 

Using sufficiently efficient learning procedures, the 
user could be easily involved in the evaluation process 
of the generated learning hypotheses. Here the inter­
locking of the diagnostic and the learning process is 
essential· which, additionally, allows the" interactive 
acquisition" of further concrete empirical knowledge 
(diagnostic cases). . 

In connection with interactive knowledge acquisi­
tion, it is important that the user" develops a feeling" 
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of which cases are known by the system and which are 
not. Automated knowledge acquisition strategies al­
ways have to consider this. Thus, the system must 
be ., aware" of all cases contributed by the expert. 
:\everthe!ess, an important aspect of human learning 
behavior is to be able to forget certain experiences in 
course of time. Therefore, it is reasonable to restrict 
the amount of representable empirical knowledge us­
ing, e.g., explicit strategies of forgetting, filtering of 
redundant and/or incorrect cases as well as the def­
inition of "capacity thresholds" for empirical knowl­
edge. This all together leads to trade-off which cannot 
be solved in general. In this connection the underly­
ing assumptions of the knowledge acquisition com­
munity, on the one hand, and the machine learning 
community, on the other hand, appear to be differ­
ent. Within knowledge acquisition, the motivation 
of the expert is of central importance. This leads 
to an orientation towards an "understandable learn­
ing apprentice". Within machine learning, theoreti ­
cal aspects are dominating. This leads to interesting 
learning strategies (cf., e.g., "non-conservative" learn­
ing: Emde, 1991; "inconsistent" learning: Lange & 
Wiehagen, 1991), and it then heavily depends on the 
involved experts as well as the complexity of the prob­
lem if these strategies are applicable (in the sense of 
accepted). 

We can differentiate between three main views on 
the MOLTKE learning component resulting in three 
different groups of constraints: the simulation view, 
the technical view, and the pragmatic view. 

The Simulation View: Modeling the learning be­
havior of experienced experts: 

•	 learning for a special purpose, namely to 
improve the diagnostic capabilities of the 
system. Thus, we have a strong interlocking 
of the diagnostic and the learning process 

•	 representation and efficient processing of 
abstract and concrete empirical knowledge 

•	 generating abstract empirical knowledge 
from concrete empirical knowledge 

•	 representation and efficient processing of 
technical (engineering) background knowl­
edge 

•	 modeling of the" shortcut-oriented diagnos­
tic problem solving behavior" (ascertaining 
as few symptoms as possible) of the respec­
tive experts 

•	 modeling of forgetting strategies 

The Technical View: Knowledge acquisition sup­
port as far as possible: 

•	 learning of elements of the MOLT~E repre­
sentation language(s) 

•	 simple, understandable modeling and pro­
cessing of uncertain knowledge 

•	 direct interpretation of concrete empirical 
knowledge 

•	 if a correct diagnostic case is known, then 
it must be used for classification purposes if 
the same situation occurs again 

The Pragmatic View: Consideration of utility as­
pects concerning usable resources: 

•	 effective reduction of the needed knowledge 
acquisition effort 

•	 improved maintainability of the knowledge 
base 

•	 ease of adaptation of the knowledge base to 
simple modifications of the machining cen­
ter 

•	 ease of transfer of available knowledge bases 
for diagnosing similar technical systems 

•	 efficient learning procedures to supplement 
interactive knowledge acquisition mecha­
nisms 

•	 classification knowledge acquired manually 
or generated by MAKE is considered to be 
more secure than episodic knowledge 

•	 strategic knowledge acquired manually or 
extracted from episodic knowledge is con­
sidered to be more understandable than 
strategic knowledge which has been ex­
tracted from the functional model of the 
machine (using MAKE) 

5 The Learning Component 

Since we have stated (some) domain requirements as 
well as architectural constraints on the learning com­
ponent, we now, for clarification purposes, want to 
give a summarizing description of this component. 

To represent the given three main knowledge 
sources the MOLTKE workbench uses three differ­
ent representation languages for describing cases, the 
functional model of the machine, and the knowledge 
manually entered by the expert, respectively. In prin­
ciple, these languages have to be compiled into a rep­
resentation formalism which is "understandable" by 
the underlying diagnostic problem solver. For rea­
sons of simplicity the diagnostic representation lan­
guage is identified with that describing the expert­
entered knowledge. Therefore, only two compilation 
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of which cases are known by the  sys tem and which  are
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pects concerning usable resources:

0 effective reduct ion of  t he  needed knowledge
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' o efficient learning procedures. to supplement
interactive knowledge acquisition mecha-
nisms

o classification knowledge acquired manually
or generated by MAKE is considered to  be
more secure than episodic knowledge

o strategic knowledge acquired manually or
extracted from episodic knowledge is con-
sidered- to  be  more understandable than
strategic knowledge which has been ex-
tracted from the functional model of the
machine (using MAKE)

5 The Learning Component
Since we have stated (some) domain requirements as
well as architectural constraints on the learning com-
ponent, we now, for clarification purposes, want to
give a summarizing description of this component.

To represent the given three main knowledge
sources the MOLTKE workbench uses three differ-
ent representation languages for describing cases, the
functional model of the machine, and the knowledge
manually entered by the expert, respectively. In  prin-
ciple, these languages have to be compiled into a rep-
resentation formalism which is ”understandable” by
the underlying diagnostic problem solver. For rea-
sons of simplicity the  diagnostic representation lan-
guage is identified with that  describing the  expert-
entered knowledge. Therefore, only two compilation
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processes are necessary: MAKE compiles the func­
tional model of the machine into diagnosis rules and 
total determination rules, whereas GENRuLE com­
piles diagnostic cases into partial determination and 
ordering rules. Thus, the interpretation of functional 
causal knowledge is very efficient. Additionally, this 
functional knowledge can be improved by the use of 
manually acquired knowledge as well as cases..For 
learning-apprentice-like support and the handling of 
exceptional situations the cases can also be inter­
preted via case-based reasoning, i.e. the diagnostic 
(heuristic) problem solver is supplemented by a case­
based one. 

5.1 The Diagnosis Shell 

The basic aspect here is the diagnostic description 
language which uses concepts that are easily under­
standable by the expert (e.g. diagnosis, symptom, 
test etc.). In addition, the diagnostic process can 
be decomposed via the introduction of the informa­
tion graph as well as the definition of different types 
of rules. A diagnostic system based on the shell gets 
symptom values (in arbitrary order and number (with 
respect to the defined ranges ~» as input and gives 
a final or an intermediate diagnosis as output. 

5.2 Make 

The MAKE system is well suited for the modeling of 
electronic/electric and hydraulic parts of even com­
plex technical devices. MAKE uses a component­
oriented, hierarchical model with a qualitative and 
static description of the device's behavior (in the 
sense of qualitative reasoning). The model bases on 
knowledge about structure, behavior, and function 
of the technical device. The MAKE-generated par­
tial knowledge base is correct with respect to the de­
scription of the device and complete with respect to 
the specified funtionality of the device. Thus, MAKE 
gets as input a library of component classes (e.g. re­
lais, valve etc.), concrete component instances (re­
lais21, valve2 etc.), the connectivity of the devices 
subcomponents, and the intended overall behavior of 
the technical devicse (function, functionality). From 
this the above mentioned deep functional model is 
constructed and compiled into a knowledge base for 
the diagnosis shell. 

5.3 GenRule 

The GENRuLE system is able to improve the knowl­
edge base by the use of diagnostic cases and paths. 

GENRuLE realizes an incremental inductive learn­
ing strategy which generates its (learning) hypotheses 
(partial determination rules, ordering rules) based on 
a memory of diagnostic cases and paths. Within the 
memory symptom values and 'diagnoses are used for 
an efficient indexing. All diagnostic paths are auto­
matically generated from the given knowledge base. 
The rules are indirectly generated via the integration 
of cases or paths into the memory. The determina­
tion factors are efficiently computed and updated by 
the use of the memory. In addition, the memory func­
tions as a dependency network for the generated rules 
which. automatically establishes or retracts rules of 
which the determination factor changes to be above 
or below a given threshold. Thus, the GENRuLE gets 
as input a knowledge base and a case memory. From 
this, it generates an improved knowledge base as well 
as an updated memory. 

5.4 Patdex 

PATDEX realizes a learning-apprentice-like case-based 
diagnosis system which can cooperate with the prob­
lem solver of the diagnosis shell as well as working in 
a stand-alone· manner. PATDEX consists of two case­
based reasoning subcomponents, one for classification 
purposes using diagnostic cases and one for the selec­
tion of tests which is based on strategic cases (strate­
gic cases are automatically generated from diagnostic 
cases). The inference engine bases on the similarity 
of diagnostic and stragetic cases, respectively. The 
similarity is computed based on many different simi­
larity measures which base on two different function 
schemata, one for diagnosis cases and one for strate­
gic cases. The computation process is very efficient 
because of a dynamic decomposition of the case .base 
as well as a case dependency network for both sub­
components. A diagnostic similarity measure can be 
automatically adapted to the expert's behavior us­
ing connectionist techniques (competitive learning). 
For the strategic simil~rity measure the adaptation 
process is guided by an A*-like procedure which es­
timates the average costs for ascertaining symptoms. 
PATDEX can identify pathologic symptom values by 
the use of causal background knowledge.' It uses de­
fault values for symptoms as well as partial and total 
determination rules to improve its similarity judge­
ments. PATDEX is able to handle incomplete, re­
dundant, and/or incorrect case description!!!. PATDEX 
gets symptom values in an ar:>itrary number and or­
der (with respect to the defined value ranges) as input 
and gives a final diagnosis as output (or the message 
that no diagnosis can be derived based on the known 
cases). As a "side-effect" new diagnostic and strate-
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gic cases are generated and the underlying similarity 
measures updated. 

Discussion 

In fact. the presented learning constraints lead to 
a learning component which is different from those 
known from literature (for a detailed comparison cL 
Althoff, 1992a). 

A basic difference between GENRuLE and other 
knowledge refinement systems like, e.g., KR'UST (cL 
Craw & Sleeman, 1990) or INDE+ (cL Aben & van 
Someren, 1990) is that these try to improve the clas­
sification ability whereas GENRuLE focuses on the 
strategic knowledge. In this sense, it is comparable 

. to the approach of Gruber (1989), but there no learn­
ing strategies are used. BOLERO (cL Lopez & Plaza, 
1991) also uses a case-memory approach for the learn­
ing of strategic knowledge, but GEN RULE does it in 
a much more specific way because of its combination 
with the PATDEX and the MAKE system. In addition, 
GENRuLE does not need an explicit training phase. 

PATDEX uses a very efficient procedure for the up­
dating of its similarity values. It makes use of the 
whole MOLTKE knowledge base including the func­
tional knowledge generated by MAKE. CREEK (cL 
Aamodt, 1991) only uses causal knowledge. Because 
of its adaptive capabilities (competitive learning for 
the adaptation of its similarity measure), PATDEX 
can be easily applied to other diagnostic problems. 
This is not easily done by the PROTOS system (cL 
Bareiss, 1989) where many parameters and the whole 
relational language have to be adapted. 

MAKE uses a static, hierarchical, component­
oriented qualitative model of the structure and be­
havior of the machining center to generate a partial 
diagnostic knowledge base "in one compiling step" . 
Since MAKE uses examples for the intended behavior 
(function)' of the machine, this complete compilation 
becomes possible. This is, e.g., one characteristic dif­
ference between the MOLTKE approach and others 
like, e.g., Friedrich, Gottlob,'and Nejdl (1990) (inter­
preting approach, restriction to decision trees), CON­
CLAVE (cf. van de Velde, 1988; 1989) (interpreting 
approach, only use of causal knowledge), or ACES 
(cf. Pazzani, 1990) (no automatic construction of the 
knowledge base). 
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known from literature (for a detailed comparison cf.
Althofl‘, 1992a).
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oriented qualitative model of the structure and be-
havior of the machining center to generate a partial
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Since MAKE uses examples for the intended behavior
(function) of the machine, this complete compilation
becomes possible. This is ,  e .g . ,  one characteristic dif-
ference between the  MOLTKE approach and others
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