Please use this identifier to cite or link to this item: doi:10.22028/D291-39846
Title: The Undecidability of the [D A]-Unification Problem
Author(s): Siekmann, Jörg
Szabo, P.
Language: English
Year of Publication: 1986
Place of publication: Kaiserslautern
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: We show that the DA-Unification problem is undecidable. That is, given two binary function symbols Φ and Θ, variables and constants, it is undecidable if two terms built from these symbols can be unified provided the following DA-axioms hold: (x Φ y) Θ z = (x Θ z) Φ (y Θ z) x Θ (y Φ z) = (x Θ y) Φ (x Θ z) x Φ (y Φ z) = (x Φ y) Φ z Two terms are DA-unifiable (i.e. an equation is solvable in DA) if there exist terms to be substituted for their variables such that the resulting terms are equal in the equational theory DA. This is the smallest currently known axiomatic subset of Hilbert's Tenth Problem for which an undecidability result has been obtained.
Link to this record: urn:nbn:de:bsz:291--ds-398463
hdl:20.500.11880/37662
http://dx.doi.org/10.22028/D291-39846
Series name: SEKI-Report / Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI [ISSN 1437-4447]
Series volume: 86,19
Date of registration: 17-May-2024
Faculty: SE - Sonstige Einrichtungen
Department: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Professorship: SE - Sonstige
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
SEKI-REPORT-SR-86-19_Siekmann-Szabo_The-Undecidability-of-the-[D A]-Unification-Problem.pdf7,14 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.