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ABSTRACT:

We show that the D 5 -Unification problem is undecidable. That is, given two binary function'
symbols & and ®, variables and constants, it is undecidable if two terms built from these symbols
can be unified provided the following D ,-axioms hold: '

x@y)®z=(x0z)D(y®z)
X®@(yP2)=(xQy)d(x®2z)
x@(yPz)=(x®y)®Dz

Two terms are D 4 -unifiable (i.e. an equation is solvable in D ) if there exist terms. to be 'substituted
for their variables such that the resulting terms are equal in the equational theory D ,.

This is the smallest currently known axibmatic subset of Hiibcrt's Tenth Problem for which an
undecidability result has been obtained. '



1. UNIFICATION IN EQUATIONAL THEORIES

Not least because of its applications in Computer Science and Artificial Intelligence unification
theory is currently under intense development [Ki 87] and provides some of the theoretical
background for a new generation of computing machinery.

The field is concerned with problems of the followihg kind: Let f and g be function symbols, a and
b constants, and let x and y be variables and consider the two first order terms s and t built
from these symbols: | '

s =f(x g(ab))
t = f(g(y b) x)

" The problem is whether or not there exist terms which can be substituted for the variables x and y
such that the two terms thus obtained from s and t become equal: in the example g(a b) and a are
two such terms. We shall write :

8={xe<gab)y«a)
for such a unifying substitution: 8 is a unifier of s and t.s_ince ds=05t.

" In addition to the decision problem above there is also the problem of finding a unification
algorithm which enumerates the unifiers for a given'pair s and t. Such algorithms are at the very
heart of present day computing, in fact they are the central processing unit of the "Fifth Generation
Computers" and for efficiency reasons often implemented in silicon. " |

_ Consider a variation of the problem above, which arises when we assume that f is commutative:

() f(xy) =f(y x)

Now & is still a unifying substitution and moreover G = {y « a} is also a unifier for s and t since
os=f(xgab))=cfglab)x)=ot

But G is more gengrdl than 9§, since & is an instance of ¢ obtained as the composition oo
with A = {x « g(a b)}; hence a unification algorithm only needs to compute .

In some cases there is a single and essentially uﬁiquc least upper bound on the generality lattice of
unifiers, called the most general unifier.



Under commutativity however, there are pairs of terms which have more than one most general

unifier, but they always have at-most finitely many. This is in contrast for example to the above

situation of free terms, where every pair has at most one most general unifying substitution.

The problem ‘becomes entirely different when we assume that the function denoted by f is
associative: | | '

(A) f(x f(y 2)) = f(f(x y) 2)

In that case & is still a unifying substitution, but -
t={x« f(gab) g(ab)),y < a}
_is also a unifier: _ R 3 :

s =f(f(g(a b) g(ab)) gla b)) =5 f(g(ab)f(gab) gab))) =7t.
But = . i . k
1= {x« f(g(a b) f(g(a b) g@ b)), y < a)
is again a unifying substitution and by itcratibn of this process it is not difficult to see that there are
infinitely. many unifiers, all of which are most general. '

Finally; if we assume that both aﬁbﬁs (A) and (C) hold for f then the situation changes y(;t again - -
and for any pair of terms there are at most finitely many most general unifiers-under (A) and (C).

Thc'sc'ar-)d other examples of equational theories motivated the two central notions of unification
theory: the set of most general unifiers pU of two terms and the unification hierarchy -
defined on the cardinality of this s_c_t:' o '

(i) a theory T is unitary if pu alWa’ys exists and has at most one element for
i " every pairof terms; , )
(i) a theory T is finitary - if wu always exists and is finite for every pair of

terms; 3 _
(iii) a theory T is infinitary  if uU always exists and pU is infinite for at least one
T _ "pair of terms; '
(iv) a theory T is nullary - otherwise.



2. THE D ,-UNIFICATION PROBLEM

Given two binary function symbols @ and ®, a single constant 1 and a denumerable set of
Variables V let T1 be the set of terms built from these symbols (for convenience in infix form).
When terms in T1 are interpreted by the following D 4 -axioms

(x®y)®2) = ((x®72) D (yD2))
Dyt BYO)=(:®y)®x®2)
xD (D) =((xOy) ®2)

we have the equationally dcfincd theory D, over the signature (©,®,1,V) .
A D -unification problem is a pair of terms for which a D A -unifier is to be found written as:

<s=t>p, fors,te Tl

anda D a-unifier is-a substitution ¢ such that D Acquationally implies 0s = ot ,which we shall
abbreviate to Gs =, Ot in the sequel.We are interested in the existence of a decision procedure that
will answer yes if the problem above has a D 5 -unifier and no otherwise.

Hilbert's Ténth Problem [Hi19] asks for the existence of a decision procedure, which will tell for a '
given polynomial Diophantine equation with integer coefficients, whether or not it has a solution in
- positive integers. A polynomial equation in n unknowns of degree m may be represented as

QD) 2 axiloxgoxB xin =
Z ai.xlil -x212- -_xni" for integers éi 20and ik<m.

Y. Matiyasevic showed that there is no decision proccdui‘e [Ma 70]; M. Davis gives a lucid account
in [Da 73].

Let H10 be the set of axioms containing all necessary axioms of numbcr theory that interpret ® as
integer multiplication and © as integer addition (and note: D  is a subset of H10). Then:

(22) <§ = leO

phrases Hilbert's problem as a unification problem, where s and t are terms in some suitable
extension of T1 such that (2.1) is expressable.

However, we like to rcpresent equatioﬁs such as (2.1) using only terms in T1 and for technical
convenience théy should also be in a certain normal form, called "compatible expanded terms”, to
be formally defined later on.



For that reason let:

- step1; transform every subexpression in (2.1) of the forh]_

e 0¥ e A2 i
ai xl x2 xn

into a, product terms

g @2, x4 xiloxi2. x o gx g i g in

XI n n see 1 2 e “n

step 2: transform every product term

B iE, o in
. Mok | LR

into |
1-1 l-x1 -')él- e Xp t Xg ¢ Xg X5 Xp© Xp e Xy
M-Eik - ll i2 ll'l

where M is the maxnnal sum of the ik:_in :all produét'fcrms.
step 3: rci;l'ace 3 by ‘®and + by @ and insert appro;iriaté- bra;:kets. 1 |
Hence every d_iophant:inc équation (2..1). can bércprcsc_nted as an HlQ-urliﬁcation prdblcm :
(2.3) | <§ = £>H10 lwlith éompatiblc expanded terms s,tin Ti. |
E'xam‘ ple: Let x2y + 2z =3y? bean injst.anccjof (2.1), fﬁcn M = 3.

SIED_L x2y +z-|-.z'--=y2+y.2-l~y.2

step2: xxy + l:'lz + 1-1-z = 1l.yyy + lyy + lyy _
stepd:  (x@(x®y))B(18(182))S(1B(182))=(1S(y&y))S(1&(y®Y))S(1&(y®y))

Otmously these syntacncal mampulauons do not affect solvability under thc mterpretanon of the
axioms in H10, i.e. (2 1 ) is solvable iff (2.3.) is.

We shall show the undecidability of the D ,-unification problem by coding it into Hilbert's Tenth
Problem; i.e. the trick is that in a certain sense the problem is coded recursively into itself.



3. DEFINITIONS AND NOTATION

To give a more precise meaning to thc previous notions we shall repeat some of the terminology of
unification theory and term rcWriﬁng systems.

‘Unification theory rests upon the basic notions of universal algebra (see e.g.[Gr 79], [BS 81] )with
the familiar concept of an algebra A = (A, F) where A is the carrier and F is a family of
* operators given with their arities, usually called the signature of A.

Assuming that there is at least one constant (operator of arity 0) in F and a denumerable set of
variables V, we define T, the set of first order terms, over F and V, as the least set with
() Ve T, and if arity(f) = 0 for f € F then f € T and (ii) if t;,...,t, € T and arity(f) = n then
f(ty...t) e T. Let V(s) be the set of variables occufring in a term s.

Let T denote the algebra with carrier T and its operators are the term constructors corresponding
to each operator of F. T is called the absolutely free (term) algebra, i.e. it just gives an algebraic
structure to T and we shall drop the distinction between T and T in the sequel.

A substitution o:T - T is an cndomorphism on T, which is identical almost everywhere on V
and hence can be represented as a finite set of pairs 0 = {x; « t;,....x; « t;}. The application ofa
substitution G to a term t is written as ot. The composition of substitutions is defined as the usual
composition of mappings: (o Dt=c(tt) for te T.

An equation s =t is a pair of terms. For a set of equations E, the equational theory T

. presented by E (in short: the equational theory T) is dcﬁncd as the finest congruence =ponT’
containing all pairs os = ot for s =t in E and all substitutions .G (1 e. it is the substitution-invariant
congruence relation generated by E).

Two terms s,t are T-equal if s =y t, i.e.E equationally 1rnphes s =t . We cxtcnd T—equahry inT
to the set of substitutions by

o =71 iff VxeV ox=pm.
‘A substitution © is more general thant (or tis h T-instance of G ):
tz—f o iff 3\ suchthat t=y AC.

Given two terms s,t and an equational theory T we say a unification problem <s = > is
T-unifiable iff there exists a substitution o such that os=r ot and o is called a T-unifier of s
and t. For the set of all T-unifiers of s and t we write Ur(s,t).

For a given unification problem <s = t>r, it is unnecessary to comﬁute the whole set of unifiers
Up(s,t), which is always recursively enumerable for a decidable theory T, but rather a smaller set
useful in representing Ur. Therefore cUT(s,t), the complete set of unifiers of s and t , is



defined as: .
¢) cUrg Ut ' (correctness)
(ii) VdeUr JoecUp o270 : (completeness)

The set of most general unifiers PUT(s,t) is defined as a set with (i), (ii) énd

(111) Vo,te pUm: o271 implies o = _‘t»' (minimality).

The set pU does not always exist [FH 86] [Sc 86], [Ba 86] ; 1f it does then it is unique up to
equivalence, see [FH 86]. s

- Although unification theory is not necessarily restricted to equationally dcﬁncd theories, most
results have been obtained within this frame. The reason is that cquatibnal theories can often be
duected and used for a computational treatment of =T =l |

Suppose the equational theory is presented as T =  {y=r, =0, =1} A term s is said 10
be demodulated tot,if thereis asubterm s' in s and a pair |; =1 in T such that s'= iy

(or s'= ur; ) for some substitution 3 and term t is obtamcd from s by rci:lacement of s' by |.1rl
(by ul;) [WR671. | ‘

The idea of dcmodulanon has been taken further by D.Knuth [KB 70] who observed that it is
often possible to find an equivalent and canonical set of equatlons, called a term rewriting
system (TRS), which is directed from left to right R = {1, = rl,l2 = Tp,.ly = 1.} with
V() = ‘V(]l) Two terms are in the rcwnte relation s -t iff s can be demodulated to t uswg one
rule in R only from left to right. : _ ‘ ,

- Ris equivalent toTif forall s,t: s =t iff s L’Rt ,where "‘—ak is the reflexive and transitive
- closure of —p . If there are no infinite sequences 81 7R $2 "R Sy '—rR _thé relation g is said
- to be finitely terminating or Noetherian. The relation -p-is called conﬂuent if for every r, s,

t with r ->gs and r >gt there exists a term u such that s ¥5p uand t ¥5p u. A confluent and

Noetherian relation (a TRS) is called canonical. Canonical TRS are an 1mportant basis for a
, computational treatment of equational logic, since they define a unique normal form for every term .

A critical pézir' is a pair of terms <s,t > computed by superposition in the KB-algorithm (see

[KB 70]).This algorithm is used to compute a canonical TRS for a given equational theory T.



It is often useful to partition a given equational theory T into two sets of equations R and E, such
that T =R U E and only R has a canonical TRS.This is justified by the following theorem due to
G.Huet [Hu 80],which we shall use in the next section: '
3.Theorem I: Let T =R U e be an equational theory such that

(i) forall (,=>r)eR: V(r)s V(1) and 1 is linear.

(i) forall L=r;eE: V() =V(;)

(iii) the composition of —y and =E» “R*=E> is Noetherian

(iv) for all cnueal palrs <p,q> we have |pl —E||q|i

Then for all terms s,t :

s=pt iff Isl =g ltl

A term is linear if every variable occurs only once and ||pi| denotes an irreducible term: p* Iipll

The fields of term rcwrmng systems, unification thcory and their apphcatlons are surveyed in
[HO 80] [Bu 85] and in [Si1 86] :



4. EXPANSION AND ADAPTATION

'Thls section contains some technical preliminaries useful for the proof of the main result as
presented in the next section. ' . )
Aterm in T that contains no GB‘—symbol but at least one ®-symbol is called a product term..
Because of the associativity of @ we often omit the brackets around (s @ t), but note that we do
not have an associativity axiom for ® . () A term t is called an expanded term if it is of thc form
t=t; ®t, ® ... Dt where each t; 1sagoduptterm :
4. Proposition 2: Foreverytermte Tl there exists an.cxpanded term t' with t=p, t.
~ We can compute some of the expanded terms of a given term using the distribljtivity axioms only
from left to right: i
(xDy)®2)=(x®z) & (y®2)
(D) . o a2
. x®(y®2)=(xBy)®(x®2)
Let -, be the corresponding rewrite relation and define :

EXP() = {v'] t2opt" and t"is imreducible under D}
A tcfm is m"cducxblc if no réwriérule can be abpﬁ;:d to it. Obvidu'sly we haﬁc :
_4.Proﬁésirfoﬁ 3: . Forall t'e 'EX_P(t ) t’-—QD Al
4.Propgsirion 4 B EXP"(t Ye ( t'| t'=p At and t” is _an expandcﬂ term}
: The §e£ of expanded téﬁﬁs EXP(t) may contain more than one element, however they all have the

same number of ®-symbols. This observation,which we shall prove now 1n a more gcneral setting,
is the crucial technical prmqmsxtc for the encoding in section 5.

_ (1) The main result of this paper would still hold if we had; it would be technically even a little
simpler to present. However, as we shall dlSCIJSS later on, the rule of the game is to ﬁnd a minimal
set of axioms.

10



Let Dyc=Dpu{x®y=y ®x} then we have

4 .Theorem 5: For s,te T let s’€eEXP(s), t'e EXP(t):
S =DACt iff S’=AC[’

Proof: The proof is based on 3.Theorem 1 by letting R of 3.Theorem 1 be the two rewrites D
and setting Eto AC={(x @y )Pz =xB(yDz),x®y=y®x }.The proof
consists just of showing that the hypothesis of 3.Theorem 1 is fulfilled.

(i) Obviously V(r)c V(1) forevery (1= r)eD. and 1 is linear (i.e. D is lcfthncar)
(ii) Obviously V(l)=V(r) forevery (I=r)e E.
(iii) Termination of -ge=g can be shown by the following polynomial mappmg
lt1=2 if tis a variable or a constant
Is@tl=lsl+1tl+1
Is@tl=Isl-1t]
Then we have:
lc®s)®@tl=Irl-1tl+lsl-Ttl+]tl
IG@)® @) I=Irl-ltl+Isl-ItI+1 -
Since I t12>2 we have the required orientation for ((x © y) ® z)=((x ® z) ® (y®2))
and similarily for (x ® (y ®2))= (x®y ) ® (x® z)) in D. '
Since s =5t implies |sl=1t| we conclude that —»p-=g is Noetherian.
(iv) We have to consider the critical pairs between the foIlowmg rules and equanons
D: (1) (x®y)®2)->((x®2) & (y®1z) '
Q2 xBYDY->(xBy)DE®@ 2))
AC: 3) (x®y)Dz=xD(yDz)
(4) x®y=y®x

Superposition of (1) with (2) and (2) with (1):

xPyY)®udv)
1) R 0))
(x®Y)®u) B (x®y)®V) (x@(uev))@(y®(u®v))
L) 1)

((x ® WB(y ® 1)  (x ® VIB(y ® V))=Ac((x B WS(x @ V)S(y ® o ® )

11



Supcrposmon of (1) with LHS of (3):

C(xD(yDPz)®u
1) 13)
(x®u)® ((y Dz)®u) | (x®y)®z)®u
L) | 1) |

7(x®u)@((y®u)®(z®u))=AC(('x®'u)@(y@u'))r®(z®u.)- 7

Superposition of (1) with RHS of (3) and of (2) with (3) are the same.
Superposition of (1) with LHS of (4):

xDy)®z
I 14
Q) - Go&x)®z

| ReY
x®2)D(y®2)=pc(Y®2z) D (x ®2)

- Superposition of (1) with RHS of (4) and of (2) with (3) and (4) are the same.
Hence all hypothesis of 3.Theorem 1. are fulfilled and we conclude:

S=pact If s'=pct

- Since s =p,t implies s =p,ct we have: '

4.Corrollary 6: For seEXP(s) and t'e EXP(t):

If s=p,t thcn s' '==Act'

. Foratermtlet Itlg: T1-> N be the number of occurrences of the @—symbol intand let|t| be

the number of ( all ) symbols in t. Now since two terms that are equal under AC must have thc same
- number of GB—symbols we ﬁnally conclude: '

4. Theorem 7: For all s'€eEXP(s), t'e EXP(t) :

If S =pal then Is'I@.zlt‘Ié

12



For technical reasons we define the set EXT1 c T1 as the set of expanded terms with right
associative product terms of equal length, i.e. te EXT1 if t =t; ® t, ®...8t _ such that the [1 are
product terms with I t;1 =1 |, 1<, k<n and each t; is associated to the right.

Two expanded terms s, t € EXT1 are called compatible if s @ te EXT], i.e. all their respective
product terms are of equal length. A ferm is a sum if it does not contain a product term, a
substitution o is a sum if for all xeV: o(x) is a sum.

If & is a sum and t an expanded term in EXT1 then the product terms of EXP(G(I) ) are in EXT1
and they are all of the same length.

For example let s=((x ®y) GB (z® 1)) and 6:{x<— (1&v))
then o) =(1OV)®Y)DE®1N=(1RyY)®VRy)D z®1).

As an abbreviation we use the notation
®1515nti =,91,0.D¢t - ~ for expanded term

4. Proposition 8: Let s= @1$Lnsl € EXT]1 and let ¢ be a sum.

Then for all s'€e EXP(o(s)) with s' —®1§Smsi' :
Isjl =Is/l =Is;] with 1<ij<m, 1sksn and s'€EXTI.

| Proof: The proof is by double induction on n and on q, where q is the number of
~ variables moved by ©. _ i

A substitution @ is a @—ddapter for terms s and t if there exists s’=p,0(s) and
t'=pa(t) with Is'lg =It'lg. In other words, a ‘@—adapter is a substitution that introduces
enough symbols to make two terms equal with respect to their number of product terms (w.r.t .their

number of Q—symbols ).This is a weaker notion than that of a unifier; if two terms are unifiable
then there exists an adapter, but not necessarily vice versa: '

4.Proposition 9:  If two terms are D A-hniﬁable then there exists an adapter.

Proof: Use 4. Theorem 7.

13



5. The D4 -Unification Problem is Undecidable

The reasoning in this section is as follows: we show that in the restricted class of terms EXT1, a
D A-uniﬁcation problem is unifiable iff there exists an adapter and there exists an adapter iff there
exists a solution to Hilbert's Tenth Problem.
5.Lemma9:  For compatible terms s,t e EXT1: ]
' There exists an adapter for s and t iff - <s=t>p), is unifiable.

Prod: If <s=t>py, is unifiable w1th c r.hcn o(s) —D A0(t) and hence by 4. Proposmon 9. there
| is an adapter.

If there exists an adapter o for <s=t>py, itcan be represented usi—ng 4.Prposition 2 as:

A {"1"’ 6a-i:;jgurlj' Ko GBxsjsurzj wviy Ry ®lsjsknrnj}_

such that Var(s,t) = {"1- »Xp) and the terms I;; are product terms, i.e.the terms to be
substituted are expanded. But then

8 ;{ leGBlstkl 1, xiHelsjskz 1., xr;*?eals'jsm 1'} -
where 1 is the single constant of the D 4 -signature is also an adapter for s and t, since it
substitutes the same number of ®- -symbols. o
But now it is not difficult to see that ¢ is a umfier Since s and t are compatlblc terms, let

s—@lsﬁm _and t=@1'515nti with Is;| =1 for ;’;u_ i

Let se EXP(G(S) ) and t'e EXP(o(t) ) Smce ois an adapter we have s —@lslsks :
and t ®1$15kt1 for some fixed k>m,n .

By 4. Proposition 8 we have, since o is a sum: - Is;1=1t'1, s;", t;’e EXT1 and each
s;’» ;" consists just of 1's with brackets associated to the right.

Hence o(s)=pas”  for s’e EXP(c(s) ) by 4.Lemmal
=1 " since s; "=t and each s;”, t; ‘consists jUSt of l s in right
associative form
=pa O(t)  for 'e EXP(t) by 4 Lemma 1

14



- 5. Proposition 10:  Given a product term t with V(t) = {x,,....x,} and a substitution

o= {"1‘+ ®lsjsklu1j’ K> @15jsk2“2js 2 Xp? EB]sjsk:n“nj}

Then for all t'e EXP( o(t) ):
| gy = 1T, genllc)™i -1 with m, = | tl;, 1<i<n.

Example:  Lett=(a ® (x, ® (x, ®x 4))) be the product term and ¢ = (x;~ @Emu”}.
Thenn=1, k=3 and by default ky=1 '
ot=(a®((u;; ®uy, ® u13) ® ((u“ ® “12 @D u13) ® x))).

For t'e EXP(ot) we obtain
= (a®(u11®(u11®x2)))®(a®(u11®(u12®x2)))® @(a@(ul3®(ul3®x2)))
“and | tlg = 3211 -1'=8.
_ _ = 7
For the followin g we note that thc signature of the D ,-problems is a subset of the signature that is

" necessary to represent Hilbert's H10-problem. But if we restrict the terms in H10 to those in EXT]1,

we can interpret these terms in D A as well as in H10, which provides the background for the

following lemma: '

5.Lemma 1l: For compauble terms s 4t €EXT1: There exists an adapter for <S=t>pa iff there
exists a diophantine solunon for <s=t>110-

Proof: Lets= @m.s'msi and t= @15&19 where s; ‘and t; are product terms with Is; | = |t |
' Let V(s,t) = [xl',x2,...,xp] be all the variables occurring in s and t.
If there exists an adapter for s and t then there exists an adapter of the form

® o= {xl"' alsjsklulj’ Ayt ealstKZUZj LR, ®1Sj$kpupj_} :

with u;; jj new variables not in VY(s,t).

Now since ¢ is an adapter we have for all s'e EXP(a(s) ) and t'e EXP(o(t) ):
l's |@ =]t |® .
Setting u;; =1 and mtcrpretmg @ as integer addition and ® as integer multiplication in
H10, we sec that [x1—> k1.0 Ko,..... X~ k), for kje N as in (i) above, is in fact a
diophantine solution for <s=t>p;o: The number of @-symbols is the integer value in
* H10, since all product terms are of the form 1® 1®...® 1 =y;, 1in N.

15



Convefscly if 0= {x;~ kl,....,.xp—b kp], kie N, is a diophantine solution for
<S=1>H10 t.hcl'l

(i) o= {7“1“’ D ity % Digastyjr s Xp™ ®1sjsxp“pj}
is an adapter for s and t, since by 5. Proposition 10, we ha\:lre_

for all s'e EXP(a(s) ): g = Iy + Zgian(IT i ()™ -1)  with m; = Is)l
and | |

forall treEXP(o(t) ): tt’lé =ltlg + Elsjﬁ(nlﬁép _(ki)h_l.)  with =

With Islg=m-1 and Itlg=n-1 we obtain:

Islg =+ (I (ki)"“ 1) formy=1 Sibi

= integer-value-of( 6(s) )+1 inHI0- ,
integer-value-of( o(t) )+1 _in H10 sincecisa D_iophantinc solution

=) + 2 (T, o, ()l 1) forl= Il

=Itlg

We are now ready to formulate the main theorem :

5 Theorem 12 ‘The D ,-unification problem for compatible icrms in EXT1 is decidable iff

' Hilbert's Tenth Problem is decidable..
Proof: = Given any Diophantine equation of the form (2.1) ﬁ'ansform it as in section 2 into
<s=t>g10 with compatible terms s,t € EXTI. '

(1) Suppose the D , -unification problem for compatiblc terms 1s decidable. |

Let <s=t>p,, be any Hilbert Problem with terms in EXT1 and consider
o <s=t>7),: our supposed decision procedure will say yes or no to its solvability.
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(1.1) No: i.e. <s=t>p, does not have a solution.

Then by 5. Lemma 9 there does not exist an adapter and using 5. Lemma 11,
there does not exist a solution for <s=t>y;,. Hence the Diophantine equation
will not have a solution.

(1.2) Yes: i.e. <s=t>p, has a D,-unifier o.
Define ‘l::{lj s1lforallue V(os,ot) }. Now since o is a D 4-unifier, so is
1-0. Hence by 5. Lemma 9 there exists an adaﬁtcr and by 5. Lemma 10 there
exists a Diophantine solution for <s=t>yy;. ¥
Thus in either case there would be a decision procedure for Hilbert's -
Tenth Problem.
(2.) Suppose Hilbert's Tenth Problem is dcadable
Let <s=t>p, be any D A-umﬁcatmn problcm -and conmdcr the problem
<s=t>yy1(- Then we have immediately: if <s=t>y;, hasa (no) solution then
there exists a (no) adapter for s and t by 5.Lemma9 and hence by
5.Lemma 11 <s=t>7, is (is not) unifiable. [ ]

Suppose now the D 4 -unification problem was decidable, then the restricted D a-unification problem
for compatible terms in EXT1 would be decidable too. With the above theorem Hilbert's Tenth
Problem would be decidable, hence:
5, Cofollaiy 13: TheD A—uniﬁcatifni problem is undecidable.
Closing this section we state our final observation:
5. Theorem 14: Let lI‘ be any set of axioms with D, € ¥ € H10. Then the ¥ -unification
| problem ' '

<s=t>y for s,te T1

is undecidable

which can be shown for any fixed ¥ with the same proof technique as in the previous paragraphs.
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6.CONCLUSION

- The unification prob_lern in w-order logics is undecidable for @22 [Hu 73], [Go 81] even if no
additional axioms are present. It is also well-known that this is not the case for first order logics,
where algorithms are known that compute a most general unifier of a given pair of free first order
terms if it e:ris'ts and terminate with failure otherwise [Ro 65]. Such .algorithms are a basic
cornerstone in most work on computational deduction and provide yet another charactenzanon of
the gulf between first and higher order logics. ‘

Although not enm'ely obvious, it comes without much surprise that it should be possible to find
first order equational logics such that the associated unification prob}em is agam undecidable,
provided there are enough equations to code into. For intellectual curiosity as v_vell as practical
interest in applications of unification theory, however, there is the problem to isolate minimal
equational theories such that the unification problem in that theory is undecidable.

D. Hilbert's Tenth Problem presented to the Internauonal Congress of Mathematicians in his 1900
speech in Paris [Hl 19] poses the - question if it is decidable whether a given polynomial equation is
solvable in positive integers; a problem that was finally shown to be undecidable. Let H10 be the
_ axioms formalizing number theory, possibly. augmented with axioms that are useful in expressing
polynomiai equatione Hilbert's Tenth Problem is then the HlO—uniﬁcation problem that requires
among others a higher order inducuon axlom (or infinitely many axioms or.. ) hence is not
equational. ' ' ' ,
However H10 w111 contain the distributivity and associativity axroms for integer multiplication and
»addition. We have shown that it is possrble to eliminate all axroms in H10 except the D A-axioms
(and hence return to first order) and still maintain the celebrated undec1dab1hty result.

’I‘here is the natural question then whether D is really the minimal axiomatic subset of H10 such
- that undec1dab1hty can be sh0wn - '

The associativity axiom alone (the A-unification problent) was the subject of intensive research: -
provided an identity element the A-unification problem is the problem of solving equations in a free
monoid. This problem became known as the string unification problem [Si 75], [Ja 85] in the field
of automated deduction, as Markov's problem [Hm 64] among most Eastern Europeans in
semigroup theory and as Lob's problem in the West. Its decidability remained open for almost
twenty years: it was ﬁnally shown to be decidable [Ma 77]. Hence the associativity axiom on its
own is excluded as a possrble candidate for a minimal subset of H10 (and thus of Dp).

18



The race is now open for the (un)decidability of the D-unification problem i.e. the problem
whether one or both of the D-axioms in itself are sufficient for an undecidable unification problem.
Some first results in this direction are presented in [Sz 82], [AT 85], [Mz 86]. If it is undecidable it
is a smallest subset of H10, if it is decidable why is it that the combination of two decidable
theories (D) and (A) pose an undecidable D | A-problem? |

Acknowledgements: This paper was improved (and the length of it substanﬁa!ly reduced) by
technical suggestions and contributions from N.Eisinger, F.Baader, H.J .Bﬁfckm; A.Herold and
M.Schmidt-SchauBS. A ' : ‘

The observation that Huet’s theorem can be used in section 4 (instead of a lengthy technical and
direct proof) is due to F.Baader. | ’ |
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