
32:06
‚>

>
.F

593585!
85.0

m
eow

:om
zw

oa
Eau—

„9283! 
„39535

„59525
522328“.

\‘6’3‘3’

0 0 O

3228093
8:99:92.

_m
_o=

_t<

SEKI-REPORT SR-86— 1 9

J. Siekmann P .  Szabo

m
m

.
„m

m

m
n

b0
‚m

m
m

m
m

yA
m

D

December1986

P
c-

w
m

„_Im
m





THE UNDECIDABILITY OF THE;
D A-UNIFICATION PROBLEM ' .

J; Siekmann P. Szabör _
' Universität Kaiser's-lantern '

Fachberéich Informatik.
' _ ÄPbstfach 3047, .

- 6750 Kaisérslaut’ern

' WEST GERMANY



. Ans-tam:

We show“ that the DA-Unification problem is undecidable. That is, given two binary. function‘
symbols EB and ®, variables and constants, it is  undecidable if two terms built from these symbols

' can be unified provided the following D A-axroms hold:

neb®z=e®aeo®a
x®w9n=6®meu®n

Ax$(y-®Z)=(x€5y)®_z

I 'T'wo terms are DA-unifiable (i.e. an equatiOn is solvable in DA) if thereemst terms-to be :subStituted

' for their variables Such that the resulting-terms are equal in the equational theory D A.

’ J

This 1s the smallest currently known axiomatic subset of Hilbert' s Tenth Problem for which an .
undecidability 'résult has been obtained.



1. UNIFICATION IN EQUATIONAL THEORIES

Notleast because of its applications in Computer Science and Artificial Intelligence unification

theory is currently under intense development [Ki 87] and provides some of the theoretical

background for a new generation of computing machinery.

The field is concerned with problems of the following kindz'Let f and g be function symbols. :1 and

b constants, and let x and _y_be variables and consider the two first order terms s and tbuilt.

from these symbols: '

's=-:‘f(xg(ab)) _ .“ _- r
t= f (g (yb )x )  ' ' '

" The problem is 'whether or net there'exist terms Which can be substituted for the variables x and y

such that the two terms thus obtained from s and t become equal: in the example g(a b) and a are

two such terms. We shall write __ '

~3= Ixég'(a.b)‚y<—a}

for such 'a' unifying substitution: 8 is a: anifi’er of sand ts'ince 8 s ; 8 t  . .

Ü In additibn to the decision problem above there 13 also the problem of finding a unificatibn

algorithm which enumerates the unifiers for a given pair s and t Such algorithms are at the very '

heart of present day computm g, in fact they are the central processing unit of the 'fFifth Generation

_Cornputers" and for efficiency reasons often implemented m silicon. .

Consider a variation of the prOblem above, which arises when we assume that f 1s commutative:

(C) " f(x y.) = f(y x) ‘

Now 8 is still . a  unifying substitution. and moreover a = {?y @— a ]  is also a unifier for s and t since

os  =f(x g(a‘b)) =_Cf(g(a b) x)=ot

. But 0' is  more general than 8;-since ö is an instance of 0 obtained as the composition 7t :1 a -

with 2.: {x  e— g(a b)}; hence a unification algorithm only needs to compute G.

In some cases there 18 a single and essentially unique least upper bound on the generality lattice of

unifiers, called the most general unifier.



5 Under commutativity however, there are pairs of terms which, have more than one most general
' unifier, but they always have at-mostfinitely many. This is in contrast for example to the above
situation of free terms, where every pair has at most one most general unifying Substitution.
The problem-be-comes entirely different when we assume that the function denoted by f 15
associative: '

(JA) , f(xifcy z» = WK :0 z)
55 In that case 5 is still a unifying substitution, but ..

1:.= [x *- f(g(a b) g'(a b)) y *- a]
.Iisalsoaunifier: * ' -

_ = 1: s=  f(f(g(a b) g( a b)) g._(a b)) =A f(g(za 5b) f5_(g(a b) g(a 1.155) = 1: t_. ‚' 5 '
_- “Bmw—.  -- . _ . ,

_ ' 5 1: = {xé— teenage!» gab)». yea] .
' is again a unifying substitution and by iteration of this process it is not difficult to See that the-re are

5 ' . WWW? many unifiers, all of which are most general. -

Finally; if we ass5umc that both axioms (A) and (CI) 55holId' f0r5f then the" situation changes ye} again . „
. and for any pair of terms there are at most finitely many most general unifiers-under’ (A) and (C). 55

“These and other examples of5 quational theories motivated the two central netions of unification 5
' theory: the set of mast general unificrs- „Ü of two terms and the unification hierarchy .— °
'defined on the cardinality 5of this set: 5 -- - '

I (i) a theory T is unitary .. if5 iiU always exists and has at inost one. elenient for ' '
5 I " every pmroftcrms, _ . .
(ii) a'. theory Tis .  fiüitaiyÜ 5 if _|.1U aIIWays exists and is finite for every Ipair of .

- - _ ierms; _ . — . . „. .
5 (iii) a theory T is infinitar‘y‘ _ =if uU always exists and uU' ls infinite for at least one

5 " 5 ' pair of terms;- ‘ '
5 (iy)atheory'i‘5is @"a '- __ otherwise __



2. THE DA-UNtrtcA'rIo-N' PROBLEM. " "

Given two binary function symbols GB and ®,  a single constant 1 and a denumerable set of
Variables V let 'Jl‘l be the set of terms built from these symbols (for convenience in infix form). .

' When terms in T1 are interpreted by the following DA-axmms

«x e 30 e2) = «x ®z) e (y @ 'z»
DA?" (x “® @ @ ;)) :.“; ® y.) 9 (1:3 2)”)-

<x®_<y®z»=_«x®y) oz)
We have the equationally defined theory D A over the signature ($,®,1‚V).' _
A D A -nuification problem is a pair of terms for which a D A-umfier IS to be handwritten as:

<s= t>m " fo r s JETl  :

and a D A—‘unifiér is-a substitution 0' such that D A iequation‘ally implies o's—- 'm„Which we shall
~ ' abbreviate to 05 -‚"DAm in the sequel .We are interested' m the existence of a decision procedure- that. .
' ' will ansWer yes if the problem above has a D A—umfier and no otherwise. ‘

l-hlbcrts Tenth Problem [Hil9] asks for the existence of a decision procedure, Which will tell for a I _
.'_ given polynomial DiOphantine equation with'Integer coefficients whether or not it has a solution'in —
- positive integers. A polynomial eQuation in n unknowns of degree m may be represented as _

Z ai'xli'llo xziz- ...-_xni“ for integers ai-2 Gland ikSm.

Y Matiyasevic showed that there'IS no decision procedure [Ma 70]; M. Davis gives a lucid account
i n  [Da 73].- . ' - -

Ler H10 be the set of- axioms contaming all necessary axioms of number theory that interpret ® as .
integer multiplication and ® as integer addition (and note: DA is a subset of H10). Then:

(2.2) <3]: ism -

' phrases Hilbert's preblem as avvunificatiOn problem, where s and. t are terms in some. suitable
extension of T1 such that (2 1) is eXpressable. - ' .
. However, we like to represent equations such as (2.1) using Only terms in T1 and for technical
convenience they should also be m a certain normal form, called‘ 'compatible expanded terms", to

_ be formally defined [later on, '



For that. reaso11 let:

‚am; transform “eva? subexpression in (211 )“  the form”
. ar x1“ .  :12” ‚inin‘

into ai produot terms '

i2 in i,i1212,' ‚' in .i1-_ 12., in. x1il x2 -xn + __x] ~x2 x +...-. +11:l _x2 x_

" amp}. transform every product. term

. . imo

. l ' l ' „I. ' 1 'XI  "' x1"  u .  ' x l ' f  KZ ‘; X'Z ". a ;  ' .X ; '  . . .  t x“ ' x“ ' {f.—" im

M7231: { i t  ' _i2. . .. ‚ in -

where M is the maxitnal sum of the 'ikii‘n all product terms;

_ -.-- step}; replace -' by" ® and + by .0 and. insert appropriate braekets.

' Heme every diophantine equatibn ' (2.1) can be represented as an HID-unification problem _

' (2,3) <s stem.) “ .with compatible expanded terms sgt'in_fl_'1'._

. "  am x2y+z+z-y2+y  +y2  -
“s tep;xxy+ l l z+ l l z= lyy+ lyy+ lyy  _ .

‘ SE23; (X®(X®y))@(l®(1®Z))®(1®(1®2)) (1®(y®y))®(1®(y®y))$(l®(y®y))

: = Dimously_these syntaetieal manipulations do not affect selvability under the interpretation of the
axiomsinHlO,——i..e (2.1.) issolvableiff (23 )  is. ‘ . -

' We shall show the undecidability of the D A—umficatlon problem by coding it into I-Iilbert's Tenth
_ Problem; i e. the trick'1s that'm a certain sense the problem IS codedrecursively into itself.



'3 .  DEFINITIONS AND NOTATION

To give a more precise meaning to the previous notions we shall "repeat some of the terminology of
_ unification theory and term rewriting systems. - .
Unification theory rests upon the basic notions of universal algebra (see c.g. [Gr 79], [BS 81] )with
the familiar concept of an algebra A-— (A," F) where A is the carrier and F is a family of . '

' operators given with their arities, usually. called the signature of A.

ASsurrring that“ there is at least one constant-(operator Of arity 0) in F and a denumerable set of '
variables V ,  We define T ,  the set of first order terms, over ' F ' and  V,  as ‘the least set with . _
(DVG T. and ifaritY®= Oforfe Fthenfe  T and (ii) ift1,.  .,tne T and arity(f)== nthen . .
f(t1.. tut) é T.  Let V(s) be the set of variables occurring in a term s. . . '
Let T denote the algebra with carrier T and its Operators are the term constructors corresponding '
to each operator of F. T rs called the absolutely free (term) algebra,'1 e. it just gives an algebraic
Structure to T and we shall drop the distinction between T and T 1n the sequel.
A substitution 0: T ->  T '1s an endomorphism on T, which 1s identiCal almost everywhere on V
and hence can be represented as a finite set of pairs (!= [x'l +- t1....,1tn «— tn]. The application of a _
substitution 0 to a term t is written as j.Ot The composition of substitutions is defined as the usual
composition of mappings. . o (o  t ) t -- 0' (1: t‘) för t e T.

'An equation s = t is a pair of terms. For a set of equations'E, the equational theory T '. . '
- presented by E (in short. the equational theory T) ‘IS defined as _.the finest cOngruence =T' on T '

containing all pairs os= at for s—- t in E and all substitutions O‘ _(i ..e it is the substitution-invariant ' '
congruence relation generated by E). . '
Two terms s,t are T-equul if s =_T t ,  i..eE equationally implies s "t .We extend Teequality'm T

- - _ to the set of Substitutions by

filo-#14:. “_ iff was  0x=fcx
.A  substitutiOn o is more general I than 1: (or 1: i sh  T—iustance ofi"'o ‚):

«:21; o_ ifi‘ ;! .); such that it =T 1e

Given two terms s,t and an euuational theory T we say a unification problem I <‘s-.4.-. t>T is
T—unifiable iff there exists a substitution 6 such that os=T c't and o is called a T-uuifier of s
and t For the _set Of all T-unifiers of s and t We write Url-(SJ).

For a given unification problem <s—- t>T, it is unnecessary to compute the whole set of unifiers >—

UT('s,t), which 1s always recursively enumerable for a decidable theory T, but rather a smaller set
useful in representing UT. Therefore CUT(S,t), the complete set of unifiers of s and t , is '



defined as: . _ ;. ,
(1‘) . cUT c U T __ ' ' - (correctness)
(ii) " v 8 e UT 3 ce cUT= . 8 2T 0" - (completeness)

The. set of most general unifiers pUT(s‚t) is defined as a set With (i), (ii) and '

(iii) . Vo, re pUT: '0 2T 1 implies 6.='c (minimality).

The set HUT does not always exist [FH 86], [8c 86], [Ba 86]; it“1t does then it is unique up to
equivalence, see [FH 86]. _ ' _ - -. --

Although unification theory'rs not necessarily restricted to equationally defined theories, most
results have been obtained within this frame. The reasOn is that eq'Uational theories can often be
directed and used for a computational treatment of =r. _ _ _. „ .
Suppose the equational theory'rs presented as T——— [ll—— rl ,  12': r2,.‘. .,ln'== rn}. A term sis said to
be demodulated to t ,  if there IS a subterm s' in s and apair 1i: ri in T such that s'= Ni &
(or s'--: |.l1'i _) for some substitution |; and term t is obtained from s by replacement of s' by mi.
(by mi) [WR 67] -

‘. _ The idea of demodulation has been taken further by D. Knuth [KB 70], who observed that it is .
often possible to find an equivalent and canonical set of eduationS, called a term rewriting
system_ (TRS), whiCh is directed from left to right R. -- [ l l  = 1-1.12 => rzg... ‚1" => rn.} with

.V(ri ) f; V(li-). Two terms are in the rewrite relation .s —>Rt iff s can be demodulated to t using one'
rule m R only from left to right. .

j ‘ ' R'rs equivalent to T if for all s,t :  s =Tt iff s _’Ri ,where“-—)R is the reflexive and transitive
' closure of “’n' If there are no infinite sequences s1 "R s2 —>R s3 —>R.. the relation —>R is said:

_— to be finitely terminating or Noeth'erian. The relation —>R~ is called confluent if fer every r, s,
t wrth r —->Rs and r —1Rt there exists a term 11 such that s -—>R ti and t ——'>R u. A confluent and
Noetherian relation (a TRS)‘rs called canonical. Canonical. TRS are an important basis for a
computational treatment of equational logic, since they define a unique normal form for every term.
A emitted pair is a‘ pair of terms <s,t > computed by superposition in the KB-~al'gorith1n (see '
[KB 70]) .This algorithm IS used to compute a canonical TRS for a given eq‘uational theory T.



It is often useful to partition a given equational theory T into two sets of equations R and E, ' such
that T = R u E and only R has a Canonical TRS.This is justified by the following theorem due to

G. Huet [Hu 80],which we shall use in the next section. '

3. Theorem 1 :Let  T=  R U e be an equational theory such that

(i) forall (1i =:ri) eR:  V03): V(li) andli is linear.

(ii) for all li=ri e E:  V(li)=V—(ri) _
(iii) the composition of "’R and-"E’  "R' =5 ‚ i s  Noetheriau

(iy) for all critical pairs. <p ,q> we have llpll =E||q||

Then for all terms s,t .

s=Tt is us" =Entu ‚ .
A term is  linear if every variable occurs only once and Ilpll denotes an irreducible term: p —->R M,

The fields of term rewriting systems, unification theory and their applications are sm'veyed'm

[H0 80], [Bu 85] and'in [Si 86].



' - 'from left to right:

4; EXPANSION _.AND ADAPTA'rloN

This section contains some technical preliminaries useful fer the proof 'of the main result as
presented m the next sec t ion . ‘

‘ A term in T that contains no Gsymbol but at least one ®-sym_b'ol is called a product lernt..
‘ Because of the associativity of ® we often omit the brackets around (3 e t). but note that we do

not have an associativity axiOm for ®.  (i) A term t is Called an expanded term if 1t i s  of the fotm
t= t1®t2$u  $tuwhcreeachtllsaproductterm. _

_4Q Proposition ' 2 : For every term t e Tl there exists art-expanded term t' with t =DA't' .

We can compute some of the expanded terms of a given term using the diSt‘ributivity axioms only

_ ((xey).®z)=»<<x®z>a om» V

. (x®(y®Z))=>((X®y)€B(X®Z))
_ ' Let "D be the corresponding rewrite relation and define:

EXP(t)= {t I t*—”»Dt and r is financing. under DI
vs term is irreducible 1r notewate mic can He applied to it.-Obviously we im}; :

_méapasiribn 3: _   ‚ For an r- e; Expa j: tam-1‘ ' f
4Proposin‘ort 4:. ' _ .‘ EXP(t )”G' { t'" t’-—-DAt" and t’ is an expanded term} - _

The set of expanded terms EXP(t) may contain more than "one element, hbwexier they all have the
same number” of 9-symm15. This observation,which we shall provenow in a more general setting, ;
is the crucial technical prerequisite for the encoding'1n section 5 '

: .- (i) Thémainreshlt of this paper would still hold if we had; it wouldbe'technically even a little
simpler to present. However, as we shall discuss later on, the rule of the game _is_' to find a. minimal

.setofa’xioms.~: ' . ' ‘ " ' ' '

to



‘Let  DAC=DAU{x®y=y$x}  thenwehave

4'.Theorem 5: ' For s,t e T let sfe EXP(s ) „  t'e EXP(_t ):

Proofi- ." The proof is based on 3.Theorcm'1 by letting R of 3.’l'heorem 1 be the two rewrites D

and setting-E toAC= { ( x9y )9z  =x9 (y9 . z ) , x9y=y9x  ].The proof

consists just of shouting that the hypothesis of 3.111m 1 is fulfilled.
' (i) Obviously V(r) 5 V0) for every (l = r) e D and 1 '15 linear (i.e. D i s  leftlinear).

(ii) Obviously V(l )= V(r) for every (1: r) e E.  .

(iii) Termination of "R" :P; can be shown by the following polynomial mapping:
I t I =2  iftisavariableoraconstant
l s9 t |=  l s I+ l t I+ l
Is®tl=lsl- ltl '
Then we have:- ~

I ( r9 s )®t J=- - I r l  l t I+ Is ' - I  I t I + I t l
I ( r®t )9 ( s®t ) I= I r I  l t I + Is I  I t I +1
“Since l t | 2 2 we have the required orientation for ((x 9 y) ® z)=>((x ® z) 9 (y ® 2))

andsimilarilyfor ( : x®(y9z ) )=>( (x®-y )9 (x®z) ) inD.  ' '
Since 5 =AC‘ implies I s I—-- ! t l  we conclude that aka-=3 ‘ is Noetherian. _

_ (iv) We have to consider the critical pairs how/een the following rules and equations: , -

‘ DI-  _(1) ((x9y)®2)—+ ((x92) 9 (Y®Z)) '
_(2) (x.9 (y 9 2)) ((x 9 y ) 9 (x ® 2))

AC: ' (3) ( x9y . )9z  =x9 (y92 ) ' .
Im)"  

' x$y=y$x

Superposmon of (1 )  with (2) and (2) with (1).
(x 9y )  ® (u 9 v)

H2) ' ~10)
( ( x9y )9U)9( (x9Y)9V)  (X9(u9V))9(Y9-(H9V))

la) ' » — M2)
((x 9 M90! 9 D)) 9 ((x 9 V)9(Y 9 V))=Ac((x 9 990! 9 V))9(-(Y 9 “)90' 9 V))

1'1-



Supetposition 6f (1) with LHS of ( 3 ) :
(x $ (y' 6 z)) @ u

_ ‚ im im _
(X®ü}®((y$z)®u)- _ ( (xeywzmu‘

im ' ' la) '
(x®u)$ ( (y®u)$ (z®u) )—AC((x®u)€B(y®u) )$ (z®u)

Superposition of ( l )  with RHS of (3) and of (2) with (3) are the same.

Superposition of (1) with LHS of (4):- '
(x 63 y ) ® 2
|" 1—44)
M1) : ‘-— (y one 2

_ - ' in") .
(xézye(y‘®z)=AC-(y®z)ea(i®z)

„ , Supeiposition of (1) win: RHS "of. (4) and of (2)with (3) and (4) are. the mac;
' Hence all hypothesis Of_3.Theorem 1. are fulfilled and We conclude:

’ 'S'f'fDActwlff ' Süd .

' 1 .  _ . ' . “  _ - .  . .  ' , “ .  ‚ _

-_ __ .Smce s=DAt implies sf-“DAét wehave: :

" 4;Cofrollary 6: . For _s'? EXP(S) and t E EXPO).
If s=DAt then s’ =Act'

For a term t let It I 9:  T1 —> N be the number of—occurfcnccs of the 9-symbol m t and letl  t | be

the number of(  all ) symbols m t. Now since two terms that are equal tinder AC must have the same

- number Of'Mymbok, we finally conclude: '

4. Theorem7: Forall s'eEXP(s) ,  t'eE)(P(t):
If s ‚=.DAt then ls‘lgz-a l t‘lé

:2



.4"

For technical reasons we define the set EXT'I c T1 as the set of expanded terms with right
assOciative product terms of equal length, i e te EXTl if t=  tl @ t2 $.. ‚ na  such that the ti are
product terms with I tl I - l tkl1_-i,l:tSn and each ti is associated to the right. .
Two expanded terms s, t e EXTI are called compatible if s o te EXT], i. e. all their respective
product terms are of equal _.length A term is a sum if it does not contain a product term. a
substitution a is a sum if for all e :  o(x) is a sum. ' '

' If G is a sum and. t an expanded term in EXTI then the product terms of EXP(o(t) ) are in EXTI
and they are all of the same length.

For example let s -- ((x ® y) @ (z ®1) )  and (i={x «— (1$v)_.}
. then (1(5): ( (1$v )®—y)$(z®l )=  (1®y)®(v®y)$ (z . l )

' As an abbreviation We use the noration '

$151a =t1EB ‘29a  In for expanded term -

4. Proposition 8: Let s -— 61:13:51 e EXT] and let 0 be a sum.
'11:e::: forall seExP( o(s)) with s =®l$i$msg -

lsi'l = lsj'l = ns'kL with 1s1,jgs:::, um arid ls'eEXTl.

" Proof 'ne proof is by deuble induction on: 11- md on q, where q is the number or ' f „
_' variables moved by o. ' - . . _ , - l

A substitution a is_ a Q-odapter for, terms s and t if there exists- s’enAMs) and '
t"=DA0t(t) with [5163 = 1:13;. In other wards. a '$—_-adapter.is .a substitution that introduces
enough symbols to make two tenns equal with resPect to their number of product terms (w.r. 1 .their-
number of $—symbols ) ‚This IS a weaker notion than that of a unifier; if two terms are unifiable

_ ' then there exists an adapter, but not necessarily vice vet‘s-:a

4.Proposition 9 if two terms are DA-unifiable that; there exists an adapter.

Proof: . Use 4111610113111 7.-

1‘3



' 5. The D AQUnificatidn Problem is Undecidable

The reasoning in this section is as follows: We show that in the restricted class of terms EXT l a
DArunification problem' 1s unifiable iff there exists an adapter and there exists an adapter iff there

. exists a solution to Hilbert' s Tenth Problem.

' 5 .  Lemma 9. For compatible terms 3,t e EXT1: .

' There exists an adapter for s and 1 iii < s=t>DA is unifiable'.

Proqf . If_< s==t>DA is unifiable with a then G(s) =DAo(t) and hence by 4. Proposition 9. there
' ' ' . is an adapter .. ..

- If there exists an adapter a for <S=t>DA it can be 1epresented using 4. Prposition 2 as:

d‘ :  {"P  alsjsglrlj '  XT’ EBISjskzrzjr- 1 xn-1 $1555knil] } - ‘_ "

Such that Var(s‘.t) = [xl,...‚xn] and the terms fü are Product tends. &.v ms to. be

.. substituted are expanded. But then ‘ - - . _ _

' ' .“ .=r1{ 319$ 15541.11 X2H$1Sj5k2 1 {°F-v x11_"*’..‘13j51:_n l ' }

" ' Where l 'is the single constant of the DA-s1gnature is also an adapter fors and t. since it '
- f ' substitutes the same number of $—.symbols. . "
. But now it is not difficult to see” that o is a unifier: Since s and t are compatible terms, iet; '.

$6154.44 and _ t =169'1'S'fign:i "With" lsi i =11“. [for 511; i.- -

. Let s'e- EXP.(o(s)) and t’é EXP(o(t)). Since 0 is an adapter, We have 3 ”$1995
1 . " .. and t‘“®ls:st:t1 for some fixed k2111,n.

sBy 4. Proposition 8 We have, since .0 is a Sum:'lsi'l=lti'l,s12ii'e EXTl and each
‘ {1“1' consists just of 1’s With brackets associated to the right. '

Hence. «s)—ms . for s’e mm“) by imam _
* ‘ ~ = t" . since si_'= ti and each si’, ti ’consists just of 1's in right .

" _ associative form '
' :maay forteEXP(t) by 4.Ler'nmal

"14 '



- 5 . Proposition 10: Given a product term t with .V(t) = [x]“,...,x„} and a substitution

“=  {"r" 9153911111, "2" ®ISJ'=<-1:2“2.J' ’ "' ' ’ XII" elsiflmufij}

Then for all t'e Em 6(t) ):

Itle=nlm(ki)m' 1 ' . wnhml—ItllSlSn

‚mfg.-: Let t — (a @ (xl ®, (x2 ®x ’3)» be the product term and O’={x1—> 9155M}
-Then _==n 1, kl: 3 and by default k2=1 _
ot=  (a ®( (un  9 “12 9 u13)® ((u11I9 un 9 11-1959 1:2)».

For t'e EXP(Ot) we obtain

t‘ = (a®(ul19ml1®xz)))9(a®(ull®(u12®x2)))9..  .9(a®(u13®(u13®x2)))

‘and mg:  3211-1=3.
. . l

_ For the following we note that the signature of the D „problems 1s a subset of the signature that'1s

necessary to represent Hilbert's HID-problem. But if we restrict the terms in H10 to those 1n EXTI, .
we can interpret these terms in DA as well as in H10, which provides the background for the

following lemma: ' '

i 5. Lemma I I :  IFor  compatible terms s‚t e EXTl: There exists an adapter for ris—s=t>DA iff there
. exists a diophantine selution for <s=t>H10II

Promi .— ‘Let s =9mnsi and t -— 6915313 where s and ti are product terms with Isi I -_- lti-l
' Let V(s, t )=  {xl,x2,.. .,xp] be all the variables occurring in sand t.

_ If there exists an adapter for s and t then there exists an adapter of the form ' I

(i) a = {xl—> Ietsrsnu'lj? "? 6151921121" ’ ‚xp—* 631'5’»'J'='=kpul>1'} '

with “11 new variables net in V(s, t). '
‘ Now since (1 is an adapter we have for all s'e EXPI(ot(s) ) and t’e EXP(Ot(t) ):

| S “@ = l t' l e .
Setting “ij=1 and interpreting 9 as integer addition and ® as_ integer multiplication in
H10, we see that {xl—> k1,x2—> k2,....‚xn-> kn], for kie N asin (i) above, 13 in fact a

. diophantine solution for <s=t>Hloz The number of 9-symbols is the integer value in
, H10, since an product terms are of the form 1 c l  ® ® 1 =mo 1 in N.
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Con-Herselp if . o = [xi-1 k11*'-'°1"p" kp}, kie N, is a. dlophantmc solution for
<S=DHIO the“ 1 " " . '-

.(fi) on: { "1"  elSjSklulj’ "? ea15j_<_1:2“2jv-"5 "p" 69151511123121} L -

is an. adapter for s and t, since by 5. Proposition 10,- we base

- for all sie EXP(o_L(s)__ _): l i ls‘Ie = Isle + 215,54“ 
1.515,, (“Quii '1) wilhmi # Isjlg‘i

' . form taxman» qmé=n lo +)_‘.MJAI(IIISEP(1“)I -.1)_ & wimg=1tjlxi.—

' ‚ .  "With | 3 |$=-m-1 and ItI$=n-l weobtain:

@1)+El$ßm(flls‚$p(k‚)ml -1) finitely“i519 =-

= integcrfvalue—Ofl 0(5). ).+_1 . in HIO .- ‘ '   ''? integer-value-ofl ca) )+1 . in H10. six-now is '1 Diaphantine solution . ' _
Üf=(n- l )  '"l (“15:51:09 1)  for l i= l t i l x i  ‚' ‘

= I “$ .

_ _ We are now read)? to fmmulatemm ""—55mm"
5 Theorem 12: The DA—umficatlon problem for compatible terms in EKTI is deCidable ift'
" . Hilbert' s Tenth Problem 13 decidable. '

‚_ ' Prod' .' Given ”any Diophantine equation of the form (2.1) trmsform it as in section 2 into ‘
' .? “=t>-mo with compatible terms s,t e EXTI,

(1) Suppose the D A-unification problem for compatible terms is decidable. .
Lot <s=t>mo be any Hilbert Problem with terms in EXTI and consider ' '
<s=t>DA. our supposed decision procedure W111 say yes or no to its solvability. - '

16



(1.1) No: i.e; <s-t>D A does not have Ia solution.

Then by 5. Lemma 9 there does not exist an adapter and using 5. Lemma. 11
there does not exist a solution for <s=t>Hlo. Hence the Diophantine equation
will not have a'solution.

(1.2) Yes: _ i—‚c. <s=t>DA has a D A-unifier o.

. Define 1:=[u "?> 1 | for all u l e  V(os,o*t) ] .  Now since 0 is a D A—unifier, so is
too. Hence by 5.  Lemma 9 there exists an adapter and by 5. Lemma 10 them

. exists a Diophantine solution for <s=t>H10. . _ _
Thus in either case there would be a decision procedure for. Hilbert' s ‘
Tenth Problem.
(2. ) Suppose Hilbert’s Tenth Problem'1s decidable.

Let <s=t>DA be any D A-umficatlon problem and consider the problem
<s=t>H10. Then we have immediately: if <s=t>H10 has a (no) solution then
there exists a (no) adapter for s and t by 5. Lemma 9 and hence by -
5.  Lemma l l  <s-1>DA is (is not) unifiable. I , '

Suppose now the DA-umficatlon problem was decidable, then the restricted DA~unification problem
for compatible terms in EXTI would be decidable too. With the above theorem Hilbert’s Tenth
Problem would be rdeeidable, hence: -

- - 5. Coinllary 13.- The DA-unificafibfi'nrolvlcm is midwidabh- '

Clbsing this section we state our final obsewation:

_ 5.  Theorem .14.: Le: ‘I‘ be any set of axioms with D A s; ‘I’ 9 H10.. Then the ‘I’-unifiIcation
‘ ' problem _ . .

— <s=t>1p for s,t_e T1
' is undeCidable‘

which can be shown for any fixed ‘1‘ with the same piobf technique as in the previous paragraphs.
l
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6.CONCLU3SION I _
' “The unification problem in (‚o-order logics is undecidable for. to z 2 [Hu 73], [Go 81] even if no ‘

uütional axioms are present. It i's also Well-known that this is not the case for first order logics,~
where algorithms. are known that compute a most general unifier of a'giIIven pair of, freefirst order;

_ terms if it exists and terminate with failure otherwise [Ro 65}. I ‘Such -  algorithms are a basic
cornerstone in most work On computational deduction and provide yet another characterization Of

. I the gulf between first and higher order logics.

AlthoughIInot entirely obvious,I it comes withOut much surprise that it should be possible to find '
. first order equation! logics such that the associated unification problem is again Iundecidabl'e,

I provided there are enough equations to code into. For intellectual curiosity as well as practical ‘
interest in applications of unification theory, however, there IS the problem to isolate minimal
ecjuational theories such that the unification problem 111 that theory' IS undecidabIle.

D. IrlilbertIs Tenth Problem presented to the International Congress ofI Mathematicians 1n his 1900 _
speech m Paris [Hi 19] poses the question if“1t is decidable whether a given polynomial equation is

- solvable'1n positive integers; a problem that was finally shown to be undecidable. Let H10 be the __
. ' axioms formalizing number theory, possibly augmented with axioms that are useful m expressing

polynomial equations. Hilbert' s Tenth Problem 13 then the H10-unificati0n problem, that requires
I . I ' among others a higher order induction axiom (or infinitely many axioms or. .II), hence is  not

e‘quationaL ' , ' . .
However H10 will contain the distributivity and associativity axioms Ifor' integer multiplication and

raddition. We have shown that it is possible to eluninate all axioms in H10 exCept the DA-axroms

' (and hence return to first order) and still maintain the celebrated Iundecidability result.-

I There 1s the natural question then whether DA isI r ea l l y I the minimal axiomatic “subset of H10 such I
'- that undecidability can be shown. - ' - . -

I The associativity axiom alone (the iii-unification problem‘) was the subject o f '1ntensive researcht . .
provided an identity element the A-unifiIcatiOn problem' 1s the problem of solving equations in a free
monoid. This problem became known as the String unification problem [Si 75], [la 85] m the field
of automated deduction, as Markov s_ problem [Hm 64] among most Eastern Europeans in
semigrqp theory and as Löb's problem m the West. Its decidability remained open for almost 'I
twenty years;- it was finally shown to be decidable [Ma 77]. Hence the associativity axiom on its I
own is excluded as a possible candidate for a minimal subset of H10 (and thus of D A)

5118.



The race is now Open for the (un)decidability of the D—unification problem"i.e. the problem
whether one or both of the D-axioms in itself are sufficient for an undecidable unification problem.
Some first results in this direction are presented in [Sz 82], [AT 85], [M_z 86]. If it is undecidable it
is a smallest subset of H10, if it is decidable why is it that the combination of two decidable
theories (D) and (A) pose an undecidable D A-problem‘? "

_ Acknowledgements: This paper was improved (and the length “of it substantially reduced) by
technical suggestions and contributions from N. Eisin'ger, F. Baader, H J. Biirckert, A .Herold and

- M.Sch1nidt-SchauB. ' '
The observatiOn that Huet’s theorem can be used. m section 4 (instead of a lengthy technical and
direct proof) is due to F.Baader.
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