Please use this identifier to cite or link to this item: doi:10.22028/D291-41743
Title: Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
Author(s): Klein, Karoline
Klamminger, Gilbert Georg
Mombaerts, Laurent
Jelke, Finn
Arroteia, Isabel Fernandes
Slimani, Rédouane
Mirizzi, Giulia
Husch, Andreas
Frauenknecht, Katrin B. M.
Mittelbronn, Michel
Hertel, Frank
Kleine Borgmann, Felix B.
Language: English
Title: Molecules
Volume: 29
Issue: 5
Publisher/Platform: MDPI
Year of Publication: 2024
Free key words: Raman spectroscopy
vibrational spectroscopy
glioblastoma
brain tumor
heterogeneity
machine learning
unsupervised learning
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.
DOI of the first publication: 10.3390/molecules29050979
URL of the first publication: https://doi.org/10.3390/molecules29050979
Link to this record: urn:nbn:de:bsz:291--ds-417433
hdl:20.500.11880/37385
http://dx.doi.org/10.22028/D291-41743
ISSN: 1420-3049
Date of registration: 19-Mar-2024
Description of the related object: Supplementary Materials
Related object: https://www.mdpi.com/article/10.3390/molecules29050979/s1
Faculty: M - Medizinische Fakultät
Department: M - Pathologie
Professorship: M - Prof. Dr. Rainer M. Bohle
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
molecules-29-00979.pdf1,77 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons