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Abstract: Understanding and classifying inherent tumor heterogeneity is a multimodal approach,
which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical
spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis,
where each spectrum generated reflects the individual molecular composition of an examined spot
within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine
learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we
succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue
can correctly be predicted with an accuracy of 76%—but also in determining and classifying different
spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements
of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective
spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity
of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity
will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins
and to assist resection control.

Keywords: Raman spectroscopy; vibrational spectroscopy; glioblastoma; brain tumor; heterogeneity;
machine learning; unsupervised learning
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1. Introduction

With the aim of providing an unbiased approach to brain tumor diagnosis, Raman
spectroscopy (RS) has been progressively developed and advanced in recent years to
potentially add to the ever-expanding diagnostic toolbox for the detection and diagno-
sis of neuro-oncological lesions alongside existing diagnostic methods to date, namely
radiological imaging, histomorphology, immunohistochemistry, genetic and epigenetic
analysis [1–3]. As a vibrational spectroscopic technique, RS allows us to detect changes in
the virtual vibrational level of the molecule or tissue of interest—the interaction of light
and matter results in the emission of photons of different frequency and energy (inelastic
scattering, Raman scattering). Monitoring these inelastically scattered photons enables
the subsequent generation of an individual molecular fingerprint of the underlying tissue.
Due to its ability of real-time, label-free, and non-destructive tissue identification, current
applications of RS range from intra-/perioperative use in neurosurgery to the employment
of this method in diagnostic pathology [4]. Based solely on spectral tissue properties, fast
and label-free discrimination between healthy dura mater and meningioma is feasible [5].
Furthermore, Hollon et al. successfully employed RS combined with convolutional neural
networks to generate virtual histological images based on inherent spectroscopic tissue
features, enabling differentiation between a vast amount of different brain tumor types
(gliomas, meningiomas, metastasis), and the team of Zhou et al. utilized molecular vibra-
tional fingerprints of particular lipids and proteins to determine the grade of gliomas [6,7].
For intraoperative use, fast measurements of single spots would need to provide sufficient
information about the nature of the underlying tissue in order to be useful for resection con-
trol. In case of heterogenous and infiltrating tumors, this includes the infiltrated residual
tissue itself, vital tumor cells and necrotic areas. However, spectral classification typi-
cally relies on parallel identification by other means, such as microscopy, as the different
components are not identifiable with a naked eye. Thus, establishing spectral subclasses
within heterogenous tumors has been difficult when excluding processed specimens [8–10].
Here, we used independent and complementary computational methods to decipher the
spectral heterogeneity within glioblastoma tissue fragments and we identified several
spectral entities.

We spectroscopically measured 43 glioblastoma cases as well as gray and white matter
from an autoptic brain as a healthy control. While different components of glioblastoma
were present in most analyzed fragments, some almost exclusively contained necrosis,
which prompted us to reduce the spectral complexity in the entire data set using random
forest classification (id est, the combined output of a construction of multiple decision trees)
as a supervised machine learning approach. After transferring and mapping the complexity
of acquired spectroscopic features in non-necrotic tumor tissue to a lower dimensional
space, we then employed the unsupervised dimensional reduction technique UMAP (Uni-
form Manifold Approximation and Projection). Combined with the unsupervised machine
learning algorithm k-means clustering, where data are split into distinct clusters (groups)
of similarity based on vector quantization, we identified several spectral subclasses. By
making a comparison with autopsy tissue, we were further able to identify two of these
classes as gray and white matter. The possibility to correctly classify individual measure-
ments on single spots opens avenues to spectroscopy-assisted resection control, which is a
major challenge in this field [11].

2. Results

In order to assess data quality, we first performed a hierarchical clustering, which
did not reveal the presence of strong outliers that would necessitate a further reduction
of spectral data (see Supplementary Figure S1). We found the data to be of similar quality
across all acquisition parameters and specimens.
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2.1. Determining Spectral Properties of Necrotic and Vital Tumor Tissue

As described above, we aimed to reduce the heterogeneity of the data set by isolating
an identifiable class within all data, i.e., necrosis, which in some cases comprises the entirety
of a specimen and can thus be singled out spectroscopically. Our binary classifier showed a
solid separability between necrotic and mainly non-necrotic tumor tissue with an overall
accuracy of 76% and corresponding AUROC/AUPR values of 0.81/0.81 for the necrosis
class and 0.8/0.76 for the vital tumor class (Figure 1A). The misclassification ratio was
0.15 for the necrosis class, indicating a relatively homogenous composition of specimens
and 0.31 for the vital tumor class, where mainly (but not exclusively) non-necrotic tissue
was expected. Figure 1B displays accompanying performance metrices for each group.
Additionally, the classifier performance was evaluated by performing cross validation
within the external validation cohort set not only with a patient-wise split but also a random
data distribution (see Supplementary Figure S2). Subsequently, we used feature importance
analysis to determine whether individual spectral peaks had a significant part regarding
the biochemical composition of the tissue in the classification of groups. However, since the
20 most significant frequency bins only account for 15.16% of the total contribution to the
classification—the most significant frequency bins had a significance of only 1.12%—the
relevance of the features cannot be limited to a few frequency ranges within our analysis
(see Supplementary Figure S3). It is likely that the heterogenous nature of the specimen
analyzed precludes the identification of single molecules or spectral components. The
spectral-fingerprint-based binary classifier assigns a probability score to each spectrum that
can be used to separate the data set further and perform an additional dimension reduction.
By using the calculated optimal threshold of the models internal training validation (0.452,
Supplementary Figure S4), a re-labeling of our entire glioblastoma data set was feasible—all
data points (spectra) were classified as necrotic/non-necrotic according to their calculated
spectral fingerprint. All data points labeled as vital tissue were placed into a separate class
(‘spectral vital data set’) with a total of 1310 data points (see Figure 1C).

2.2. Spectral Heterogeneity in Vital Glioblastoma

Next, the spectral vital data set was subjected to a dimensional reduction and data
display (UMAP). Based on this, we controlled the data for technical confounders such as pa-
tient identity and exposure time and did not find any relevant interference (Supplementary
Figure S5). We also plotted points with assumed biological differences (infiltration zone and
hemorrhage/blood) mentioned in the histopathological report into the UMAP; here, the
distribution was uneven in the UMAP, suggesting that different tissue types were found, as
a basis for the observed UMAP pattern (see Supplementary Figure S5). However, these
pathological tags were not sufficient to provide a basis for classification due to the high
heterogeneity of the samples. In order to identify different spectral subgroups in the data
set, we then performed k-means clustering. Since the number of subgroups was unknown,
we chose variable K (1–50) and aimed for a distribution where few classes would hold a
majority of the spectra, while sufficient classes for rare spectral subgroups and outliers
need to be present (Supplementary Figure S6). This was the case with a total of 21 clusters
(Figure 2B), where 7 clusters contained 95.7% of the Raman spectra and could therefore be
considered as major clusters. Four clusters contained less than ten spectra each; ten of the
clusters contained only one spectrum. It has to be noted that these clusters still need to be
individually present in order to allow us to conduct a similarity-based distribution of the
major classes.
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Figure 1. (A): ROC and PR curve of initial binary classification (vital class/necrosis class). (B): Corre-
sponding performance metrics. (C): The optimal decision threshold of the binary classification was
used to re-evaluate and re-assign spectra to a certain class according to their spectroscopic behavior.
A spectral vital data set (gray arrow), in which spectral properties of necrosis were excluded, was used
in the next step to determine spectral heterogeneity within vital tumor tissue.

We represented all 21 clusters in different colors on the previously established UMAP;
this approach independently combined the distribution within the k-means clustering
results (each cluster is presented as an individual color), with the spatial arrangement
reflecting the dimensional reduction of the previous UMAP analysis. The use of different
methods serves as a good control against computational artefacts, allows to assess the qual-
ity of the classification and aims to maximize generalization. The clusters were separated
very well in the UMAP (Figure 2A), indicating a common origin for each spectral cluster
within the tumor tissue.
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Figure 2. (A): Twenty-one clusters from k-means clustering, each in different colors, are represented
using UMAP. (B): Data distribution within the 21 clusters. (C,D): UMAP; histomorphologically
determined infiltration zones are represented in orange (C). An overlap of spectral features of
infiltrated brain tissue with clusters 1 and 2 can be determined ((D) shows total number of spectra
identified as infiltration zone according to their spectroscopic cluster assignment). (E): UMAP
representation with overlaid predicted probability of necrosis. (F): assignment of healthy brain tissue
to distinct spectral clusters.

2.3. Gray and White Matter Classify as Distinct Major Clusters

In the next step, non-tumorous brain tissue samples were integrated into the previously
established k-means clustering method to predict the cluster that most closely represents
the spectral properties of gray and white matter. This analysis resulted in a definite
assignment (Figure 2F), since all Raman spectra of the white matter could be classified as
cluster 1 (100%), while 47 of the 55 spectra of the gray matter classified as cluster 2 (85%),
6 gray matter spectra were also classified as cluster 1 (11%) and 2 gray matter spectra were
classified as cluster 9 (4%). Furthermore, the distribution of clusters 1 and 2 in the UMAP
resembles the tissue tagged as an infiltration zone in the histopathological description
(Figure 2C) and the spectra with the lowest probability score for being necrotic (Figure 2E).
A total of 114 measurements from 181 measurements (63%) diagnosed as infiltration zone
indicate an overlap of spectral features of infiltrated brain tissue with clusters 1 (89 spectra)
and 2 (25 spectra), as can be seen in Figure 2D.

Here, we show that individually acquired spectra can be identified by utilizing simi-
larity matching to assign them to one of the major clusters in our data set, where the two
clusters resemble gray and white matter. While the remaining clusters still need to be
characterized, these results can be directly applied to newly generated data.
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3. Discussion

In this study, we propose a computational and histology-independent way to ap-
proach heterogenous spectral features from a highly diverse sample set by dividing Raman
measurements of glioblastoma tumor samples into distinct spectral clusters. We separated
data emanating from necrotic and vital tissue and identified specific subgroups, which can
be verified via independent analysis and by comparing separate tissue samples. While
the latter was only feasible for two sets, namely gray and white matter, within the scope
of this study, breaking down the spectral heterogeneity from measurements of resected
tissue paves the way for using Raman spectroscopy intraoperatively for the identification
of tumor boundaries and as a rapid and easy-to-use tool for resection control.

Numerous studies have addressed the capability of tissue identification by means
of Raman spectroscopy [12–15]. These range from the basic task of identifying different
anatomical areas of the brain to clinical diagnostic applications in the form of binary (be-
tween tumor tissue and healthy brain tissue) and multiclass (to determine distinct tumor
entities) classifications [16–19]. Previously, studies have already dealt with the heterogene-
ity of glioblastomas. By using frozen tissue samples, Koljenović et al. demonstrated the
capability of Raman spectroscopy to distinguish between vital glioblastoma tissue and
tumor necrosis, whereas Kalkanis et al. employed Raman spectroscopy to distinguish
between healthy brain tissues, vital tumor tissues and necrotic tumors [20].

To date, discrimination between tumors and surrounding tissues typically relies on the
correlation of measurements with histopathology. This correlation can be augmented by
measuring tissue fragments as small as possible to minimize histomorphological complex-
ity [21]; however, in glioblastoma, single spatial entanglements of characteristic pathological
features often occur even within small tumor samples. When adding the aspect of each
sample’s three-dimensionality, the section used for the pathologic assessment in compar-
ison to the spectroscopic measurement on the surface of the sample increases the rate of
miscorrelation. The use of formalin-fixed paraffin-embedded (FFPE) tissue offers the benefit
of obtaining corresponding measurements with regard to distinct areas identified by means
of light microscopy. In this sense, we were recently able to spectroscopically assess the
histomorphological heterogeneity of glioblastoma and classify peritumoral tissue, tumor
tissue and necrosis based solely on spectroscopic FFPE tissue properties [22]. The group of
Amharref et al. further demonstrated the representation of different biochemical properties
of tumor necrosis in the form of different spectroscopic characteristics and identified central
necrotic areas with a high protein content and a peripheral area with an increased lipid
content [23]. However, such types of tissue processing severely alter the sample’s biochem-
istry and are not directly applicable during surgery; therefore, native tissue was used in
this study. Our in silico approach overcomes these limits of classical application of spec-
troscopy regarding tumor samples. While necrotic samples were initially identified with
histopathology, the remaining classification was undertaken by k-means cluster analysis;
a number of 21 clusters could be identified in the patient data. Fourteen of these clusters
contained less than ten spectra each. We suppose that these clusters represent distinct
but rare entities, such as bone chips or burnt tissue. Notably, this approach requires no
curation of data as spectral outliers will constitute distinct clusters, rendering it particularly
useful in a real-world scenario. The main bulk of spectral data that are represented in seven
clusters can be presumed to arise from the underlying vital tumor tissue as well as from
the infiltrated and peritumoral gray and white matter. We show a notable correlation of
clusters 1 and 2 with the histopathologically diagnosed infiltration zone, which refers to the
areas that are not mainly constituted by the tumor itself, be it vital or necrotic, but by brain
tissue with malignant cells in variable numbers. It is of particular importance to identify
these transition zones during surgery, and the presented identification of these clusters
may serve to do so. Moreover, clusters 1 and 2 were also determined by our established
predictive model to be the least likely to be necrotic. The necrosis-classifier-based UMAP
and the k-means clustering are completely independent methods that arrive at the same
conclusion, strengthening reliability. The clear assignment of the measurements of the
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healthy control brain tissue into only these two clusters confirms this and further identifies
the spectral origin as infiltrated and peritumoral gray and white matter. Moreover, our
data suggest that there is an accumulation of a wider range of spectroscopic features of the
infiltration zone rather than a single defining spectrum, similar to the known spectroscopic
heterogeneity of tumor necrosis [23]. In the case of peritumoral brain tissue and infiltration
zones, this may be related to a differing amount of tumor infiltrating cells, a diverging
amount of associated reactive gliosis and different anatomical areas of infiltration as well as
an associated metabolic shift. In the next step, a precise assignment of the remaining clus-
ters to specific tumor areas would be useful, although this would require even more precise
pathological matching with the tumor samples or further homogenous samples of tumor
tissue analog to the gray and white matter approach. This may be achieved by measuring
cultured tumor cells in vitro but is beyond the scope of this computational approach.

Our study reflects the actual conditions in the operating room. To subject patient-
specific healthy tissue to spectroscopic examination, a portable, handheld Raman tool [24]
could be employed intraoperatively. Within this approach, even in vivo measurements of
tumor borders and/or resection margins seem feasible [11]. However, a direct application
in vivo would entail the operation having to be prolonged and the acceptance of possible
complications, which have hampered the application of this approach. In order to justify
the additional burden of a routine use of an in vivo application, sufficient evidence of its
feasibility needs to be presented; we believe that our study delivers this to the scientific and
medical community. In the subsequent second step, spectroscopy could then be evaluated
by several research groups as a potential technique for in vivo diagnostics. Our study
resolves the problem of large heterogeneity of spectra acquired from glioblastoma samples,
which has limited the usefulness of this approach so far. Our comparison with healthy
autopsy tissue could serve as the proof of plausibility for the application of spectroscopy to
determine resection margins and infiltration zones.

4. Materials and Methods
4.1. Patient Data

Presented patient data were collected between 2018 and 2021 (INSITU study—Intraoperative
Spectroscopy and Imaging Tumors—approved by the ‘Comité National d’Ethique de
Recherche’; CNER—No. 201804/08). Experiments were conducted in accordance with
the ‘EU General Data Protection Regulation’ (GDPR) [25] and the ‘Declaration of Helsinki
of the World Medical Association’ [26]. Pre-experimentally, all patients were informed
about the study design and each patient provided written consent to participate in this
study. In total, 1456 intraoperative tumor measurements from 43 glioblastoma tumor
cases as well as 87 measurements of gray and white matter with absent pathological
findings from autoptic brain were examined (Table 1). All tumor samples underwent a
perioperative spectroscopical examination directly after the surgical resection/biopsy was
carried out by a board-certified neurosurgeon at the Centre Hospitalier de Luxembourg
(CHL, Luxembourg). The autopsy of the deceased patient was performed at the Laboratoire
nationale de Santé (LNS, Luxembourg); obtained brain tissue samples were subsequently
measured as healthy control at the CHL 16 h post-mortem. Histological tissue diagnostic
was performed by a board-certified neuropathologist at the National Center of Pathology
(NCP) at the LNS; additional techniques, such as immunohistochemistry, and (epi-)genetic
analyses were carried out for the purpose of integrated diagnosis according to the fifth
edition of the WHO Classification of Tumors of the Central Nervous System [27].

Table 1. Overview of patient data and spectroscopic measurements.

Glioblastoma Autoptic Brain Tissue

number of tumor cases 43 1
number of measurements 1456 87
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4.2. Tissue Preparation and Data Acquisition

All Raman measurements of glioblastoma tumor samples were carried out perioper-
atively; by placing the Raman spectrometer in close proximity to the surgical procedure,
rapid data acquisition of fresh tissue samples was feasible. After tumor samples were
collected (tumor excision was performed), they were hydrated in physiological saline—a
standard procedure that prevents dehydration or further destruction of the tissue and
its biochemical composition, and that is also mirrored by the operation situs, which is
washed and moisturized with the same solution. For data acquisition, a robotic visualiza-
tion and spectroscopic acquisition system was used; the collection of Raman spots was
achieved by placing the tumor excisates in the focal point of a Raman spectrometer (Solais™,
Synaptive®, Toronto, ON, Canada) with a motorized stage. Within each tumor sample,
up to 25 measurement points (id est, spots of interest) were determined and measured
with 1 to 30 acquisitions to reduce random variations (noise) in individual measurements
and to boost the signal-to-noise ratio. All Raman spectra were acquired using a 785 nm
laser (output power 50 mW, maximum penetration depth 1 mm, 80 µm diameter of the
laser spot) with an acquisition time of 0.7 to 10 s. The parameter variation served as an
assessment of the robustness of this method, and we did not find bias in the analysis (see
Supplementary Figure S5). By aiming to achieve an optimal correlation between collected
Raman spectra and the subsequent histopathological diagnosis, all examined specimens
were constrained to an approximate size of 5 mm maximum. During the spectroscopic
examination, biological samples were placed in an aluminum cup. Due to its negligible
spectral background contribution, aluminum serves as a favorable and low-cost Raman
substrate [28], especially during the measurement of small tissues. After data acquisition
was completed, all tumor samples were placed in a formalin solution (4%) and underwent
neuropathological diagnosis, viz. light microscopic as well as (epi)-genetic and immuno-
histochemical examination; see Figure 3 for an overview of the study design. During the
pathological examination, each tumor fragment was individually microscopically exam-
ined and analyzed; this description allowed us to assign morphological features (such as
necrosis, infiltration zones, hemorrhage) to individual tumor specimens.

Figure 3. Overview of study design and workflow. After tumor resection, surgical specimens were
spectroscopically examined. In accordance with the neuropathological diagnostic and histomorpho-
logical hallmarks, inherent spectral properties of a single tumor type can be used for a machine
learning-based classification of tumor heterogeneity.
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4.3. Data Analysis Sequence and Machine Learning

In order to determine the different classes of spectra emerging from measurements on
glioblastoma fragments, we applied a two-step approach where, first, a putative spectrum
representing necrosis was identified and all data were classified and visualized in relation
to this; in the second step, the data were clustered in an independent manner and mapped
the results of the first step. Raman data were initially split into three groups (id est,
classes) based on the description of the samples’ morphology in the pathological report
and the underlying histopathological features. The first class (‘necrosis data set’) included
Raman measurements of tumor specimens consisting mainly (more than 80%) of necrosis.
Histopathologically, the necrosis class consists of unstained and avital nuclei as well as
fragments of apoptotic nuclei in an eosinophilic surrounding. The second class (‘vital
data set’) included Raman measurements of tumor areas with either densely packed vital
tumor cells showing pleomorphic nuclei and an increased mitotic rate or infiltrative tumor
areas (infiltration zones, histomorphologically consisting of migrating tumor cells and a
moderate to low increase in cell density) and peritumoral zone (transition from infiltration
zone to non-pathological gray and white matter). The third class (‘heterogenous data set’)
contains spectral data from specimens of the same patients where no information about the
specific proportion of the respective tissue types was provided. Therefore, all characteristic
features of glioblastoma, such as necrosis and vital tumor areas, as well as infiltrative tumor
areas and peritumoral zones, can be found in the heterogenous class. Table 2 provides an
overview about the number of spectra/patients in each of the three classes.

Table 2. Overview of Raman measurements in each class of the initial classification.

Initial Class Assignment/
Histological Ground Truth Necrosis Data Set Vital Data Set Heterogeneous Data Set

number of Raman measurements (n) 81 1304 71

Afterward, a baseline correction and fluorescent signal removal were completed with
the software (Solais, Synaptive, Version 1.0) directly on the instrument using a Savitzky–
Golay filter, individual recordings were cleaned and cosmic ray artefacts were removed
from the spectra [29]; several measurements were labeled as outliers based on the visible
shape of the spectrum (e.g., hot pixels, oversaturation). As we could not initially determine
their origin, we identified these spectra in a subsequent analysis (distance-based hierarchi-
cal dendrogram) to control for potential cofounding effects. After standardization via a
spectrum and frequency bin, agglomerative clustering was performed, and the top three
levels were plotted; they did not indicate the presence of strong outliers, which would
consecutively require additional trend/outlier removal. For the initial data overview, all
established three data classes (‘necrosis data set’, ‘vital data set’, heterogenous data set’) and
autopsy brain tissue, which served as a healthy control, were visualized (mean spectra and
variance) (see Supplementary Figure S7).

To initially determine unique spectroscopic properties of necrotic and non-necrotic
glioblastoma tissue, we performed a binary supervised learning classification using random
forest analysis (algorithm), including hyperparameter tuning with internal cross-validation
(internally, 5 splits were conducted and repeated 3 times). Classifier performance was
evaluated using AUROC/AUPR, macro and weighted average, and precision, recall and f-1
score. To reduce the potential patient-specific classification and data imbalances, data were
split independently (per patient) in a training and validation cohort, and the number of
measurements per patient was equally set to 15 (see Table 3). The optimal decision threshold
of the internal cross-validation was calculated based on the f-1 score and used in the next
step to evaluate the spectral tissue features in our data sets. All glioblastoma measurement
points were re-curated based on their spectral properties—a data set consisting solely of
non-necrotic tissue according to its spectroscopic properties was established (‘spectral vital
data set’).
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Table 3. Data split and patient distribution in the initial binary classification approach.

Necrosis Data Set (n = 81) Vital Data Set (n = 136)

number of measurements in training set
(8 patients) 41 91

number of measurements in external validation set
(3 patients) 40 45

Afterward, we employed the dimension reduction technique UMAP (Uniform Mani-
fold Approximation and Projection) on the ‘spectral vital data set’ to diminish high-dimensional
spectral data into a lower-dimensional space, while maintaining local and global structural
integrity of the data. Hereby, Raman spectra were reduced to n = 30 (n = 15 in the ‘vital data
set’, respectively) per patient to reduce potential patient-specific spectra bias. Furthermore,
the optimal decision threshold (0.452) for a distinction between ‘necrosis data set’ and ‘vital
data set’ was used to re-evaluate the spectral properties of all data points, and the probabil-
ity of them being computationally classified as spectroscopically necrotic was displayed.
Additionally, we used the vector quantization technique, k-means clustering, to determine
the WSS (within-cluster sum of squared errors) score for kmax = 50 (hereby, the Euclidian
distance served as a distance metric) on the ‘spectral vital data set’; moreover, we searched for
the most reasonable threshold in the sum of squared errors within centroids with increasing
k clusters [30]. Both aforementioned techniques serve as computational approach to assess
and visualize the spectral heterogeneity within vital glioblastoma tissue in an unsupervised
way. Findings were evaluated using the histopathological report and non-pathological
brain tissue as the healthy control. Technical details about our computational data approach
are described in the Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29050979/s1, Figure S1: Hierarchical dendrogram;
Figure S2: Classifier performance; Figure S3: Feature importance analysis; Figure S4: Random Forest
classification; Figure S5: UMAP; Figure S6: Evaluation of best k; Figure S7: General data display;
Table S1: Patient’s characteristics.
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