Please use this identifier to cite or link to this item: doi:10.22028/D291-41099
Title: Neuro-explicit semantic segmentation of the diffusion cloud chamber
Author(s): Müller, Nicola J.
Porawski, Daniel
Wilde, Lukas
Fink, Dennis
Trap, Guillaume
Engel, Annika
Schmartz, Georges P.
Language: English
Title: Review of Scientific Instruments
Volume: 94
Issue: 6
Publisher/Platform: AIP Publishing
Year of Publication: 2023
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: For decades, in diffusion cloud chambers, different types of subatomic particle tracks from radioactive sources or cosmic radiation had to be identified with the naked eye which limited the amount of data that could be processed. In order to allow these classical particle detectors to enter the digital era, we successfully developed a neuro-explicit artificial intelligence model that, given an image from the cloud chamber, automatically annotates most of the particle tracks visible in the image according to the type of particle or process that created it. To achieve this goal, we combined the attention U-Net neural network architecture with methods that model the shape of the detected particle tracks. Our experiments show that the model effectively detects particle tracks and that the neuro-explicit approach decreases the misclassification rate of rare particles by 73% compared with solely using the attention U-Net.
DOI of the first publication: 10.1063/5.0109284
URL of the first publication: https://doi.org/10.1063/5.0109284
Link to this record: urn:nbn:de:bsz:291--ds-410992
hdl:20.500.11880/36881
http://dx.doi.org/10.22028/D291-41099
ISSN: 1089-7623
0034-6748
Date of registration: 15-Nov-2023
Description of the related object: Supplementary Material
Related object: https://pubs.aip.org/rsi/article-supplement/2900463/zip/063304_1_5.0109284.suppl_material/
Faculty: M - Medizinische Fakultät
Department: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professorship: M - Univ.-Prof. Dr. Andreas Keller
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
063304_1_5.0109284.pdf5,92 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons