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ABSTRACT
For decades, in diffusion cloud chambers, different types of subatomic particle tracks from radioactive sources or cosmic radiation had to be
identified with the naked eye which limited the amount of data that could be processed. In order to allow these classical particle detectors
to enter the digital era, we successfully developed a neuro-explicit artificial intelligence model that, given an image from the cloud chamber,
automatically annotates most of the particle tracks visible in the image according to the type of particle or process that created it. To achieve
this goal, we combined the attention U-Net neural network architecture with methods that model the shape of the detected particle tracks.
Our experiments show that the model effectively detects particle tracks and that the neuro-explicit approach decreases the misclassification
rate of rare particles by 73% compared with solely using the attention U-Net.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0109284

INTRODUCTION

Diffusion cloud chambers were among the first devices to allow
continuous visual detection of charged particles.1 They played an
important role in subatomic physics until the end of the 1950s.2
As they provide a relatively large horizontal visualization area, they
mainly served in research done with accelerators but were also pre-
cious in cosmic rays studies.3,4 Nowadays, diffusion chambers are
still widely used in education,5 be it in schools, universities, or
museums.

Diffusion cloud chambers have many advantages: they are quite
popular, compact, movable, sensitive, have high granularity, and
can be operated continuously for long durations, which enables live
visualization, contrary to classical cloud chambers that had to be

triggered by outer detectors. Yet, as was also the case with bub-
ble chambers or emulsions, cloud chambers always suffered from
the fact that they needed human scanning of the data, which is
why all these techniques have been supplanted by wire chambers
in the 1970s. Nowadays, particle physics relies heavily on the lat-
est development in computer science and, in particular, Artificial
Intelligence (AI).6 For instance, Thomadakis et al.7 contributed to
the field by leveraging various neural networks, including convolu-
tional architectures, to enhance the speed and accuracy of particle
reconstruction for a CLAS12 detector. The practice of employing
convolutional neural networks in particle physics was also evidenced
by the work of Aurisano et al.,8 who applied them to the NOvA neu-
trino detector for identifying neutrino interactions based on their
topology. Furthermore, Madrazo et al.9 represented the measured
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variables of particles detected in the Compact Muon Solenoid exper-
iment as images, which enabled them to use convolutional neural
networks to differentiate the production of pairs of quarks top anti-
top from other processes. Following this trend, in this work, we
present and share with the community an AI model allowing us to
easily digitalize diffusion cloud chamber data.

Beyond obvious applications in the education sector (helping
observers identify tracks is the reason for which this algorithm was
developed initially), we suspect it could have other applications in
particle/nuclear physics. Given its high granularity, a diffusion cloud
chamber equipped with this code allows for the continuously pro-
cessing great amounts of data. In combination with other devices,
our approach could, for instance, contribute to study the cores of
cosmic ray air showers, and add a new way to verify the accuracy of
current simulation tools.10

Typically, a cloud chamber is composed of a hollow container
filled with supersaturated alcohol vapor. When charged particles
pass through the chamber, they collide with surrounding molecules,
thus ionizing them and creating condensation centers that attract
alcohol molecules. The resulting condensation then leads to fog
along the particle’s path. The well-known morphologies (length,
thickness, curvature) of these tracks allow the observer to infer the
nature of the underlying particle (e.g., Sec. 34 in Ref. 11).

The most common types of particle tracks visible at sea level
with this device are the following [Figs. 1(a)–1(d)]:

● Leptons: muons, electrons/positrons. Even though muons
are abundant at sea level, their very thin tracks make them
difficult to isolate with our system, so for this work, they will
be considered as a contribution to the background noise.
Electrons generate thicker tracks that are easier to detect,
which are twisted or curved due to their multiple colli-
sions. We shall focus on them for the leptons in the rest of
this work. As no magnetic field was applied, positrons are
indistinguishable from electrons, so we will always refer to
“electron tracks.” Most of these electrons are from the lep-
tonic component of cosmic ray air showers. The rest comes
from ambient beta decays and Compton scatterings.

● Alpha particles: They produce thick, straight, and short
tracks that are easy to identify. They are derived from natural
radon in the air as well as from decaying descendant nuclei
in the thoron decay chain (see below).

FIG. 1. Types of particle tracks and their segmentation. (a)–(d) An alpha particle
track, a V track, an electron track, and a proton track. (e) Semantic segmentation
of a cloud chamber image.

● Couples of alpha particles: In the thoron chain, the two
first alpha particles are typically emitted within a tenth of a
second in random directions, which results in what we will
refer to as “V tracks.”

● Protons: They produce long straight tracks, slightly thin-
ner than alpha particles. They come from the hadronic
component of air showers.

Despite their simple features, these particle tracks can vary
significantly. Additionally, the tracks quickly start to fade after
their appearance, causing them to become deformed and develop
gaps. Furthermore, recently vanished particle tracks can leave small
regions of the cloud chamber depleted of alcohol, which temporar-
ily hinders condensation, and thus may lead to new particle tracks
appearing with gaps. The tracks may also appear truncated if the
corresponding particle passed the condensing zone only partially.
Background noise further complicates the detections.

To facilitate this particle identification, we developed a model
capable of automatically segmenting the cloud chamber images
according to the different types of particle tracks (Fig. 5). Previ-
ous work by Barzon proposed a neural network-based solution that
was designed to detect the presence of particle tracks.12 However,
his convolutional neural network could not detect and classify indi-
vidual tracks. Newer methods from the field of Computer Vision,
such as the U-Net architecture,13 allow performing both tasks with
one network architecture.14 With this end-to-end approach, the
U-Net, as originally conceived, achieved state-of-the-art perfor-
mance in biomedical image segmentation tasks while using only a
relatively small training dataset. Oktay et al. extended the U-Net
architecture with attention gates to suppress information from the
input image irrelevant to the task and focus on useful features, thus
achieving higher segmentation performance.15 Despite the enor-
mous success of the U-Net16,17 and its variants18–23 in complex image
segmentation tasks, they suffer from the various drawbacks of neural
networks: their complex structure and their massive number of para-
meters decrease interpretability, and they require vast amounts of
data. On the contrary, Computer Vision algorithms that use human-
designed rules or features are inherently interpretable and only rely
on a small number of parameters, but they lack the performance of
neural networks.24

Trying to combine the best of both worlds, researchers attempt
to combine neural networks and predefined rules into what is called
neuro-explicit models.25–27 Following this hybrid approach, we were
able to design an interpretable high-accuracy model that extends the
functionality of existing work. Furthermore, we displayed the syner-
gism of the neuro-explicit approach by comparing it against neural
and explicit models.

METHODS
Cloud chamber

For this work, we used the large diffusion cloud chamber
installed in early 2020 at the Luxembourg Science Center. This
device is notably equipped with a system to inject thoron (Rn-220)
into the visualization area that visitors can activate. Its visualization
area is 1 square meter in size with an active thickness of about 1 cm
high, making it, as far as we know, the largest diffusion cloud cham-
ber currently in operation. (The largest diffusion cloud chamber ever
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FIG. 2. Schematic of the attention U-Net architecture.

built seems to have been 2 square meters in size.28) For data col-
lection, a camera is mounted above the center of the square-shaped
chamber, recording video with a resolution of 1920 by 1080 pixels at
30 frames per second.

Neural network architecture

Our goal is to automatically color the particle tracks according
to the particle that created them. This procedure may be subdivided
into two steps: Particle track detection and particle track classifica-
tion. We achieve this by training an attention U-Net for semantic
segmentation,13,15 a type of neural network that was shown to
achieve high performance and sample efficiency, making it a suitable
architecture for our purposes. The attention U-Net architecture
is a fully convolutional neural network, resembling an encoder-
decoder structure29 (Fig. 2). The network’s encoder part signifi-
cantly reduces the input’s dimensionality through multiple blocks
containing convolutional layers and pooling layers. Afterward, the
network’s decoder part receives the output of the encoder and
restores the input to its original dimensionality through multiple
blocks containing upsampling layers and convolutional layers.

This compression and decompression of the input forces the
network to learn how to extract a compact representation of the
information contained in the input to construct a high-dimensional
output that minimizes the loss. The encoder layers are connected
to the decoder layers with the same dimensionality via skip connec-
tions.30 These skip connections allow the flow of spatial information
from the encoder to the decoder. Each skip connection has an atten-
tion gate31 that ensures no redundant low-level features are sent
from the encoder to the decoder.

Given an input image from a cloud chamber, our implemen-
tation of the attention U-Net predicts five different labels: alpha
particle track, electron track, proton track, V track, and background.
For each label, the model returns a mask containing the proba-
bility of belonging to that class for every pixel. We then combine
these five masks into a single RGB mask by assigning every pixel
the color of the class with the highest probability. Afterward, we lay
the RGB mask over the original image to get the annotated image
[Fig. 1(e)].

Data

We start building the dataset by extracting one frame per sec-
ond out of 20 h of video footage provided by the Luxembourg
Science Center and then searching those frames for suitable train-
ing images. In the next step, we reduce the size of the training images
from 1920 by 1080 to 1312 by 992 since our analysis shows that these
border regions contain the most background noise. Afterward, the
masks are created by manually annotating the training images using
the online annotation tool Hasty.ai. Despite the time-consuming
nature of manual annotation, we could annotate 483 frames out
of our video footage. The training and test sets are then built by
randomly moving 10% of the samples in the whole dataset to the
test set. In the last step, we use data augmentation32 to increase the
size of both datasets by a factor of 8: For every original sample, we
create three variants by flipping the original vertically, horizontally,
and vertically and horizontally. Then, we create four more variants
for the flipped variants and the original by randomly increasing or
decreasing the image’s brightness [Figs. 3(a)–3(d)]. These augmen-
tation methods are suitable since particle tracks vary in orientation

FIG. 3. Data augmentation. (a) Example of an original image from the dataset. (b)–(d) The data augmentation creates new versions of the original image by flipping it and
changing the brightness.
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and brightness. The resulting training and test sets consist of 3472
and 392 samples.

To estimate the number of unique events per particle species
in our training and test sets, we developed algorithms that use the
predictions of our best-performing model to identify particle tracks
across subsequent frames that are created by the same event. The
results show the training set contains ∼1150 alpha particle events,
320 proton events, 140 thoron decay events, and 3130 electron
events. The test set includes ∼180 alpha particle events, 20 proton
events, 20 thoron decay events, and 450 electron events.

Neural network training

Our experiments showed that the most important hyperparam-
eters for training our attention U-Net model were the batch size,
corresponding to the number of samples used for a single gradient
step, the initialization of the network’s parameters, e.g., its weights
and biases, and the dropout rate,33 which controls the percentage
of random neurons in a layer that are deactivated in each iteration.
To find suitable values for these hyperparameters, we performed a
grid search by training models for the batch sizes b ∈ {2, 4, 8}, for
the initializations i ∈ {He Normal,30 unsupervised pre-training34,35},
and for the dropout rates d ∈ {0.1, 0.2}.

Since neural network performs object detection and classifi-
cation simultaneously, we decided to use the sum of the dice loss
and the weighted cross-entropy as a loss function.36 The dice loss
penalizes the network when its predicted mask has a small overlap
with the target mask, and the weighted cross-entropy loss penalizes
the network when its predicted class probabilities differ from the
target class with respect to the frequency of the class. So taking the
unweighted sum of both functions yields a loss function that encour-
ages the network to detect the particles accurately and classify them
correctly.

In order to apply unsupervised pre-training, we trained a ver-
sion of the network without skip connections to output an image
that is identical to the input image. The removal of the skip con-
nections prevents the modified network from just outputting the
transferred input image from the first skip connection. As a loss
function, we used the mean squared error loss. The weights of the
trained modified network were then utilized as initialization for the
attention U-Net, where the weights of the encoder part were frozen
to ensure that they would not be destroyed by the large gradients
of the early training process. The decoder weights were not frozen
since semantically segmenting the input image drastically differs
from reconstructing the original image, whereas encoding the input
image should be similar for both tasks.

For each combination of hyperparameters, an attention
U-Net was trained using eight-fold cross-validation, meaning that
we divided the training set into eight folds, used one as a vali-
dation set, combined the remaining folds to a training set, and
repeated the training until every fold was used as a validation set.
Among all iterations, the model achieving the lowest loss on the
validation set was then chosen as the best-performing model of
the current hyperparameter configuration. Finally, the model of the
hyperparameter configuration that achieved the lowest loss on the
validation set was selected as our final model. The resulting model
was trained using the hyperparameter values b = 4, i = He Normal,
and d = 0.1.

Hardware

The neural networks were trained on a server equipped with
two NVIDIA Tesla V100 GPUs with 16 gigabytes of VRAM. The
training took approximately five days to complete.

Evaluation of the prediction time was done using an Intel Core
i7-10750H 6-Core Laptop CPU with a base speed of 2.6 GHz.

Explicit modeling

The goal of post-processing is to reduce the number of particle
tracks annotated as the wrong class. The neural network’s predic-
tions are most robust with respect to the electron tracks, which
is likely due to their high presence in the training set and their
distinct characteristics. Thus, post-processing is only concerned
with the remaining classes. Our model’s two most common clas-
sification errors are the incorrect classification of V tracks and a
tendency to annotate alpha particle tracks as proton tracks. The first
problem is likely due to the rarity of double alpha particle emis-
sions, which results in the number of training examples being too
small, despite weighting each class’ impact on the loss according to
its frequency in the training set. The second problem is likely due
to proton trails often having gaps, making the single parts of the
tracks look like multiple alpha particle tracks. In order to fix these
misclassifications, we complement the model with post-processing
techniques that aim to classify V tracks and proton tracks based on
their shape and then check whether the remaining tracks are alpha
particle tracks or background noise (Fig. 5).

To differentiate the types of tracks, we need to check the val-
ues of certain predicted features. To achieve this, we first define
a set of visual features of the particle tracks and measure their
values for every sample in our training set. We then fit distribu-
tions to the empirical measurements of each feature and compute
their 95%-confidence intervals. We utilize this in the post-processing
by passing predicted features to statistical tests, meaning that we
test whether the value of the predicted feature is within the 95%-
confidence interval of the corresponding distribution. If a test is
failed, we know that the currently processed track contains pixels
that are likely to be incorrectly classified. We resolve the issues
of incorrectly classified pixels by assigning them to the class with
the second-highest probability so that the following post-processing
steps can check whether the new classification is correct.

Given the neural network’s prediction, the post-processing
starts with the detection of V tracks consisting of six steps: (i) size
filtering [Fig. 4(a)], (ii) skeletonizing [Fig. 4(b)], (iii) gap removal
[Fig. 4(c)], (iv) rotation [Fig. 4(d)], (v) V fitting [Fig. 4(e)], and
(vi) final annotation [Fig. 4(f)].

Step (i) begins by treating every particle track containing pix-
els that have been labeled as V as potential V tracks. Given those
tracks, we first compute the total number of pixels belonging to
every track and pass it to a statistical test. The potential V tracks
that passed step (i) go through the remaining steps of V detection.
Step (ii) skeletonizes37 the tracks, which means that we iteratively
remove random pixels from the borders of the track until we have a
one-pixel wide line that resembles the structure of the original track.
Some double alpha particle emissions leave tracks that have a small
gap between the tracks of the emitted alpha particles. This leads to
step (ii) computing separate skeleton lines for a single track. We
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FIG. 4. The steps of the V and proton detection. (a)–(f) Individual steps of the V detection. The potential V track is skeletonized and gaps are closed. Afterward, it is rotated
so that a V shape can be fitted to it, and if the resulting features pass statistical tests the track is annotated as V. (g)–(k) Individual steps of the proton detection. Identical to
V detection with the difference that we fit a straight line to the skeleton line and do not rotate it.

resolve this issue in step (iii) by drawing a connection line between
two skeleton lines when the minimum distance between their pix-
els passes statistical testing. After all potential gaps have been closed,
we can determine the shape of the resulting connected skeleton line.
V tracks can appear in any orientation, but we need them to be ver-
tically oriented to check if they resemble a V shape. Therefore in
step (iv), we compute versions of the skeletonized track from step
(iii) rotated in steps of 12○. This guarantees that if the track is a V
track, at least one version is in a vertical orientation, thus allow-
ing us to fit a V shape to it. Next, we start to apply step (v) to the
versions of the skeletonized track, beginning with standardizing the
coordinates of the skeleton line’s pixels. We then compute a V shape
with spline regression: We define a knot at the leftmost part of the
skeleton line, at the middle, and at the rightmost part of the skele-
ton line. The polynomials between these knots are restricted to have
a degree of 1. This will compute a piece-wise defined polynomial
that matches the line’s pixels as much as possible while also resem-
bling the shape of the letter V (possibly upside down). On this fit, the
mean absolute error is computed. Afterward, we reverse the stan-
dardizing of the V shape coordinates to calculate the arms’ lengths
and the angle between the arms. The three quantities are then statis-
tically tested. If the current version of the skeleton line passes the
tests, we return that the corresponding track passed the V detec-
tion, and if not, we continue with the further rotated version of the
line. If a particle track passes the V track detection, its pixels are
classified as V, and otherwise, we reassign the incorrectly classified
pixels.

Now that every track containing pixels labeled as V is likely
to be correctly classified, the post-processing continues by checking
whether tracks containing pixels annotated as protons correspond
to proton tracks or alpha particle tracks. Similar to the V detection,
proton detection consists of five steps: (i) size filtering [Fig. 4(g)],
(ii) skeletonizing [Fig. 4(h)], (iii) gap removal [Figs. 4(i) and 4(j)],
(iv) length filtering, and (v) final annotation [Fig. 4(k)]. Note that
steps (i), (ii), and (v) are identical to steps (i), (ii), and (vi) of V
detection. Proton and alpha particle tracks can be distinguished by
their length. However, proton tracks usually have gaps, so in order

to compute the length of the whole track, we first need to close the
gaps between its parts. Given the skeleton lines of potential pro-
ton tracks from step (ii), step (iii) closes the gaps between skeleton
lines in the same way as step (iii) in the V detection. To ensure
that we only connect skeleton lines that belong to the same track,
we only close a gap when the resulting skeleton line is straight. We
approximate the straightness of a skeleton line by computing a linear
regression fit on the standardized line and passing the mean squared
error of the fit to a statistical test. After closing all potential gaps
in the skeleton lines, step (iv) approximates their length by com-
puting the number of pixels in every skeleton line and statistically
testing it. The corresponding tracks are then annotated accordingly
in step (v).

At this point, all detected particle tracks only contain pixels
that are assigned to the same class. Tracks annotated as alpha par-
ticle tracks consist of pixels that either have been classified as alpha
particle by the neural network or by the proton or V detection. The
alpha filtering checks whether these tracks are alpha particle tracks
or merely background noise that has been incorrectly detected as a
particle track. We achieve this by applying the size filtering of step (i)
of the V and proton detection with the distinction that filtered pixels
are directly classified as background noise.

RESULTS
Neural approach

We evaluate the particle track detection by calculating the mean
dice coefficient36 between the neural model’s predictions on the test
set and the corresponding targets. The dice coefficient measures how
much the model’s segmentation matches the manual segmentation
of the cloud chamber image.

The results show that the attention U-Net effectively segments
the particle tracks from the background [Fig. 6(d)]. The precision
of this segmentation increases when we look at the alpha particle,
V, and proton tracks separately. The lower performance on elec-
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tron tracks is likely because thin tracks are significantly harder to
differentiate from background noise than the other tracks.

To evaluate how well the attention U-Net classifies the detected
particle tracks, we compare the target classification of every parti-
cle track in the test set with its predicted classification, given that
the neural network detected the track in the first place. Since neu-
ral network sometimes classifies the pixels of a single particle track
differently, we use the class with the most pixels inside the track as
the predicted class of the whole track.

The experiment shows that the model correctly classifies 96%
and 99% of the detected proton and electron tracks [Fig. 6(d)
“neural”]. The higher misclassification rate of alpha particle and V
tracks is due to the model confusing the two types of tracks: The
first confusion matrix shows that 10% of alpha tracks are classi-
fied as V tracks, and 14% of V tracks are classified as alpha tracks
[Fig. 6(a)]. A possible explanation for this misclassification is that
V tracks are difficult to distinguish from two close alpha particle
tracks. Furthermore, with a low relative abundance of 3.3%, V tracks
are underrepresented in the training set [Fig. 6(e)].

Neuro-explicit approach

In order to reduce the misclassification rates of alpha particle
and V tracks, we utilize our post-processing algorithms:

The neural network’s predicted mask is first given to the V
detection, which determines whether tracks classified as V display
the corresponding characteristics. Afterward, the proton detection
analyzes the remaining tracks that have been classified as proton
similarly. In the last step, predicted alpha tracks are annotated as
background if their area is too small to be an actual alpha track
(Fig. 5).

The results indicate that the neuro-explicit model achieves bet-
ter classification performance than the neural model, reducing the
total misclassification rate from 6% to 5% [Fig. 6(d) “neuro-explicit

1”]. We observe a significant drop in the misclassification rate of V
tracks from 15% to 4%. There is an increase in the misclassification
rates of proton tracks from 4% to 7%, which can be contributed
to a 3% increase in proton tracks being classified as alpha tracks
[Fig. 6(b)]. This suggests that the algorithm concerned with checking
the classifications of the proton tracks fails at distinguishing proton
and alpha tracks. Therefore, we test a second neuro-explicit model
that only uses the V detection and the alpha filtering. The results of
the second neuro-explicit model confirm our presumption since we
can observe a decrease in the misclassification rate of proton tracks
by 4% [Fig. 6(d) “neuro-explicit 2”]. This model reduces the total
misclassification rate to 4%. The mean prediction time of the neuro-
explicit model is within 1 s, approximately twice that of the neural
model.

To validate that combining neural classification with explicit
modeling classification is advantageous, we evaluate a model that
classifies the tracks solely using explicit rules. This model first
removes the electrons from the neural network’s prediction since
post-processing only classifies alpha particle, proton, and V tracks.
The remaining particle tracks are then given to the V detection,
where the tracks that do not pass are sent to the proton detection.
If these tracks do not pass the proton detection, they are sent to the
alpha filtering, where they are classified as either alpha particle tracks
or background.

We can observe that with respect to V tracks, the misclassifi-
cation rate of the explicit model is only 3% higher than the rates of
the neuro-explicit models, which further verifies the accuracy of the
V detection since now every detected track is passed to it [Fig. 6(d)
“explicit”]. However, the misclassification rate of alpha particle and
proton tracks drastically increases to 48% and 14%. This confirms
our previous result that the proton detection is less reliable than
the neural network’s predictions since this increased error can be
explained by significantly more tracks being passed to the proton
detection.

FIG. 5. Schematic of the neuro-explicit model.
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FIG. 6. Results and distribution of the training set. (a)–(c) Confusion matrices showing the percentages of correctly and incorrectly classified tracks of the neural, neuro-explicit
1, and neuro-explicit 2 models. (d) Plots showing the detection and classification accuracy for the different tracks. The classification accuracy is compared between the neural,
explicit, and neuro-explicit models and the error bars correspond to the 95% confidence interval. (e) Distribution of particle tracks in our training set.

DISCUSSION

In order to automatically detect and classify particle tracks
seen in a diffusion cloud chamber, we developed a model that reli-
ably segments alpha particle, V, proton, and electron tracks from
the background. We achieve this by complementing the attention
U-Net neural network architecture with explicit modeling meth-
ods. By extending the neural model to a neuro-explicit model, we
reduced the misclassification rate of the rare V tracks by 73%. Fur-
thermore, we showed that incorporating neural network predictions
and explicit modeling methods in classifying particle tracks can
outperform solely relying on the latter.

A possible step for future work would be to increase the amount
of training data, which could decrease the model’s misclassifica-
tion rate. The increase in training data might also enable accurately
annotating the video stream from the cloud chambers’ camera
in real-time using, e.g., video segmentation.38,39 Furthermore, the
model may be extended to detect rare particles like pions and kaons.
The extension could be achieved by introducing known radiation

sources and applying unsupervised learning methods like anomaly
detection40 to longer recordings of the cloud chamber. Finally, we
recognize the importance of reevaluating certain parameters, specif-
ically confidence intervals, which were manually adjusted for the
classifications of the explicit models. This reevaluation becomes
crucial when encountering exceptionally different particle distri-
butions, whether induced in various experimental setups or when
the model is extended to account for new particles. Adapting these
parameters will ensure the model’s robustness and effectiveness in
different scenarios.

SUPPLEMENTARY MATERIAL

A figure showing examples of annotations generated by our
neuro-explicit 2 model can be found in the supplementary material.
Additionally, we provide a video showcasing the model being
applied to a video stream of our cloud chamber.
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