Please use this identifier to cite or link to this item: doi:10.22028/D291-40075
Title: Group and Lie algebra filtrations and homotopy groups of spheres
Author(s): Bartholdi, Laurent
Mikhailov, Roman
Language: English
In:
Title: Journal of Topology
Volume: 16
Issue: 2
Pages: 822-853
Publisher/Platform: Wiley
Year of Publication: 2023
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We establish a bridge between homotopy groups of spheres and commutator calculus in groups, and solve in this manner the “dimension problem” by providing a converse to Sjogren’s theorem: every abelian group of bounded exponent can be embedded in the dimension quotient of a group. This is proven by embedding for arbitrary 𝑠, 𝑑 the torsion of the homotopy group 𝜋𝑠(𝑆𝑑) into a dimension quotient, via a result of Wu. In particular, this invalidates some long-standing results in the literature, as for every prime 𝑝, there is some 𝑝-torsion in 𝜋2𝑝(𝑆2) by a result of Serre. We explain in this manner Rips’s famous counterexample to the dimension conjecture in terms of the homotopy group 𝜋4(𝑆2) = ℤ∕2ℤ. We finally obtain analogous results in the context of Lie rings: for every prime 𝑝 there exists a Lie ring with 𝑝-torsion in some dimension quotient.
DOI of the first publication: 10.1112/topo.12301
URL of the first publication: https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/topo.12301
Link to this record: urn:nbn:de:bsz:291--ds-400753
hdl:20.500.11880/36081
http://dx.doi.org/10.22028/D291-40075
ISSN: 1753-8424
1753-8416
Date of registration: 6-Jul-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Laurent Bartholdi
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



This item is licensed under a Creative Commons License Creative Commons