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Abstract
We establish a bridge between homotopy groups of
spheres and commutator calculus in groups, and solve
in this manner the “dimension problem” by providing
a converse to Sjogren’s theorem: every abelian group of
bounded exponent can be embedded in the dimension
quotient of a group. This is proven by embedding for
arbitrary 𝑠, 𝑑 the torsion of the homotopy group 𝜋𝑠(𝑆

𝑑)

into a dimension quotient, via a result of Wu. In partic-
ular, this invalidates some long-standing results in the
literature, as for every prime 𝑝, there is some 𝑝-torsion
in𝜋2𝑝(𝑆2) by a result of Serre.We explain in thismanner
Rips’s famous counterexample to the dimension conjec-
ture in terms of the homotopy group 𝜋4(𝑆2) = ℤ∕2ℤ.
We finally obtain analogous results in the context of
Lie rings: for every prime 𝑝 there exists a Lie ring with
𝑝-torsion in some dimension quotient.

MSC 2020
16S34, 17B05, 20F14, 55Q40 (primary)

1 INTRODUCTION

The fundamental problem of combinatorial group theory can be phrased as: “Given a group𝐺 pre-
sented as a quotient of a free group, what can be said of quotients of 𝐺 itself?”. Of main importance
are those quotients produced by universal constructions; prominently the maximal nilpotent

In memoriam John R. Stallings, 1935–2008.

© 2023 The Authors. Journal of Topology is copyright © LondonMathematical Society. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

822 wileyonlinelibrary.com/journal/jtop J. Topol. 2023;16:822–853.

mailto:laurent.bartholdi@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jtop
http://crossmark.crossref.org/dialog/?doi=10.1112%2Ftopo.12301&domain=pdf&date_stamp=2023-06-01


GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 823

quotients 𝐺∕𝛾𝑛(𝐺), and more generally 𝐺∕𝑁 for 𝑁 ⊲ 𝐺 obtained from 𝐺 using the elementary
operations of product, intersection, commutation and power.
An altogether different family of quotients arise from associative algebra. Every group 𝐺 nat-

urally embeds in its group ringℤ𝐺, leading to images of 𝐺 in the quotients ℤ𝐺∕𝜛𝑛 by powers of
the augmentation ideal; and more generally 𝐺∕𝐺 ∩ (1 + 𝔑) for ideals 𝔑 ⊲ ℤ𝐺 obtained from 𝜛

using the elementary operations of product, intersection, sum, and scalar multiple. These quo-
tients play a crucial role as the receptacle for numerous topological invariants, such as Milnor’s
link invariants [16, 17, 36].
A key insight of Magnus [39] was that the filtrations 𝛾𝑛(𝐺) of 𝐺 and 𝜛𝑛 of ℤ𝐺 are deeply

related: defining 𝛿𝑛(𝐺) ∶= 𝐺 ∩ (1 + 𝜛𝑛) = ker(𝐺 → ℤ𝐺∕𝜛𝑛) the 𝑛th dimension subgroup, one
has 𝛾𝑛(𝐺) ⩽ 𝛿𝑛(𝐺), and the dimension problem asks to understand when 𝛿𝑛(𝐺) = 𝛾𝑛(𝐺). In that
same paper, Magnus showed that if 𝐹 is a free group then 𝛿𝑛(𝐹) = 𝛾𝑛(𝐹) for all 𝑛.
It was claimed on numerous occasions [12, 37, 41] that 𝛿𝑛(𝐺) = 𝛾𝑛(𝐺) holds for all 𝑛 and all

groups 𝐺. It is relatively easy to prove 𝛿𝑛(𝐺) = 𝛾𝑛(𝐺) for 𝑛 ⩽ 3, but a counterexample was found
byRips [51], with 𝛿4(𝐺)∕𝛾4(𝐺) = ℤ∕2ℤ. Nevertheless, the quotient 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺) is always abelian,
and Sjogren bounded its exponent by a function of 𝑛 only [57]; the following claim even stood in
the literature:

“Theorem” (Gupta [27, section 4; 28, Theorem 2.2]). For all 𝑛 and all groups 𝐺, one has 𝛿𝑛(𝐺)2 ⩽

𝛾𝑛(𝐺) ⩽ 𝛿𝑛(𝐺).

Our main result is that this cannot hold, and Sjogren’s result alluded to above is essentially
optimal:

Theorem A (See Theorem 1.3). For every abelian group 𝐻 of bounded exponent and every 𝑛 large
enough, there exists a group 𝐺 whose quotient 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺) contains𝐻 as a subgroup. In particular
𝑝-torsion may appear in 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺) for all primes 𝑝.

Consider, for example,𝐻 cyclic. It is known that every finite cyclic group appears as a subgroup
of 𝜋𝑠(𝑆

𝑑) for some 𝑠, 𝑑. For these parameters, we construct a group 𝐺, integer 𝑛 and monomor-
phism torsion(𝜋𝑠(𝑆

𝑑)) ↪ 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺). We even construct explicitly, for 𝑝 = 2 and 𝑝 = 3, an
element of order 𝑝 in 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺), based on the element of order 𝑝 in 𝜋2𝑝(𝑆2) discovered by
Serre [55].
TheoremA is thus a converse to Sjogren’s theorem: the best general constraint on the quotients

𝛿𝑛(𝐺)∕𝛾𝑛(𝐺) is precisely that they are abelian of bounded exponent.
Our method is in principle applicable in a broad setting, producing for every 𝐾(𝜋, 1) space 𝑋

and integer 𝑠 a group 𝐺, an integer 𝑛 and a homomorphism

torsion
(
𝜋𝑠+1(Σ𝑋)

)
→ 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺),

which we expect to be injective under mild finiteness conditions on 𝑋. Our main result comes
from the space 𝑋 = 𝑆2 ∨ 𝑆2.
Homotopy groups of spheres are so fundamental objects that they pervade topology, with appli-

cations ranging from Brouwer’s fixed-point theorem to Rokhlin’s theorem on signatures of spin
4-manifolds. Their nontriviality and finiteness (apart from the 𝜋𝑛(𝑆𝑛) and 𝜋4𝑛−1(𝑆2𝑛)) are among
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824 BARTHOLDI and MIKHAILOV

the most profound results of mathematics. Theorem A shows that they are also tightly linked to
a question in pure algebra.
Cohen, Wu and their coauthors revealed deep links between combinatorial group theory and

homotopy [9–11, 30, 34, 62, 63]. At the heart of our method is a formula by Wu, expressing
homotopy groups of spheres as quotients between two subgroups of a finitely generated free
group. It is based on simplicial sets and corresponding simplicial groups, see May’s fundamental
reference [42].
Topological methods are inherent to the modern study of group theory, as witnessed by

the monumental treatises by Gromov [21], Bridson and Haefliger [4], and Geoghegan [19].
Stallings [58, p. 117], in a program carried out by Sjogren [57], already recognized the value of
homological arguments toward studying dimension quotients.
Nonetheless, TheoremA is the first instance of a classical problem in algebra that is solved using

higher algebraic topology, in effect harnessing the powerful instruments of Steenrod algebra and
spectral sequences, notably the Adams, Curtis, and May spectral sequences.

1.1 History of the dimension problem

The dimension problem has a long history, starting with Magnus’s investigation of the lower
central series of a free group, and its associated Lie algebra [39]; he showed with Witt that the
dimension property holds for free groups, see [40, 61], attributing the first proof to Grün [22]. For
a small subset of the literature, we refer to [24, 25, 43, 49, 59], and for further historical remarks
to [52]. Remarkably, incorrect proofs of the dimension problem appeared more than once, by
Cohn [12], Losey [37] (Lyndon remarks dryly, in his MathSciNet review, “The main content of
this paper is another incomplete proof that the (integral) dimension subgroups of an arbitrary group
are the terms of its lower central series”), and even Magnus himself [41, Theorem 5.15(i)]!
We note that if one replaces the ring ℤ by a field, then there is an elegant and ele-

mentary description of the corresponding dimension subgroup, depending only on the field’s
characteristic; see [31, 32].
The dimension problem is quantitatively studied in terms of the quotients 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺) called

dimension quotients. Gupta and Kuzmin proved in [23] that they are all abelian, and Sjogren
proved in [57] that they have finite exponent, bounded by a function of 𝑛 only: there exists a
minimal 𝑠(𝑛) ∈ ℕ (at most (𝑛!)𝑛) such that 𝛿𝑛(𝐺)𝑠(𝑛) ⊆ 𝛾𝑛(𝐺) ⩽ 𝛿𝑛(𝐺) holds for all groups 𝐺.
In that terminology, one has 𝑠(1) = 𝑠(2) = 𝑠(3) = 1, and Rips’s example implies 2 ∣ 𝑠(4), which

generalizes to 2 ∣ 𝑠(𝑛) for all 𝑛 ⩾ 4. Passi [48] gave 𝑠(4) = 2, and Tahara [60] gave 𝑠(5) ∈ {2, 6}.
This can be improved in the case ofmetabelian groups: Gupta proved in [26] that 𝑠(𝑛) is a power

of 2. He then claimed that 𝑠(𝑛) is a power of 2 for all groups, a proof is published in [28]; and even
that it may be improved to 𝑠(𝑛) = 2 for all 𝑛 ⩾ 4, see [27]. However, many parts of his arguments
were never fully understood.
Now our main result, stated above, shows that the function 𝑠(𝑛) is unbounded, and its values

cannot even be constrained to a finite collection of primes.

1.2 Lie rings

An variant of the dimension problem may be asked for Lie rings; namely, Lie algebras over ℤ.
Every Lie ring𝐴 embeds in its universal enveloping algebra𝑈(𝐴), which also admits an augmen-
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 825

tation ideal. The dimension subrings are defined analogously by 𝛿𝑛(𝐴) = 𝐴 ∩ 𝜛𝑛, see [2]. Again
𝛿𝑛(𝐴) = 𝛾𝑛(𝐴) when 𝑛 ⩽ 3, and there is a Lie ring 𝐴 with 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴) = ℤ∕2. Sjogren’s bound
also holds for Lie rings [56], and many details are simpler in the category of Lie rings.
Even thoughwe are not aware of any direct construction of a group from a Lie ring or vice versa

that preserves dimension quotients, it often happens that a presentation involving only powers
and commutators, whichmay therefore be interpreted either as group or Lie algebra presentation,
yields isomorphic dimension quotients.
To give a quick taste of dimension quotients in Lie rings, we reproduce first an example due

to Pierre Cartier of a Lie algebra over a commutative ring 𝕜 not embedding in its universal
envelope [8]: consider 𝕜 = 𝔽2[𝑥0, 𝑥1, 𝑥2]∕(𝑥2

0
, 𝑥2

1
, 𝑥2

2
), and

𝐴 = ⟨𝑒0, 𝑒1, 𝑒2 ∣ 𝑥0𝑒0 + 𝑥1𝑒1 + 𝑥2𝑒2 = 0⟩ qua 𝕜-Lie algebra.

Then 𝛼 ∶= 𝑥0𝑥1[𝑒0, 𝑒1] + 𝑥0𝑥2[𝑒0, 𝑒2] + 𝑥1𝑥2[𝑒1, 𝑒2] is nontrivial in 𝐴, but in any associative
algebra it maps to (𝑥0𝑒0 + 𝑥1𝑒1 + 𝑥2𝑒2)2 = 0.
Rips’ example, or rather its Lie algebra variant [2, Theorem 4.7], is of a similar spirit. In 𝕜 = ℤ

one can of course not choose 𝑥𝑖 nilpotent; but one may choose 𝑥𝑖 a large power of 2 and impose
relations that guarantee that elements with large 2-valuation are mapped far in the lower central
series: set 𝑥𝑖 = 22+𝑖 and consider

𝐴 = ⟨𝑒0, 𝑒1, 𝑒2,⋯ ∣ 22𝑖+2𝑒𝑖 ∈ 𝛾2 for all 𝑖 ∈ {0, 1, 2},

𝑥𝑗𝑥𝑘𝑒𝑖 ± 𝑥𝑖𝑥𝑘𝑒𝑗 ∈ 22𝑘+2𝛾2 + 𝛾3 for all {𝑖, 𝑗, 𝑘} = {0, 1, 2}⟩ (1.1)

with the element 𝛼 =
∑

0⩽𝑖<𝑗⩽2 𝑥𝑖𝑥𝑗[𝑒𝑖, 𝑒𝑗]. Then the relations imply 𝛼 ∈ 𝐴 ∩ (𝛾2(𝐴) ⋅ 𝛾2(𝐴) + 𝐴 ⋅
𝛾3(𝐴)) ⊆ 𝛿4(𝐴), while it is easy to make choices of elements in 𝛾2 and 22+2𝑘𝛾2 + 𝛾3 that yield, by
direct computation, that 𝛼 has a nontrivial image in the quotient 𝐴∕𝛾4(𝐴).
It is even possible to write a 3-related Lie algebra, based on [43, Example 2.3], that satisfies (1.1)

and 𝛼 ∈ 𝛿4(𝐴) ⧵ 𝛾4(𝐴):

𝐴 = ⟨𝑒0, 𝑒1, 𝑒2, 𝑧 ∣ 22𝑒0 = [𝑧, 𝑒1 + 2𝑒2], 24𝑒1 = [𝑧, −𝑒0 + 4𝑒2], 26𝑒2 = [𝑧, −2𝑒0 − 4𝑒1]⟩
with as before 𝛼 = 25[𝑒0, 𝑒1] + 26[𝑒0, 𝑒2] + 27[𝑒1, 𝑒2].
This Lie algebra presentation may also be interpreted as a group presentation,

𝐺 = ⟨𝑒0, 𝑒1, 𝑒2, 𝑧 ∣ 𝑒4
0 = [𝑧, 𝑒1] ⋅ [𝑧, 𝑒2]2, 𝑒16

1 = [𝑧, 𝑒0]−1 ⋅ [𝑧, 𝑒2]4, 𝑒64
2 = [𝑧, 𝑒0]−2 ⋅ [𝑧, 𝑒1]−4⟩,

in which the element 𝛼 = [𝑒0, 𝑒1]32[𝑒0, 𝑒2]64[𝑒1, 𝑒2]128 belongs to 𝛿4(𝐺) ⧵ 𝛾4(𝐺).

1.3 Homotopy groups of the two-sphere: Main statement and sketch
of proof

According to a result of Wu [15, 62], we may express the homotopy groups of spheres 𝜋𝑠+1(𝑆2)

as a quotient of two normal subgroups in a free group. More precisely, write 𝐹𝑠 = ⟨𝑥0, … , 𝑥𝑠 ∣

𝑥0 ⋯𝑥𝑠 = 1⟩ a free group of rank 𝑠 with one redundant generator, and for 𝑖 = 0, … , 𝑠 let 𝑅𝑖 denote
the normal closure of 𝑥𝑖 in 𝐹𝑠. We write iterated commutators as left-normed: [𝑥1, 𝑥2, … , 𝑥𝑑] =
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826 BARTHOLDI and MIKHAILOV

[[⋯ [𝑥1, 𝑥2], … ], 𝑥𝑑], and denote by Σ𝑠+1 the symmetric group on {0, … , 𝑠}. Then

𝑅0 ∩ ⋯ ∩ 𝑅𝑠∏
𝜌∈Σ𝑠+1

[𝑅𝜌(0), … , 𝑅𝜌(𝑠)]
≃ 𝜋𝑠+1(𝑆2). (1.2)

We can now state more precisely the main step toward our result:

Theorem 1.1′. Given an integer 𝑠 ⩾ 3, there is for all 𝑛 large enough a group 𝐺 and a set-wise map
𝐹𝑠 → 𝐺 inducing via (1.2) an injective homomorphism

𝜋𝑠+1(𝑆2) ↪ 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺).

In particular, the exponent of 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺) is divisible by that of 𝜋𝑠+1(𝑆2).

We note that for 𝑠 = 3 this result produces a variant of Rips’s example [51], “explaining” the
2-torsion in 𝛿4(𝐺)∕𝛾4(𝐺) as that of 𝜋4(𝑆2); see Subsection 9.1.
An analogous result holds in the realm of Lie algebras. There, starting with a free Lie ring

𝐿𝑠 = ⟨𝑥0, … , 𝑥𝑠 ∣ 𝑥0 + ⋯ + 𝑥𝑠 = 0⟩, define analogously ideals 𝐼𝑖 = ⟨𝑥𝑖⟩𝐿𝑠 ; then

𝐼0 ∩ ⋯ ∩ 𝐼𝑠∏
𝜌∈Σ𝑠+1

[𝐼𝜌(0), … , 𝐼𝜌(𝑠)]
≃
⨁
𝑖⩾1

𝐸1
𝑖,𝑠, (1.3)

the 𝑠th column of the lower central series spectral sequence for 𝑆2. Our result, for Lie algebras,
states:

Theorem 1.2′. Given an integer 𝑠 ⩾ 3, there is for all 𝑛 large enough a Lie ring𝐴 and a linear map
𝐿𝑠 → 𝐴 inducing via (1.3) an injective homomorphism⨁

𝑖⩾1

𝐸1
𝑖,𝑠 ↪ 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴).

In particular, the exponent of 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴) is divisible by all primes appearing in the order of⨁
𝑖⩾1 𝐸1

𝑖,𝑠
.

The spectral sequence 𝐸∗
∗,𝑠 converges to 𝜋𝑠+1(𝑆2), so for 𝑠 = 2𝑝 − 1 there is an order-𝑝 term

𝛼𝑝 ∈ 𝐸1
𝑠+1,𝑠

that survives as the Serre element in 𝜋𝑠+1(𝑆2). We are able to write it explicitly in
terms of a shuffle product.
In fact, the groups 𝐺 and Lie algebras 𝐴 appearing in Theorems 1.1′, 1.2′ can be written quite

concretely. In a group or Lie algebra presentation, we introduce the following notation: for 𝑑 ∈ ℕ,
when we write a generator 𝑥(𝑑) of degree 𝑑 we mean a list of generators 𝑥1, … , 𝑥𝑑; when 𝑥

appears in a relator, it is a shorthand for the left-normed iterated commutator 𝑥 ∶= [𝑥1, … , 𝑥𝑑]

of the generators 𝑥1, … , 𝑥𝑑. Thus, “⟨𝑥(2)
1

, 𝑦(3) ∣ [𝑥1, 𝑦]⟩” is shorthand for “⟨𝑥1,1, 𝑥1,2, 𝑦1, 𝑦2, 𝑦3 ∣

[[𝑥1,1, 𝑥1,2], [𝑦1, 𝑦2, 𝑦3]]⟩”. The following results, which precise Theorems 1.1′ and 1.2′, will,
respectively, be proven in Sections 5 and 4.
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 827

Theorem 1.1. Given an integer 𝑠 ⩾ 3, there are integers 𝑒, 𝑐0, … , 𝑐𝑠 and 𝑛 = 𝑐0 + ⋯ + 𝑐𝑠 such that,
in the group

𝐺 =

⟨
𝑥0, … , 𝑥𝑠, 𝑦

(𝑐0)

0
, … , 𝑦

(𝑐𝑠)
𝑠 ,

(𝑟𝑤)𝑤∈⟨𝑥0,…,𝑥𝑠⟩
|||||𝑥0 ⋯𝑥𝑠 = 1, 𝑥𝑒𝑛𝑐𝑖

𝑖
= 𝑦𝑖 for 𝑖 = 0, … , 𝑠,

𝑟𝑒𝑛

𝑤 = 𝑤 for all 𝑤 ∈ ⟨𝑥0, … , 𝑥𝑠⟩
⟩

the map 𝜄 ∶ 𝑤(𝑥0, … , 𝑥𝑠) ∈ 𝐹𝑠 ↦ 𝑤(𝑥0, … , 𝑥𝑠)
𝑒𝑛2

induces via (1.2) an injective homomorphism

𝜄 ∶ 𝜋𝑠+1(𝑆2) ↪ 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺).

The 𝑐𝑖 must only satisfy some linear inequalities, and every 𝑛 large enough may be obtained.

Note that only a finite number of roots 𝑟𝑤 of group elements are required, though it seems
messy to specify exactly which ones.

Theorem 1.2. Given an integer 𝑠 ⩾ 3, there are integers 𝑒, 𝑐0, … , 𝑐𝑠 and 𝑛 = 𝑐0 + ⋯ + 𝑐𝑠 such that,
in the Lie ring

𝐴 = ⟨𝑥0 … , 𝑥𝑠, 𝑦
(𝑐0)

0
, … , 𝑦

(𝑐𝑠)
𝑠 ∣ 𝑥0 + ⋯ + 𝑥𝑠 = 0, 𝑒𝑐𝑖 𝑥𝑖 = 𝑦𝑖 for 𝑖 = 0, … , 𝑠⟩

the linear map 𝜄 ∶ 𝑤(𝑥0, … , 𝑥𝑠) ∈ 𝐿𝑠 ↦ 𝑒𝑛𝑤(𝑥0, … , 𝑥𝑠) ∈ 𝐴 induces via (1.3) an injective homomor-
phism

𝜄 ∶
⨁

𝑖

𝐸1
𝑖,𝑠 ↪ 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴).

The 𝑐𝑖 must only satisfy some linear inequalities, and every 𝑛 large enough may be obtained.

The constants 𝑒 and 𝑐𝑖 are somewhat explicit, based on the exponent of 𝜋𝑠+1(𝑆2) and the con-
nectivity of certain simplicial groups. We have determined tighter values for 𝑝 = 2 and 𝑝 = 3,
see Section 9.
Here is a sketch of the proof in the group case; the Lie algebra case is essentially the same, and

slightly simpler. The first claim follows from the fact that 𝐺 is a free product with amalgamation.
The second claim splits in three parts: 𝜄(

∏
𝜌[𝑅𝜌(0), … , 𝑅𝜌(𝑠)]) ⩽ 𝛾𝑛(𝐺), which follows from standard

commutator calculus; 𝜄(𝑅0 ∩ ⋯ ∩ 𝑅𝑠) ⩽ 𝛿𝑛(𝐺), which boils down to two ingredients: theHurewicz
homomorphism, see Proposition 3.1, connecting the group and associative algebra universes, and
the presence of roots 𝑟𝑤 of elements𝑤 ∈ ⟨𝑥0, … , 𝑥𝑠⟩ in 𝐺; and the last part, 𝜄−1(𝛾𝑛(𝐺)) ∩ 𝑅0 ∩ ⋯ ∩

𝑅𝑠 ⩽
∏

𝜌[𝑅𝜌(0), … , 𝑅𝜌(𝑠)].
For this last part, we first invoke Curtis’ connectedness theorem [13], from which there is

an integer 𝑘 such that 𝛾𝑘(𝐹𝑠) ∩ 𝑅0 ∩ ⋯ ∩ 𝑅𝑠 ⩽
∏

𝜌[𝑅𝜌(0), … , 𝑅𝜌(𝑠)]. It therefore suffices to prove
𝜄−1(𝛾𝑛(𝐺)) ∩ 𝑅0 ∩ ⋯ ∩ 𝑅𝑠 ⩽

∏
𝜌[𝑅𝜌(0), … , 𝑅𝜌(𝑠)]𝛾𝑘(𝐹𝑠).

We then use the particular form of the presentation of 𝐺: consider an element of 𝐹𝑠, identified
with its image in𝐺, andwrite it in terms of commutators g = [𝑧1, … , 𝑧𝑗]with each 𝑧𝑖 ∈ {𝑥0, … , 𝑥𝑠},
for some 𝑗 < 𝑘. This element g seemingly defines an element of 𝛾𝑗(𝐺), but in 𝐺 it may be rewrit-
ten, in the presence of sufficiently high powers of 𝑒, into a commutator of higher weight by
replacing some 𝑥𝑖 by the corresponding 𝑦𝑖 . If the 𝑐𝑖 are chosen such that 𝑐0 ⩾ 𝑘 and 𝑐𝑖∕𝑐𝑖−1 ⩾ 𝑘
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828 BARTHOLDI and MIKHAILOV

for all 𝑖, then in order for g to belong to 𝛾𝑛(𝐺) either each 𝑥𝑖 must have been replaced at least
once by a 𝑦𝑖 , so the commutator had to belong to some [𝑅𝜌(0), … , 𝑅𝜌(𝑠)], or a larger power of 𝑒 is
required, and therefore the original term in 𝐹𝑠 itself was a power of 𝑒. In this manner we obtain
g ∈

∏
𝜌[𝑅𝜌(0), … , 𝑅𝜌(𝑠)]𝐹

𝑒
𝑠 𝛾𝑘(𝐹𝑠).

In effect, we use two filtrations on 𝐺, by the lower central series and by powers of 𝑒. Only the
substitution𝑥𝑠 ⇝ 𝑦𝑠 increasesmuch the degree in the first filtration; but it consumes a high degree
in the second. All the other substitutions 𝑥𝑖 ⇝ 𝑦𝑖 for 𝑖 < 𝑠 involve a trade-off between how much
they increase either degree, and each one requires the previous one. Finally, the substitutions
𝑥𝑖 ⇝ 𝑣𝑖 or 𝑦𝑖 ⇝ 𝑤𝑖 decrease the first degree too much to be of any use in attaining 𝛾𝑛(𝐺).
We derive in Theorem 8.1 an expression for the 𝑝-torsion of 𝜋2𝑝(𝑆2), first at the level of Lie

algebras, namely on the first page of the Curtis spectral sequence, and deduce in Proposition 8.2
some properties of its representation �̃�𝑝 as an element of the free group 𝐹2𝑝−1. We make use
of an explicit form for 𝑝 = 2 and 𝑝 = 3 to obtain smaller examples, in particular for 𝑝 = 2 we
obtain straightforward constructions, for arbitrary 𝑛 ⩾ 4, of Lie algebras in which 𝛿𝑛∕𝛾𝑛 contains
2-torsion, and for 𝑝 = 3 we obtain a Lie algebra and a group in which 𝛿7∕𝛾7 contains 3-torsion.
These examples have also been checked using computer algebra software.

1.4 Wedges of spheres

An analogous statement to (1.2) holds for wedges of two-spheres, and even more generally for
suspensions of spaces with contractible universal cover. We restrict ourselves here to the space
𝑆2 ∨ 𝑆2, which is sufficient to prove Theorem A.
Consider the group 𝐹𝑠 = 𝐹𝑠 ∗ 𝐹𝑠, and identify the generators of its factors as 𝑥𝑖,𝑗 for 𝑖 = 0, … , 𝑠

and 𝑗 ∈ {1, 2}; set 𝑅𝑖 = ⟨𝑥𝑖,1, 𝑥𝑖,2⟩𝐹𝑠 . Then

𝑅0 ∩ ⋯ ∩ 𝑅𝑠∏
𝜌∈Σ𝑠+1

[𝑅𝜌(0), … , 𝑅𝜌(𝑠)]
≃ 𝜋𝑠+1(𝑆2 ∨ 𝑆2). (1.4)

Analogously to Theorem 1.1, we have

Theorem 1.3. Given an integer 𝑠 ⩾ 3, there are integers 𝑒, 𝑐0, … , 𝑐𝑠 and 𝑛 = 𝑐0 + ⋯ + 𝑐𝑠 such that,
in the group

𝐺 =

⟨𝑥0,1, 𝑥0,2, … , 𝑥𝑠,1, 𝑥𝑠,2,

𝑦
(𝑐0)

0,1
, 𝑦

(𝑐0)

0,2
, … , 𝑦

(𝑐𝑠)

𝑠,1
, 𝑦

(𝑐𝑠)

𝑠,2
,

(𝑟𝑤)𝑤∈⟨𝑥0,1,𝑥0,2,…,𝑥𝑠,1,𝑥𝑠,2⟩
||||||||
𝑥0,1 ⋯𝑥𝑠,1 = 𝑥0,2 ⋯𝑥𝑠,2 = 1,

𝑥𝑒𝑛𝑐𝑖

𝑖,𝑗
= 𝑦𝑖,𝑗 for 𝑖 = 0, … , 𝑠, 𝑖 ∈ {1, 2},

𝑟𝑒𝑛

𝑤 = 𝑤 for all 𝑤 ∈ ⟨𝑥0,1, 𝑥0,2, … , 𝑥𝑠,1, 𝑥𝑠,2⟩
⟩

the map 𝜄 ∶ 𝑤(𝑥𝑖,𝑗) ∈ 𝐹𝑠 ∗ 𝐹𝑠 ↦ 𝑤(𝑥𝑖,𝑗)𝑒𝑛2

induces via (1.4) an injective homomorphism

𝜄 ∶ torsion
(
𝜋𝑠+1(𝑆2 ∨ 𝑆2)

)
↪ 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺).

Note that only a finite number of roots 𝑟𝑤 of group elements are required, though it seemsmessy
to specify exactly which ones. Note also that the group constructed in Theorem 1.3 is, apart from
the adjunction of roots 𝑟𝑤, the free product of two copies of the group constructed in Theorem 1.1.
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 829

There is a Lie algebra analogue to Theorem 1.3, which we do not state because it does not seem
to have any applications. In particular, we do not know whether there exists a Lie algebra such
that one of its dimension quotients contains ℤ∕𝑝2ℤ-torsion for some prime 𝑝. Indeed the torsion
in the first page of the spectral sequence converging to 𝜋∗(𝑆2 ∨ 𝑆2) has only prime orders. There
seems to be a fundamental difference, here, between groups and Lie algebras.

2 DIMENSION QUOTIENTS

We recall in this section some classical facts about dimension quotients, and their Lie algebra
equivalents:

Proposition 2.1 [23, 57]. For arbitrary group 𝐺 or Lie algebra 𝐴, the quotient 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺),
respectively, 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴), is abelian of bounded exponent.

The “bounded exponent” statement is due to Sjogren. In his notation, let 𝑏𝑚 denote the least
common multiple of {1, … , 𝑚}, and define integers 𝑎

𝑗

𝑖
and 𝑐𝑛 recursively by

𝑎𝑛
1 = 1, 𝑎𝑛

𝑘+1
=

𝑘∏
𝑖=1

𝑎𝑛−𝑘+𝑖
𝑖

𝑏𝑛−𝑘, 𝑐𝑛 =

𝑛−1∏
𝑘=1

𝑎𝑘
𝑘
.

Then for any group 𝐺 we have 𝛿𝑛(𝐺)𝑐𝑛 ⊆ 𝛾𝑛(𝐺). By [56], the same result holds in Lie algebras: for
any Lie algebra 𝐴 we have 𝑐𝑛𝛿𝑛(𝐴) ⊆ 𝛾𝑛(𝐴).
Gupta and Kuzmin prove even that the quotient 𝛿𝑛(𝐺)∕𝛾𝑛+1(𝐺) is abelian; following [43] the

same result is easily seen to hold in Lie algebras. We reproduce the argument, in the Lie algebra
case, because of its simplicity:

Proof (that 𝛿𝑛(𝐴)∕𝛾𝑛+1(𝐴) is abelian). Let 𝐴 be nilpotent of class 𝑛; we are to show that 𝛿𝑛(𝐴)

is abelian. Let 𝑀 be maximal abelian normal in 𝐴; so 𝑀 is an 𝐴-module via adjunction. For any
𝑚 ∈ 𝑀, 𝑥 ∈ 𝛿𝑘(𝐴) we have [𝑚, 𝑥] ∈ 𝛾𝑘+1(𝑀), so 𝛿𝑛(𝐴) centralizes 𝑀. Now as 𝑀 is maximal it is
self-centralizing, so 𝛿𝑛(𝐴) ⩽ 𝑀 and therefore is abelian. □

3 HOMOTOPY GROUPS OF SPHERES

We describe in this section the group-theoretic and Lie-algebra-theoretic formulations of homo-
topy groups of spheres. They will be essential in the proofs of Theorems 1.2 and 1.1. We use “𝑛” in
this section for what is written “𝑠” in the rest of the text, to avoid confusion with the degeneracies
𝑠𝑖 in simplicial objects.

3.1 Groups

Fix an integer 𝑛 ⩾ 1 and let 𝐹 = ⟨𝑥0, … , 𝑥𝑛 ∣ 𝑥0 ⋯𝑥𝑛 = 1⟩ be a free group of rank 𝑛. Consider its
normal subgroups

𝑅𝑖 ∶= ⟨𝑥𝑖⟩𝐹 for 𝑖 = 0, … , 𝑛.
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830 BARTHOLDI and MIKHAILOV

Note that 𝐹 is the fundamental group of a 2-sphere with 𝑛 + 1 punctures, and 𝑅𝑖 contains the
conjugacy class of a loop around the 𝑖th puncture; the operation of filling-in the 𝑖th puncture
induces the map 𝐹 → 𝐹∕𝑅𝑖 on fundamental groups.
Denote by Σ𝑛+1 the symmetric group on {0, … , 𝑛}, and define the symmetric commutator

product of the above subgroups by

[𝑅0, … , 𝑅𝑛]Σ ∶=
∏

𝜌∈Σ𝑛+1

[𝑅𝜌(0), … , 𝑅𝜌(𝑛)].

Here and below the iterated commutators are assumed to be left-normalized, namely,
[𝑅0, 𝑅1, 𝑅2] = [[𝑅0, 𝑅1], 𝑅2], and so on.
We view the circle 𝑆1 as a simplicial set. Milnor’s 𝐹 construction produces a group complex,

having in degree 𝑛 a free group on the degree-𝑛 objects of 𝑆1 subject to a single relation (𝑠𝑛
0
(∗) = 1)

and the same boundaries and degeneracies as 𝑆1. According to a formula due to Jie Wu [15, 62],
considered in the standard basis of Milnor’s 𝐹[𝑆1]-construction, homotopy groups of the sphere
𝑆2 can be presented in the following way:

𝜋𝑛+1(𝑆2) ≃
𝑅0 ∩ ⋯ ∩ 𝑅𝑛

[𝑅0, … , 𝑅𝑛]Σ

.

Consider now for 𝑖 = 0, … , 𝑛 the ideals 𝔯𝑖 ∶= (𝑥𝑖 − 1)ℤ[𝐹] in the free group ringℤ[𝐹], and their
symmetric product

(𝔯0, … , 𝔯𝑛)Σ ∶=
∑

𝜌∈Σ𝑛+1

𝔯𝜌(0) ⋯ 𝔯𝜌(𝑛),

which is also an ideal in ℤ[𝐹].

Proposition 3.1. For𝑛 ⩾ 3wehave𝑅0 ∩ ⋯ ∩ 𝑅𝑛 ⩽ 𝐹 ∩ (1 + (𝔯0, … , 𝔯𝑛)Σ)when considered inℤ[𝐹].

Proof. It is shown in [44] that the quotient 𝔯0∩⋯∩𝔯𝑛

(𝔯0,…,𝔯𝑛)Σ
can be viewed as the 𝑛th homotopy group

of the simplicial abelian group ℤ[𝐹[𝑆1]], and the map 𝐹 → ℤ[𝐹] given by 𝑓 ↦ 𝑓 − 1 induces the
following commutative diagram

The lower map is the 𝑛th Hurewicz homomorphism for the loop space Ω𝑆2. As all homotopy
groups𝜋𝑛(Ω𝑆2) are finite for 𝑛 ⩾ 3, but all homology groups𝐻𝑛(Ω𝑆2) are infinite cyclic (𝐻∗(Ω𝑆2)

is the tensor algebra generated by the homology of 𝑆1 in dimension one [3]), we conclude that,
for 𝑛 ⩾ 3, the map in the above diagram is zero. □
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 831

3.2 Lie algebras

One obtains an analogous picture in the case of Lie algebras over ℤ. The homotopy groups of the
simplicial Lie algebra

𝐿[𝑆1] ∶=
⨁

𝑖

𝛾𝑖(𝐹[𝑆1])∕𝛾𝑖+1(𝐹[𝑆1])

are equal to the direct sum of terms in rows of the 𝐸1-term of the Curtis spectral sequence

𝐸1
𝑖,𝑗 ∶= 𝜋𝑗

(
𝛾𝑖(𝐹[𝑆1])∕𝛾𝑖+1(𝐹[𝑆1])

)
⟹ 𝜋𝑗+1(𝑆2).

The mod-𝑝-lower central series spectral sequence is well-studied, see, for example, the founda-
tional paper [7]. The integral case that we consider here has similar properties, see [6, 33]. Here
we will only need elementary properties of this spectral sequence.
Observe that the 𝐸1-page of the above spectral sequence consists of derived functors 𝕃𝑗 in the

sense of Dold–Puppe, applied to Lie functors: if L 𝑖 denotes the 𝑖th Lie functor in the category of
abelian groups, then

𝜋𝑗

(
𝛾𝑖(𝐹[𝑆1])∕𝛾𝑖+1(𝐹[𝑆1])

)
= 𝕃𝑗L

𝑖(ℤ, 1).

Recall the definition of derived functors. Let 𝐵 be an abelian group, and let 𝐹 be an endofunctor
on the category of abelian groups. For every 𝑖, 𝑛 ⩾ 0 the derived functors of 𝐹 in the sense of
Dold–Puppe [14] are defined by

𝕃𝑖𝐹(𝐵, 𝑛) = 𝜋𝑖(𝐹𝐾𝑃∗[𝑛]),

where 𝑃∗ → 𝐵 is a projective resolution of 𝐵, and 𝐾 is the Dold–Kan transform, inverse to the
Moore normalization functor from simplicial abelian groups to chain complexes. We denote by
𝕃𝐹(𝐵, 𝑛) the object 𝐹𝐾(𝑃∗[𝑛]) in the homotopy category of simplicial abelian groups determined
by 𝐹𝐾(𝑃∗[𝑛]), so that 𝕃𝑖𝐹(𝐵, 𝑛) = 𝜋𝑖(𝕃𝐹(𝐵, 𝑛)).
Consider a free Lie algebra 𝐿 over ℤ with generators 𝑥0, … , 𝑥𝑛 and relation 𝑥0 + ⋯ + 𝑥𝑛 = 0,

and the Lie ideals

𝐼𝑖 ∶= ⟨𝑥𝑖⟩𝐿 for 𝑖 = 0, … , 𝑛.

Define their symmetric product by

[𝐼0, … , 𝐼𝑛]Σ =
∑

𝜌∈Σ𝑛+1

[𝐼𝜌(0), … , 𝐼𝜌(𝑛)].

The same arguments as in the group case imply the Lie analog of Wu’s formula:

𝐼0 ∩ ⋯ ∩ 𝐼𝑛

[𝐼0, … , 𝐼𝑛]Σ

≃
⨁
𝑖⩾1

𝐸1
𝑖,𝑛 =

⨁
𝑖⩾1

𝕃𝑛L 𝑖(ℤ, 1).

In fact, but we shall not need this, each term 𝐸1
𝑖,𝑛
may be singled out by filtering 𝐿 via its lower

central series: one has

𝐼0 ∩ ⋯ ∩ 𝐼𝑛 ∩ 𝛾𝑖(𝐿)

([𝐼0, … , 𝐼𝑛]Σ ∩ 𝛾𝑖(𝐿)) + (𝐼0 ∩ ⋯ ∩ 𝐼𝑛 ∩ 𝛾𝑖+1(𝐿))
≃ 𝐸1

𝑖,𝑛.
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832 BARTHOLDI and MIKHAILOV

Consider the universal enveloping algebra𝑈(𝐿), the corresponding ideals 𝔦𝑖 ∶= 𝑥𝑖𝑈(𝐿) in𝑈(𝐿),
and their symmetric product:

(𝔦0, … , 𝔦𝑛)Σ =
∑

𝜌∈Σ𝑛+1

𝔦𝜌(0) ⋯ 𝔦𝜌(𝑛).

Proposition 3.2. For𝑛 ⩾ 3, we have 𝐼0 ∩ ⋯ ∩ 𝐼𝑛 ⩽ 𝐿 ∩ (𝔦0, … , 𝔦𝑛)Σ when considered in the universal
enveloping algebra.

Proof. Similarly to the group case, the natural map 𝐿 → 𝑈(𝐿) induces

By [53], the 𝐸1
𝑖,𝑗
-terms of the lower central series spectral sequence for 𝑆2 are finite for all 𝑗 ⩾ 3,

while the universal enveloping simplicial algebra𝑈(𝐿[𝑆1]) has infinite cyclic homology groups in
all dimensions. It follows that the map is 0. □

4 PROOF OF THEOREM 1.2

We begin with the proof of Theorem 1.2 on Lie algebras, as it is slightly simpler, while conceptu-
ally similar, to the corresponding statement for groups. Let an integer 𝑠 ⩾ 3 be fixed throughout
this section.

First claim: 𝜾 exists and is injective

The assignment 𝑤(𝑥0, … , 𝑥𝑠) ↦ 𝑒𝑛𝑤(𝑥0, … , 𝑥𝑠) naturally defines a linear map 𝜄 ∶ 𝐿𝑠 → 𝐴, as 𝐿𝑠’s
only relator holds in 𝐴. Furthermore, 𝐴 is an iterated amalgamated free product, to wit start
with ⟨𝑥𝑖(0 ⩽ 𝑖 ⩽ 𝑠) ∣ 𝑥0 + ⋯ + 𝑥𝑠 = 0⟩ and repeatedly amalgamate, for 𝑖 = 0, … , 𝑠, with ⟨𝑦𝑖,𝑗(1 ⩽

𝑗 ⩽ 𝓁 + 𝑐𝑖)⟩ along a 1-dimensional subalgebra, so 𝜄 is injective by the normal form of amalgamated
free products, see [5, Theorem 4.4.2].

Second claim: 𝜾([𝑰𝟎, … , 𝑰𝒔]𝚺) ⩽ 𝜸𝒏(𝑨)

Recall 𝑛 = deg(𝑦0) + ⋯ + deg(𝑦𝑠). Then

𝜄([𝐼0, … , 𝐼𝑠]Σ) ⩽ 𝑒𝑛[⟨𝑥0⟩𝐴, … , ⟨𝑥𝑠⟩𝐴]Σ = [⟨𝑒𝑐0𝑥0⟩𝐴, … , ⟨𝑒𝑐𝑠 𝑥𝑠⟩𝐴]Σ

= [⟨𝑦0⟩𝐴, … , ⟨𝑦𝑠⟩𝐴]Σ ⩽ [𝛾𝑐0
(𝐴), … , 𝛾𝑐𝑠

(𝐴)]Σ ⩽ 𝛾𝑛(𝐴).
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 833

Third claim: 𝜾(𝑰𝟎 ∩ ⋯ ∩ 𝑰𝒔) ⩽ 𝜹𝒏(𝑨)

𝜄(𝐼0 ∩ ⋯ ∩ 𝐼𝑠) = 𝜄(𝐿𝑠 ∩ (𝔦0, … , 𝔦𝑠)Σ) by Proposition 3.2

⩽ 𝐴 ∩ 𝑒𝑛(⟨𝑥0⟩𝑈(𝐴), … , ⟨𝑥𝑠⟩𝑈(𝐴))Σ = 𝐴 ∩ (⟨𝑒𝑐0𝑥0⟩𝑈(𝐴), … , ⟨𝑒𝑐𝑠 𝑥𝑠⟩𝑈(𝐴))Σ

= 𝐴 ∩ (⟨𝑦0⟩𝑈(𝐴), … , ⟨𝑦𝑠⟩𝑈(𝐴))Σ ⩽ 𝐴 ∩ (𝜛𝑐0 , … , 𝜛𝑐𝑠 )Σ ⩽ 𝛿𝑛(𝐴).

It follows that 𝜄 induces a map 𝜄 ∶ (𝐼0 ∩ ⋯ ∩ 𝐼𝑠)∕[𝐼0, … , 𝐼𝑠]Σ → 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴), which is a
homomorphism because its domain (and range) are abelian.

Fourth claim: 𝜾 is injective

It is time to specifymore precisely the admissible parameters in the construction of𝐴. The param-
eter 𝑒 is the exponent of

⨁
𝑖 𝐸1

𝑖,𝑠
, or any multiple thereof. By the Curtis connectivity theorem [13],

or more precisely its variant for Lie algebras, there is an integer 𝑘 such that 𝛾𝑘(𝐹𝑠) ∩ 𝐼0 ∩ ⋯ ∩ 𝐼𝑠 ⩽

[𝐼0, … , 𝐼𝑠]Σ: let us quickly sketch the argument. For any connected free simplicial group𝐹, consider
the associated Lie algebra 𝐿(𝐹) =

⨁
𝑖 𝐿𝑖(𝐹ab). Now 𝛾𝑛(𝐿(𝐹)) =

⨁
𝑖⩾𝑛 𝐿𝑖(𝐹ab). By Curtis’ theorem,

𝐿𝑖(𝐹ab) is log2 𝑖-connected, namely 𝜋𝑠𝐿
𝑖(𝐹ab) = 0 for all 𝑠 ⩽ log2 𝑖. Therefore, fixing 𝑠, we get

𝛾𝑘(𝐿) ∩ 𝐼0 ∩ ⋯ ∩ 𝐼𝑠∩ ⩽ [𝐼0, … , 𝐼𝑠]Σ for all 𝑘 ⩾ 2𝑠. We apply this to 𝐹 = 𝐹[𝑆1] and its Lie algebra
𝐿[𝑆1].
We may choose the parameters 𝑐0, … , 𝑐𝑠 arbitrarily so long as 𝑐0 ⩾ 𝑘 and 𝑐𝑖 ⩾ 𝑘𝑐𝑖−1 for all 𝑖 =

1, … , 𝑠. To fix matters, let us choose 𝑐𝑖 = 𝑘𝑖+1.
As 𝜄 is injective, we are to prove 𝜄−1(𝛾𝑛(𝐴)) ∩ 𝐼0 ∩ ⋯ ∩ 𝐼𝑠 ⩽ [𝐼0, … , 𝐼𝑠]Σ. We note that 𝐼𝑖 ∩ 𝑒𝐿𝑠 =

𝑒𝐼𝑖 for all 𝑖, so 𝐼0 ∩ ⋯ ∩ 𝐼𝑠 ∩ 𝑒𝐿𝑠 = 𝑒(𝐼0 ∩ ⋯ ∩ 𝐼𝑠). By the choice of 𝑘 and 𝑒, it therefore suffices to
prove

𝜄−1(𝛾𝑛(𝐴) ∩ 𝐼0 ∩ ⋯ ∩ 𝐼𝑠) ⩽ [𝐼0, … , 𝐼𝑠]Σ + 𝑒𝐿𝑠 + 𝛾𝑘(𝐿𝑠).

Consider the free graded Lie algebra 𝑀 = ⟨𝑥0, … , 𝑥𝑠, 𝑦0, … , 𝑦𝑠⟩, in which 𝑦𝑖 has degree 𝑐𝑖: it
admits a natural surjection 𝜋 ∶ 𝑀 ↠ 𝐴. Given 𝑣 ∈ ⟨𝑥0, … , 𝑥𝑠⟩ ⩽ 𝑀, consider the collection of
expressions in 𝜋−1(𝜋(𝑣)) that are obtained by replacing, in an expression of 𝑣, some terms 𝑥𝑖

by the corresponding 𝑦𝑖 , adjusting appropriately the power of 𝑒. We call 𝑣 in x-form, and the cor-
responding expressions obtained by replacing some 𝑥𝑖 by 𝑦𝑖 are called in xy-form. We also denote
by 𝜌 the natural map 𝑒𝑛⟨𝑥0, … , 𝑥𝑠⟩ ⊆ 𝑀 ↠ 𝐿𝑠; we have 𝜄◦𝜌 = 𝜋.
Let us consider 𝑤 ∈ 𝐼0 ∩ ⋯ ∩ 𝐼𝑠, and assume 𝜄(𝑤) ∈ 𝛾𝑛(𝐴). We shall write 𝑤 = 𝑤0 + 𝑤1 + 𝑤2,

with 𝑤0 ∈ [𝐼0, … , 𝐼𝑠]Σ and 𝑤1 ∈ 𝑒𝐿𝑠 and 𝑤2 ∈ 𝛾𝑘(𝐿𝑠). Now by assumption 𝜄(𝑤) may be written as
an element 𝑣 ∈ 𝑀, all of whose terms have degree at least 𝑛; we express this in two steps: first,
𝜄(𝑤) gives rise to an x-form 𝑣 ∈ 𝑀 by application of the relation 𝑥0 + ⋯ + 𝑥𝑠 = 0; and then 𝑣 gives
rise to an xy-form 𝑣 of 𝑣 by application of the other relations, namely, replacement of 𝑥𝑖 by 𝑦𝑖 with
absorption of 𝑒𝑐𝑖 in the coefficient. Indeed it follows from the form of 𝐴 as an amalgamated free
product that the xy-form 𝑣 may be obtained from 𝑤 first by selecting an appropriate x-form using
the relation 𝑥0 + ⋯ + 𝑥𝑠 = 0, and then converting it to 𝑣; thus there is a natural bijection between
the summands of 𝑣 and 𝑣.
As 𝑀 is graded and free, we may write 𝑣 in a standard basis of free Lie algebras, such as a

selection of left-normed commutators. Let us consider in turn all summands of 𝑣, a typical one
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834 BARTHOLDI and MIKHAILOV

being of the form �̃� ∶= [𝑧1, … , 𝑧𝓁] with all 𝑧𝑖 ∈ {𝑥0, … , 𝑥𝑠, 𝑦0, … , 𝑦𝑠}; let 𝜃 be the corresponding
monomial in 𝑣.
If 𝓁 ⩾ 𝑘, we put 𝜌(𝜃) in 𝑤2. We may therefore from now on suppose 𝓁 < 𝑘. On the other hand,

say for 𝑖 = 0, … , 𝑠 that 𝑛𝑖 of the 𝑧𝑗 ’s are the generator 𝑦𝑖 , and that 𝑛∞ of the 𝑧𝑗 ’s are in {𝑥0, … , 𝑥𝑠};
then the weight of �̃� is

𝑛∞ + 𝑛0𝑐0 + ⋯ + 𝑛𝑠𝑐𝑠 ⩾ 𝑛 = 𝑐0 + ⋯ + 𝑐𝑠. (4.1)

Combining 0 ⩽ 𝑛𝑖 < 𝑘 for all 𝑖 with 𝑐𝑖 ⩾ 𝑘𝑐𝑖−1 and 𝑐0 ⩾ 𝑘, we see by unicity of the base-𝑘
representation of an integer that either 𝑛0 = ⋯ = 𝑛𝑠 = 1 or 𝑛0𝑐0 + ⋯ + 𝑛𝑠𝑐𝑠 > 𝑛.
In the former case, each of the 𝑦0, … , 𝑦𝑠 in �̃� may be replaced by the corresponding 𝑥0, … , 𝑥𝑠

to produce a monomial 𝜃 in 𝑣 with coefficient multiplied by 𝑒𝑐0+⋯+𝑐𝑠 ; and then this summand
belongs to 𝜄([𝐼0, … , 𝐼𝑠]Σ). Add 𝜌(𝜃) to 𝑤0.
In the latter case, replace again all 𝑦𝑖 in �̃� by the corresponding 𝑥𝑖 to produce the monomial 𝜃

in 𝑣 with coefficient multiplied by 𝑒𝑛0𝑐0+⋯+𝑛𝑠𝑐𝑠 . Remembering that its coefficient is divisible by
𝑒𝑛+1, add 𝜌(𝜃) to 𝑤1.
We have in this manner expressed 𝑤 in the required form 𝑤0 + 𝑤1 + 𝑤2, concluding the proof

that 𝜄 is injective.

5 PROOF OF THEOREM 1.1

The proof of Theorem 1.1 follows closely that of the previous section; themain difference is that the
connection between a group and its group ring is not quite at tight as that between an algebra and
its universal enveloping algebra. We remedy this issue by adding roots of elements of ⟨𝑥0, … , 𝑥𝑠⟩.
Note that only finitelymany elements need a root, but we added all for simplicity of the argument.
Let an integer 𝑠 ⩾ 3 be fixed throughout this section. We begin by specifying more precisely the

admissible parameters in the construction of 𝐺. The parameter 𝑒 is the exponent of 𝜋𝑠+1(𝑆2), or
any multiple thereof. By [13], there is an integer 𝑘 such that 𝛾𝑘(𝐹𝑠) ∩ 𝑅0 ∩ ⋯ ∩ 𝑅𝑠 ⩽ [𝑅0, … , 𝑅𝑠]Σ.
We then choose 𝑐0, … , 𝑐𝑠 as before subject to 𝑐0, 𝑐𝑖∕𝑐𝑖−1 ⩾ 𝑘, for example, 𝑐𝑖 = 𝑘𝑖+1.

First claim: 𝜾 exists and is injective

The assignment 𝑤(𝑥0, … , 𝑥𝑠) ↦ 𝑤(𝑥0, … , 𝑥𝑠)
𝑒𝑛 naturally defines a map 𝜄 ∶ 𝐹𝑠 → 𝐺, as 𝐹𝑠’s only

relator holds in 𝐺. Furthermore, 𝐺 is an iterated amalgamated free product, to wit start with⟨𝑥0, … , 𝑥𝑠 ∣ 𝑥0 ⋯𝑥𝑠 = 1⟩ and repeatedly amalgamate, for 𝑖 = 0, … , 𝑠, with ⟨𝑦𝑖,𝑗(1 ⩽ 𝑗 ⩽ 𝑐𝑖)⟩ along a
cyclic subgroup. Then amalgamate, for𝑤 ∈ ⟨𝑥0, … , 𝑥𝑠⟩, with ⟨𝑟𝑤⟩ along a cyclic subgroup. By the
standard normal form theorem for free products with amalgamation (see [38, Theorem IV.2.6]),
the map 𝜄 is injective.

Second claim: 𝜾([𝑹𝟎, … , 𝑹𝒔]𝚺) ⩽ 𝜸𝒏(𝑮)

The Lie algebra identities 𝑒[𝑥, 𝑦] = [𝑒𝑥, 𝑦] = [𝑥, 𝑒𝑦] do not quite hold in groups, but in the pres-
ence of sufficient roots a close analogue exists. For g in a group 𝐻 we denote by g𝐻 the normal
closure of ⟨g⟩ in 𝐻, and by [g , (𝑐)ℎ] the iterated commutator [g , ℎ, … , ℎ] with 𝑐 copies of “ℎ”:

 17538424, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12301 by U
niversitaet D

es Saarlandes, W
iley O

nline L
ibrary on [05/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 835

Lemma 5.1. Let 𝐻 be a group, let 𝑐, 𝑒 be integers, and assume there are elements g ∈ 𝛾𝑚(𝐻) and
ℎ, 𝑣 ∈ 𝐻 with 𝑣𝑒𝑐

= ℎ. Then for all 𝑑 ∈ ℕ we have

[g , ℎ𝑒𝑑
] ∈ [g , ℎ]𝑒𝑑𝐻[g , (𝑐 + 1)𝑣]𝐻, (5.1)

[g , ℎ]𝑒𝑑
∈ [g , ℎ𝑒𝑑

]𝐻[g , (𝑐 + 1)𝑣]𝐻. (5.2)

Proof. It suffices to prove the statement for 𝑑 = 1, as it may be applied repeatedly to [g , ℎ𝑒𝑖
],

respectively, [g , ℎ]𝑒𝑖 , for 𝑖 = 1, … , 𝑑. We thus restrict ourselves to 𝑑 = 1.
The claims are proven by induction on 𝑐, the case 𝑐 = 0 being covered by the first line below.

For (5.1), write 𝑣1 = 𝑣𝑒𝑐−1 and note

[g , ℎ𝑒] = [g , ℎ] ⋅ [g , ℎ]ℎ ⋯ [g , ℎ]ℎ𝑒−1
∈ [g , ℎ]𝑒[g , ℎ, ℎ]𝐻;

and [g , ℎ, ℎ] = [g , ℎ, 𝑣𝑒
1] ∈ [g , ℎ, 𝑣1]𝑒𝐻[g , ℎ, (𝑐)𝑣]𝐻 by induction

⩽ [g , ℎ]𝑒𝐻[g , (𝑐 + 1)𝑣]𝐻

as [g , ℎ, (𝑐)𝑣] ∈ [g , (𝑐 + 1)𝑣]𝐻 . For (5.2), note

[g , ℎ]𝑒 ∈ [g , ℎ𝑒] ⋅ [g , ℎ, ℎ]𝐻 as before;

and [g , ℎ, ℎ] = [g , ℎ, 𝑣𝑒
1] ∈ [g , ℎ, 𝑣1]𝑒𝐻[g , ℎ, (𝑐)𝑣]𝐻 by (5.1)

⩽ [g , 𝑣1, ℎ]𝑒𝐻[g , (𝑐 + 1)𝑣]𝐻 as 𝑣1, ℎ commute

⩽ [g , 𝑣1, ℎ𝑒]𝐻[g , (𝑐 + 1)𝑣]𝐻 by induction

⩽ [g , ℎ𝑒]𝐻[g , (𝑐 + 1)𝑣]𝐻. □

Now as in the Lie ring case we have, recalling 𝑛 = deg(𝑦0) + ⋯ + deg(𝑦𝑠),

𝜄([𝑅0, … , 𝑅𝑠]Σ) ⩽ ([𝑥𝐺
0 , … , 𝑥𝐺

𝑠 ]Σ)𝑒𝑛2

= [𝑥𝑒𝑛𝑐0 𝐺
0 , … , 𝑥𝑒𝑛𝑐𝑠 𝐺

𝑠 ]Σ ⋅ 𝛾𝑛(𝐺) by (5.2)

= [𝑦𝐺
0 , … , 𝑦𝐺

𝑠 ]Σ ⋅ 𝛾𝑛(𝐺) ⩽ [𝛾𝑐0
(𝐺), … , 𝛾𝑐𝑠

(𝐺)]Σ ⋅ 𝛾𝑛(𝐺) ⩽ 𝛾𝑛(𝐺).

Third claim: 𝜾(𝑹𝟎 ∩ ⋯ ∩ 𝑹𝒔) ⩽ 𝜹𝒏(𝑹)

Recall that in any group 𝐻, if 𝑚 is an integer and ℎ ∈ 𝐻 then

ℎ𝑚 − 1 = (ℎ − 1 + 1)𝑚 − 1 =
∑
𝑖⩾1

(
𝑚

𝑖

)
(ℎ − 1)𝑖 ∈ 𝑚(ℎ − 1) + (ℎ − 1)2ℤ𝐻.

We extend this identity, in the presence of roots, as follows:

Lemma 5.2. Let𝐻 be a group, let 𝑐, 𝑒 be integers, and assume𝐻 contains elements ℎ, 𝑣with 𝑣𝑒𝑐
= ℎ.

Then for all 𝑑 ∈ ℕ we have

ℎ𝑒𝑑
− 1 ∈ 𝑒𝑑(ℎ − 1)ℤ𝐻 + (𝑣 − 1)𝑐+1ℤ𝐻, (5.3)

𝑒𝑑(ℎ − 1) ∈ (ℎ𝑒𝑑
− 1)ℤ𝐻 + (𝑣 − 1)𝑐+1ℤ𝐻. (5.4)
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836 BARTHOLDI and MIKHAILOV

Proof. By applying repeatedly the lemmawith (ℎ𝑒𝑖
, 𝑣𝑒𝑖

) for 𝑖 = 0, … , 𝑑 − 1, it is enough to consider
𝑑 = 1.
For (5.3), we proceed by induction on 𝑐, noting that the case 𝑐 = 0 follows from the first line.

Setting 𝑣1 = 𝑣𝑒𝑐−1 ,

ℎ𝑒 − 1 = (ℎ − 1 + 1)𝑒 − 1 =
∑

1⩽𝑖⩽𝑒

(
𝑒

𝑖

)
(ℎ − 1)𝑖 ∈ 𝑒(ℎ − 1) + (ℎ − 1)2ℤ𝐻

= 𝑒(ℎ − 1) + (ℎ − 1)(𝑣𝑒
1 − 1)ℤ𝐻

⩽ 𝑒(ℎ − 1) + (ℎ − 1)(𝑒(𝑣1 − 1) + (𝑣 − 1)𝑐ℤ𝐻) by induction

⩽ 𝑒(ℎ − 1)ℤ𝐻 + (𝑣 − 1)𝑐+1ℤ𝐻

as 𝑣 − 1 divides 𝑣1 − 1 and ℎ − 1 and commuteswith them. For (5.4), we also proceed by induction
on 𝑐:

𝑒(ℎ − 1) = (ℎ𝑒 − 1) −
∑

2⩽𝑖⩽𝑒

(
𝑒

𝑖

)
(ℎ − 1)𝑖 ∈ (ℎ𝑒 − 1) + (ℎ − 1)2ℤ𝐻

= (ℎ𝑒 − 1) + (ℎ − 1)(𝑣𝑒
1 − 1)ℤ𝐻

⩽ (ℎ𝑒 − 1) + (ℎ − 1)(𝑒(𝑣1 − 1) + (𝑣 − 1)𝑐)ℤ𝐻 by (5.3)

⩽ (ℎ𝑒 − 1) + 𝑒(ℎ − 1)(𝑣1 − 1) + (𝑣 − 1)𝑐+1ℤ𝐻

⩽ (ℎ𝑒 − 1)ℤ𝐻 + (𝑣 − 1)𝑐+1ℤ𝐻 by induction. □

We are now ready to prove 𝜄(𝑅0 ∩ ⋯ ∩ 𝑅𝑠) ⩽ 𝛿𝑛(𝐺). We have

𝜄(𝑅0 ∩ ⋯ ∩ 𝑅𝑠) − 1 = 𝜄(𝐹𝑠 ∩ (1 + (𝔯0, … , 𝔯𝑠)Σ)) − 1 by Proposition 3.1

⩽ (1 + (⟨𝑥0 − 1⟩ℤ𝐺, … , ⟨𝑥𝑠 − 1⟩ℤ𝐺)Σ)𝑒𝑛2

− 1

⩽ 𝑒𝑛2
(⟨𝑥0 − 1⟩ℤ𝐺, … , ⟨𝑥𝑠 − 1⟩ℤ𝐺)Σ + 𝜛𝑛 by (5.3)

= (⟨𝑒𝑛𝑐0(𝑥0 − 1)⟩ℤ𝐺, … , ⟨𝑒𝑛𝑐𝑠 (𝑥𝑠 − 1)⟩ℤ𝐺)Σ + 𝜛𝑛

= (⟨𝑥𝑒𝑛𝑐0

0 − 1⟩ℤ𝐺, … , ⟨𝑥𝑒𝑛𝑐𝑠

𝑠 − 1)⟩ℤ𝐺 )Σ + 𝜛𝑛 by (5.4)

= (⟨𝑦0 − 1⟩ℤ𝐺, … , ⟨𝑦𝑠 − 1⟩ℤ𝐺)Σ + 𝜛𝑛

⩽ (𝜛𝑐0 , … , 𝜛𝑐𝑠 )Σ + 𝜛𝑛 = 𝜛𝑛.

It follows that 𝜄 induces a map 𝜄 ∶ (𝑅0 ∩ ⋯ ∩ 𝑅𝑠)∕[𝑅0, … , 𝑅𝑠]Σ → 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺), which is a
homomorphism because its domain (and range) are abelian.
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 837

Fourth claim: 𝜾 is injective

The argument is essentially the same as in the Lie algebra case, sowe only indicate the differences.
We are to prove

𝜄−1(𝛾𝑛(𝐺) ∩ 𝑅0 ∩ ⋯ ∩ 𝑅𝑠) ⩽ [𝑅0, … , 𝑅𝑠]Σ ⋅ 𝐹𝑒
𝑠 ⋅ 𝛾𝑘(𝐹𝑠).

We again start with 𝑤 ∈ 𝑅0 ∩ ⋯ ∩ 𝑅𝑠 and assume 𝜄(𝑤) ∈ 𝛾𝑛(𝐺), and write it as 𝑤 = 𝑤0 ⋅ 𝑤1 ⋅ 𝑤2

with 𝑤0 ∈ [𝑅0, … , 𝑅𝑠]Σ and 𝑤1 ∈ 𝐹𝑒
𝑠 and 𝑤2 ∈ 𝛾𝑘(𝐹𝑠). Again we write 𝜄(𝑤) as 𝑣 in the free group

with generators 𝑥0, … , 𝑥𝑠, 𝑦0, … , 𝑦𝑠, and let 𝑣 be the corresponding x-form of 𝑣. These elements are
written as left-normed commutators, more precisely as left-normed commutators of generators if
their length is < 𝑘, and as arbitrary commutators of length ⩾ 𝑘. As before, those commutators of
length ⩾ 𝑘 are gathered in 𝑤0. For each of the remaining ones in 𝑣, again the number of genera-
tors 𝑦𝑖 in them is denoted by 𝑛𝑖 , and the number of other generators is denoted by 𝑛∞; and (4.1)
still holds.
If all 𝑛𝑖 ⩾ 1, then we get a term in 𝑤0, while if some 𝑛𝑖 = 0 then (4.1) is strict, and we consider

the equation coming from the exponents. Now the other generators are either 𝑥𝑖 or their roots 𝑟𝑥𝑖
;

let us write 𝑛∞ = 𝑛′
∞ + 𝑛′′

∞ with 𝑛′
∞ the number of generators in {𝑥0, … , 𝑥𝑠}. Then, in converting

a term into its x-form, the exponent gets multiplied by

𝑒𝑛0(𝑛𝑐0)+⋯+𝑛𝑠(𝑛𝑐𝑠)−𝑛′′
∞𝑛) = 𝑒𝑛(𝑛0𝑐0+⋯+𝑛𝑠𝑐𝑠−𝑛′′

∞) > 𝑒𝑛2
,

as all 𝑐𝑖 are divisible by 𝑘 and 𝑛′′
∞ < 𝑘. Therefore, we again get a term in 𝑤1.

6 PROOF OF THEOREM 1.3

We begin by an analogue of Proposition 3.1. Dropping the “overlines” from our notation, consider
the group

𝐹𝑠 = ⟨𝑥0,1, 𝑥0,2, … , 𝑥𝑠,1, 𝑥𝑠,2 ∣ 𝑥0,1 ⋯𝑥𝑠,1 = 𝑥0,2 ⋯𝑥𝑠,2 = 1 =⟩
and its normal subgroups𝑅𝑖 = ⟨𝑥𝑖,1, 𝑥𝑖,2⟩𝐹𝑠 for 𝑖 = 0, … , 𝑠. Consider also the ideal 𝔯𝑖 = (𝑅𝑖 − 1)ℤ𝐹𝑠.

Proposition 6.1. For 𝑠 ⩾ 2, we have

torsion
(
𝜋𝑠+1(𝑆2 ∨ 𝑆2)

)
≅

𝐹𝑠 ∩ (1 + (𝔯0, … , 𝔯𝑛)Σ)

[𝑅0, … , 𝑅𝑠]Σ

.

Proof. Following [44], the quotient 𝔯0∩⋯∩𝔯𝑠

(𝔯0,…,𝔯𝑠)Σ
can be viewed as the 𝑠th homotopy group of the

simplicial abelian group ℤ[𝐹[𝑆1 ∨ 𝑆1]], and the map 𝐹𝑠 → ℤ[𝐹𝑠] given by 𝑓 ↦ 𝑓 − 1 induces the
following commutative diagram
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838 BARTHOLDI and MIKHAILOV

The lowermap is the 𝑠thHurewicz homomorphism for the loop spaceΩ(𝑆2 ∨ 𝑆2). By [3], the lower
right term is the degree-𝑠 part of the free associative algebra on two generators (the homology
of 𝑆1 ∨ 𝑆1). The homotopy group 𝜋𝑠+1(𝑆2 ∨ 𝑆2) is the sum of its torsion and torsion-free part,
and the torsion-free part is the degree-𝑠 part of the free Lie algebra on two generators (also the
homology of 𝑆1 ∨ 𝑆1). The lower map, on the torsion-free part, is the natural inclusion of the free
Lie algebra into the free associative algebra, so the kernel of the lower map coincides with the
torsion subgroup of 𝜋𝑠+1(𝑆2 ∨ 𝑆2). □

Combining Serre’s finiteness theorem and Hilton’s theorem [29], the torsion of 𝜋𝑠+1(𝑆2 ∨ 𝑆2)

is finite, and in particular has bounded exponent 𝑒. We may also apply Curtis’s theorem: there is
an integer 𝑘 such that 𝛾𝑘(𝐹𝑠) ∩ 𝑅0 ∩ ⋯ ∩ 𝑅𝑠 = 1. The proof of Theorem 1.3 then proceeds exactly
as that of Theorem 1.1, with Proposition 6.1 used as a replacement of Proposition 3.1.

7 PROOF OF THEOREMA

Let 𝐻 be an abelian group of bounded exponent. We begin by recalling Prüfer’s “first” theo-
rem [50]: every abelian group of bounded exponent is a direct product of cyclic groups. Now
clearly

𝛿𝑛

(∏
𝛼

𝐺𝛼

)
=
∏

𝛼

𝛿𝑛(𝐺𝛼), 𝛾𝑛

(∏
𝛼

𝐺𝛼

)
=
∏

𝛼

𝛾𝑛(𝐺𝛼),

so it suffices to prove Theorem A for cyclic 𝐻.
We recall next Hilton’s theorem [29]:

𝜋𝑠+1(𝑆2 ∨ 𝑆2) =
⨁

𝑑

𝜋𝑠+1(𝑆𝑑) ⊗ L𝑑(ℤ2).

Therefore, in particular every 𝜋𝑠+1(𝑆𝑑) is a direct summand of 𝜋𝑠+1(𝑆2 ∨ 𝑆2).
We finally recall Gray’s theorem [20], proving that the exponent bound of Cohen–Moore–

Neisendorfer is optimal: arbitrary cyclic groups appear as subgroups of some 𝜋𝑠+1(𝑆𝑑).
It follows that for every cyclic group 𝐻 there is an integer 𝑠 such that 𝜋𝑠+1(𝑆2 ∨ 𝑆2) contains a

copy of 𝐻. We then conclude by Theorem 1.3.

8 THE SERRE ELEMENT IN 𝝅𝟐𝒑(𝑺𝟐)

Let 𝑝 be a prime. In this subsection, we describe explicitly a copy of ℤ∕𝑝 in 𝜋2𝑝(𝑆2) due to
Serre [55], by computing its (pre)image 𝛼𝑝 in the 𝐸1-term of the lower central spectral sequence
associated to 𝐹[𝑆1]. There is a single (ℤ∕𝑝)-term in dimension 2𝑝 − 1 of the spectral sequence

p-torsion

(
𝐼0 ∩ ⋯ ∩ 𝐼2𝑝−1

[𝐼0, … , 𝐼2𝑝−1]Σ

)
= 𝕃2𝑝−1L

2𝑝(ℤ, 1) = ℤ∕𝑝,

and 𝛼𝑝 will be a generator of this subgroup.
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 839

Theorem 8.1. Let 𝑥𝑖 for 𝑖 = 0, … , 2𝑝 − 2 be free generators of a free Lie algebra, and consider the
following element

𝛼𝑝 =
∑

𝜌∈Σ2𝑝−2 a 2𝑝−1-shuffle
𝜌(1)<𝜌(3)<⋯<𝜌(2𝑝−5)

(−1)𝜌[[𝑥𝜌(0), 𝑥2𝑝−2], [𝑥𝜌(1), 𝑥2𝑝−2], [𝑥𝜌(2), 𝑥𝜌(3)], … , [𝑥𝜌(2𝑝−4), 𝑥𝜌(2𝑝−3)]];

the sum is taken over all permutations (𝜌(0), … , 𝜌(2𝑝 − 3)) ∈ Σ2𝑝−2 satisfying 𝜌(0) <

𝜌(1), … , 𝜌(2𝑝 − 4) < 𝜌(2𝑝 − 3) as well as 𝜌(1) < 𝜌(3) < ⋯ < 𝜌(2𝑝 − 5). Then 𝛼𝑝 represents a
generator of the 𝑝-torsion in 𝕃2𝑝−1L

2𝑝(ℤ, 1).

Proof. Consider the free abelian simplicial group 𝐾(ℤ, 2): it has a single generator 𝜎 in degree
2, and its other generators may be chosen to be all iterated degeneracies of 𝜎. We will use the
dual notation for generators: for 𝑘 > 2 the free abelian group 𝐾(ℤ, 2)𝑘 is generated by ordered
sequences of two elements

(𝑖1 𝑖2) ∶= 𝑠𝑘−1 ⋯ 𝑠𝑖2
⋯ 𝑠𝑖1

⋯ 𝑠0(𝜎)

with 0 ⩽ 𝑖1 < 𝑖2 < 𝑘. For example, 𝐾(ℤ, 2)5 has generators

(0 1) ∶= 𝑠4𝑠3𝑠2(𝜎), (0 2) ∶= 𝑠4𝑠3𝑠1(𝜎), (0 3) ∶= 𝑠4𝑠2𝑠1(𝜎), (0 4) ∶= 𝑠3𝑠2𝑠1(𝜎),

(1 2) ∶= 𝑠4𝑠3𝑠0(𝜎), (1 3) ∶= 𝑠4𝑠2𝑠0(𝜎), (1 4) ∶= 𝑠3𝑠2𝑠0(𝜎), (2 3) ∶= 𝑠4𝑠1𝑠0(𝜎),

(2 4) ∶= 𝑠3𝑠1𝑠0(𝜎), (3 4) ∶= 𝑠2𝑠1𝑠0(𝜎).

For 𝑛 ⩾ 1, define the functor 𝐽𝑛 as themetabelianization of the 𝑛th Lie functorL 𝑛. For a group
𝐴, there is a natural epimorphism

L 𝑝(𝐴) ↠ 𝐽𝑝(𝐴)

with kernel generated by Lie brackets of the form [[∗, ∗], [∗, ∗]]. The elements of 𝐽𝑝 can also be
written as linear combinations of Lie brackets, namely as elements of the Lie functor L 𝑝, but
there is additional rule that holds in 𝐽𝑝 but not hold in L 𝑝 in general:

[𝑎1, 𝑎2, … , 𝑎𝑝] = [𝑎1, 𝑎2, 𝑎𝜌(3), … , 𝑎𝜌(𝑝)]

for arbitrary 𝑎𝑖 and permutation (𝜌(3), … , 𝜌(𝑝)) of {3, … , 𝑝}. For 𝑝 = 3, the functors L 3 and 𝐽3

are equal.
For 𝑛 ⩾ 1, denote by 𝑆𝑛 the 𝑛th symmetric power functor

𝑆𝑛 ∶ 𝖠𝖻𝖾𝗅𝗂𝖺𝗇 𝗀𝗋𝗈𝗎𝗉𝗌 → 𝖠𝖻𝖾𝗅𝗂𝖺𝗇 𝗀𝗋𝗈𝗎𝗉𝗌.

For a free abelian group 𝐴, there is a natural short exact sequence [53, Proposition 3.2]

0 → 𝐽𝑛(𝐴) → 𝑆𝑛−1(𝐴) ⊗ 𝐴 → 𝑆𝑛(𝐴) → 0, (8.1)

where the left-hand map is given by

[𝑏1, … , 𝑏𝑛] ↦ 𝑏2𝑏3 ⋯ 𝑏𝑛 ⊗ 𝑏1 − 𝑏1𝑏3 ⋯ 𝑏𝑛 ⊗ 𝑏2 for 𝑏𝑖 ∈ 𝐴. (8.2)
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840 BARTHOLDI and MIKHAILOV

Applying the functors 𝐽𝑝 ↪ 𝑆𝑝−1 ⊗ 𝑖𝑑 ↠ 𝑆𝑝 to the simplicial abelian group 𝐾(ℤ, 2𝑛), and
taking the homotopy groups, we get the long exact sequence

𝜋2𝑝𝑛

(
𝑆𝑝−1𝐾(ℤ, 2𝑛) ⊗ 𝐾(ℤ, 2𝑛)

)
→ 𝕃2𝑝𝑛𝑆𝑝(ℤ, 2𝑛) → 𝕃2𝑝𝑛−1𝐽𝑝(ℤ, 2𝑛) →

→𝜋2𝑝𝑛−1

(
𝑆𝑝−1𝐾(ℤ, 2𝑛) ⊗ 𝐾(ℤ, 2𝑛)

)
.

It follows from [14, p. 307] that the above sequence has the following form:

By [53, Proposition 4.7], the natural epimorphism L 𝑝 ↠ 𝐽𝑝 gives a natural isomorphism of
derived functors

𝕃2𝑝𝑛−1L
𝑝(ℤ, 2𝑛)

≃
�→ 𝕃2𝑝𝑛−1𝐽𝑝(ℤ, 2𝑛) ≃ ℤ∕𝑝.

Let us first find a simplicial generator of 𝕃2𝑝𝑆𝑝(ℤ, 2). For this, we observe that the inclusion of the
symmetric power into the tensor power 𝑆𝑝 ↪ ⊗𝑝 induces an isomorphism of derived functors

𝕃2𝑝𝑆𝑝(ℤ, 2) → 𝕃2𝑝⊗𝑝(ℤ, 2).

A simplicial generator of 𝕃2𝑝⊗𝑝(ℤ, 2) can be given by the Eilenberg–Zilber shuffle-product
theorem. Using interchangeably the notation 𝜌(𝑖) and 𝜌𝑖 , this is the element∑

𝜌∈Σ2𝑝 a 2𝑝-shuffle
(−1)𝜌(𝜌0 𝜌1) ⊗ (𝜌2 𝜌3) ⊗ ⋯ ⊗ (𝜌2𝑝−2 𝜌2𝑝−1).

It follows immediately from the definition of 2𝑝-shuffles that the symmetric group Σ𝑝, acting by
permutation on blocks {2𝑖, 2𝑖 + 1} of size 2, acts on 2𝑝-shuffles. A generator of 𝕃2𝑝𝑆𝑝(ℤ, 2) can be
chosen by keeping only a single element per Σ𝑝-orbit, and replacing tensor products by symmetric
products:

𝛽 ∶=
∑

𝜌∈Σ2𝑝 a 2𝑝-shuffle
𝜌(1)<𝜌(3)<⋯<𝜌(2𝑝−1)

(−1)𝜌(𝜌0 𝜌1) ⋅ (𝜌2 𝜌3)⋯ (𝜌2𝑝−2 𝜌2𝑝−1).

The conditions imply 𝜌(2𝑝 − 1) = 2𝑝 − 1. For example, for 𝑝 = 3 we get the element

(0 1)(2 3)(4 5) − (0 1)(2 4)(3 5) + (0 1)(3 4)(2 5) − (0 2)(3 4)(1 5) − (0 2)(1 3)(4 5)

+ (0 3)(2 4)(1 5) − (0 3)(1 4)(2 5) + (1 2)(0 3)(4 5) − (2 3)(0 4)(1 5) − (1 2)(0 4)(3 5)

+ (1 2)(3 4)(0 5) − (1 3)(2 4)(0 5) + (2 3)(1 4)(0 5) + (0 2)(1 4)(3 5) + (1 3)(0 4)(2 5).

Now we lift the element from 𝑆𝑝𝐾(ℤ, 2)2𝑝 to (𝑆𝑝−1𝐾(ℤ, 2) ⊗ 𝐾(ℤ, 2))2𝑝 in a standard way:

𝛽 ∶=
∑

𝜌∈Σ2𝑝 a 2𝑝-shuffle
𝜌(1)<𝜌(3)<⋯<𝜌(2𝑝−1)

(−1)𝜌(𝜌0 𝜌1)⋯ (𝜌2𝑝−4 𝜌2𝑝−3) ⊗ (𝜌2𝑝−2 𝜌2𝑝−1).
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 841

Observe that we have

𝑑𝑗(𝑖1 𝑖2) =

⎧⎪⎨⎪⎩
(𝑖1 𝑖2) if 𝑖2 < 𝑗,

(𝑖1 𝑖2 − 1) if 𝑖1 < 𝑗 ⩽ 𝑖2,

(𝑖1 − 1 𝑖2 − 1) if 𝑗 ⩽ 𝑖1

with the understanding that (𝑖 𝑖) = 0, that we use the same notation (𝑖1 𝑖2) for elements of vary-
ing degree, and that 𝑑0(0 𝑖2) = 0 and 𝑑𝑗(𝑖1 𝑖2) = 0 if deg(𝑖1 𝑖2) = 𝑗 = 𝑖2 − 1. Thus, for example,
𝑑0(0 4) = 𝑑5(0 4) = 0 and 𝑑1(0 4) = 𝑑2(0 4) = 𝑑3(0 4) = 𝑑4(0 4) = (0 3) while 𝑑0(2 3) = 𝑑1(2 3) =

𝑑2(2 3) = (1 2) and 𝑑3(2 3) = 0 and 𝑑4(2 3) = 𝑑5(2 3) = (2 3).
Clearly, 𝑑0(𝛽) = 𝑑2𝑝−1(𝛽) = 0. If 𝑗 < 2𝑝 − 2, then we express 𝛽 as a sum over all possible values

of 𝑟 ∶= 𝜌(2𝑝 − 2) (remembering 𝜌(2𝑝 − 1) = 2𝑝 − 1) and obtain

𝑑𝑗(𝛽) =

2𝑝−2∑
𝑟=0

(−1)𝑟
(
𝑑𝑗(⋯) ⊗ (𝑟 2𝑝 − 1) + (⋯) ⊗ 𝑑𝑗(𝑟 2𝑝 − 1)

)
.

Now the sum in (⋯) is a symmetric product similar to 𝛽, but with 𝑝 − 1 instead of 𝑝 factors, so
(⋯) is exact. The second terms telescope, so we get 𝑑𝑗(𝛽) = 0when 𝑗 < 2𝑝 − 2. However, 𝛽 is not
a cycle in 𝑆𝑝−1(ℤ, 2) ⊗ 𝐾(ℤ, 2), because 𝑑2𝑝−2(𝛽) is not zero: we compute

𝑑2𝑝−2(𝛽) =
∑

𝜌∈Σ2𝑝 a 2𝑝-shuffle
𝜌(1)<⋯<𝜌(2𝑝−3)=2𝑝−2>𝜌(2𝑝−2)

(−1)𝜌(𝜌0 𝜌1) … (𝜌2𝑝−4 𝜌2𝑝−3) ⊗ (𝜌2𝑝−2 2𝑝 − 2).

We use the long exact sequence associated with (8.1) to obtain a cycle in 𝐽𝑝(ℤ, 2)2𝑝−1. The
ascending 2𝑝-shuffles (𝜌(0), … , 𝜌(2𝑝 − 1)) appearing in the sum can in fact be viewed as
2𝑝−1-shuffles (𝜌(0), 𝜌(1), … , 𝜌(2𝑝 − 6), 𝜌(2𝑝 − 5), 𝜌(2𝑝 − 4), 𝜌(2𝑝 − 2)) or (𝜌(0), 𝜌(1), … , 𝜌(2𝑝 −

6), 𝜌(2𝑝 − 5), 𝜌(2𝑝 − 2), 𝜌(2𝑝 − 4)), depending on whether 𝜌(2𝑝 − 2) < 𝜌(2𝑝 − 4) or not, and in
all cases completed by the values (2𝑝 − 2, 2𝑝 − 1). Furthermore, these two shuffles come with
opposite signs, and can be combined, via (8.2), into∑

𝜌∈Σ2𝑝−2 a 2𝑝−1-shuffle
𝜌(1)<⋯<𝜌(2𝑝−5)

(−1)𝜌[(𝜌2𝑝−3 2𝑝 − 2), (𝜌2𝑝−4 2𝑝 − 2), (𝜌0 𝜌1), … , (𝜌2𝑝−6 𝜌2𝑝−5)]. (8.3)

We now consider the simplicialmap𝐾(ℤ, 2) → L 2𝐾(ℤ, 1), given by 𝜎 ↦ [𝑠0(𝜎′), 𝑠1(𝜎′)], where 𝜎′

is the generator of𝐾(ℤ, 1)1; it is a homotopy equivalence of complexes. The abelian group𝐾(ℤ, 1)𝑘

is 𝑘-dimensional, with generators

𝑥𝑖 ∶= 𝑠𝑘 ⋯ 𝑠𝑖 ⋯ 𝑠0(𝜎′)

for all 0 ⩽ 𝑖 < 𝑘, and we have (𝑖1 𝑖2) ↦ [𝑥𝑖1
, 𝑥𝑖2

] under this homotopy equivalence. Thus,
L ∗(ℤ, 2)2𝑝−1 is a free Lie algebra on 2𝑝 − 1 generators. There is an induced map

L 𝑝𝐾(ℤ, 2) → L 𝑝◦L 2𝐾(ℤ, 1) → L 2𝑝𝐾(ℤ, 1),
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842 BARTHOLDI and MIKHAILOV

which also is a homotopy equivalence of complexes. The image of the element (8.3) is

∑
𝜌∈Σ2𝑝−2 a 2𝑝−1-shuffle

𝜌(1)<⋯<𝜌(2𝑝−5)

(−1)𝜌[[𝑥𝜌(2𝑝−3), 𝑥2𝑝−2], [𝑥𝜌(2𝑝−4), 𝑥2𝑝−2], [𝑥𝜌(0), 𝑥𝜌(1)], … , [𝑥𝜌(2𝑝−6), 𝑥𝜌(2𝑝−5)]].

Up to sign and renumbering, this is exactly our element 𝛼𝑝. □

Note that we considered, in the beginning of this section, a free Lie algebra of rank 2𝑝 − 1with
2𝑝 generators 𝑥0, … , 𝑥2𝑝−1 subject to the relation

∑
𝑥𝑖 = 0. Any choice of 2𝑝 − 1 out of these 2𝑝

generators yields a free Lie algebra on 2𝑝 − 1 generators, and an expression 𝛼𝑝. The point being
made is that every such expression involves one of the generators (here 𝑥2𝑝−2) twice, and omits
another (here 𝑥2𝑝−1).
We summarize the properties of the element 𝛼𝑝 that will be useful to us as follows.

Proposition 8.2. For every prime 𝑝 there is an element �̃�𝑝 in the free group ⟨𝑥0, … , 𝑥2𝑝−1 ∣

𝑥0 ⋯𝑥2𝑝−1 = 1⟩ with the properties:
∙ �̃�𝑝 − 1 ∈ (𝔯0, … , 𝔯2𝑝−1)Σ;
∙ �̃�𝑝 ∉ [𝑅0, … , 𝑅2𝑝−1]Σ;
∙ �̃�

𝑝
𝑝 ∈ [𝑅0, … , 𝑅2𝑝−1]Σ.

Furthermore, �̃�𝑝 − 1 ∈ ([𝔯0, 𝔯1], … , [𝔯2𝑝−2, 𝔯2𝑝−1])Σ, namely in the sum of all 𝑝-fold associative
products of brackets of 𝔯𝑖 in any of the (2𝑝)! orderings.

Proof. The first claim follows from Proposition 3.1, as 𝛼𝑝 represents an element of 𝜋2𝑝(𝑆2). The
second claim holds because this element is nontrivial in 𝜋2𝑝(𝑆2). The third claim holds because
it has order 𝑝 in 𝜋2𝑝(𝑆2). The last claim follows from general facts: 𝕃𝑖L

𝑛(ℤ, 1) = 0 for odd 𝑛, and
𝕃𝑖L

2𝑛(ℤ, 1) = 𝕃𝑖L
𝑛(ℤ, 2). □

The same statement holds for Lie algebras; we omit the proof.

Proposition 8.3. For every prime 𝑝 there is an element 𝛼𝑝 in the free Lie algebra ⟨𝑥0, … , 𝑥2𝑝−1 ∣

𝑥0 + ⋯ + 𝑥2𝑝−1 = 0⟩ with the properties:
∙ 𝛼𝑝 ∈ (𝐼0, … , 𝐼2𝑝−1)Σ;
∙ 𝛼𝑝 ∉ [𝐼0, … , 𝐼2𝑝−1]Σ;
∙ 𝑝𝛼𝑝 ∈ [𝐼0, … , 𝐼2𝑝−1]Σ.

Furthermore, 𝛼𝑝 ∈ ([𝑅0, 𝑅1], … , [𝑅2𝑝−2, 𝑅2𝑝−1])Σ.

Example 8.4. Here is an explicit generator of 𝜋4(𝑆2) = ℤ∕2. If we consider 𝑝 = 2 in Theorem 8.1,
we have only one [2]-shuffle and the element 𝛼2 is [[𝑥0, 𝑥2], [𝑥1, 𝑥2]]. Reintroducing 𝑥3 = −𝑥0 −

𝑥1 − 𝑥2, we can easily check that 𝛼2 ∈ (𝐼0, 𝐼1, 𝐼2, 𝐼3)Σ:

𝛼2 ∶= [[𝑥0, 𝑥2], [𝑥1, 𝑥2]]

= [𝑥2, 𝑥3] ⋅ [𝑥0, 𝑥1] + [𝑥1, 𝑥2] ⋅ [𝑥0, 𝑥3] − [𝑥0, 𝑥2] ⋅ [𝑥1, 𝑥3]. (8.4)

Applying to it the Dynkin idempotent 𝑢 ⋅ 𝑣 ↦ 1

2
[𝑢, 𝑣] gives then 2𝛼2 ∈ [𝐼0, 𝐼1, 𝐼2, 𝐼3]Σ.
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 843

It is only slightly harder to write a generator of 𝜋4(𝑆2) in the language of groups. We may lift
𝛼2 to �̃�2 ∈ 𝐹, the free group ⟨𝑥0, 𝑥1, 𝑥2, 𝑥3 ∣ 𝑥0 ⋯𝑥3⟩, as

�̃�2 = [[𝑥0, 𝑥2], [𝑥0𝑥1, 𝑥2]],

since then the Hall–Witt identities give �̃�2 = [[𝑥0, 𝑥2], [𝑥−1
3

, 𝑥2]𝑥−1
2 ] = [[𝑥0, 𝑥2], [𝑥0, 𝑥2]𝑥1[𝑥1, 𝑥2]]

= [[𝑥0, 𝑥2], [𝑥1, 𝑥2]] ⋅ [[𝑥0, 𝑥2], [[𝑥0, 𝑥2], 𝑥
𝑥2

1
]] so �̃�2 ∈ 𝑅0 ∩ ⋯ ∩ 𝑅3. We have thus produced a

nontrivial cycle �̃�2 ∈ (𝑅0 ∩ 𝑅1 ∩ 𝑅2 ∩ 𝑅3)∕[𝑅0, 𝑅1, 𝑅2, 𝑅3]Σ.

Example 8.5. Here is a generator of the 3-torsion in 𝜋6(𝑆2). For 𝑝 = 3, we have six [2,2]-shuffles
in Theorem 8.1:

(0, 1, 2, 3) with sign = 1, (0, 2, 1, 3) with sign = −1,

(0, 3, 1, 2) with sign = 1 (2, 3, 0, 1) with sign = 1,

(1, 3, 0, 2) with sign = −1, (1, 2, 0, 3) with sign = 1.

The element 𝛼3 representing 3-torsion in 𝜋6(𝑆2) is

𝛼3 ∶=[[𝑥0, 𝑥4], [𝑥1, 𝑥4], [𝑥2, 𝑥3]] − [[𝑥0, 𝑥4], [𝑥2, 𝑥4], [𝑥1, 𝑥3]]

+ [[𝑥0, 𝑥4], [𝑥3, 𝑥4], [𝑥1, 𝑥2]] + [[𝑥1, 𝑥4], [𝑥2, 𝑥4], [𝑥0, 𝑥3]]

− [[𝑥1, 𝑥4], [𝑥3, 𝑥4], [𝑥0, 𝑥2]] + [[𝑥2, 𝑥4], [𝑥3, 𝑥4], [𝑥0, 𝑥1]].

It may be expressed as a sum of 30 associative products of the form ±[𝑥𝑎, 𝑥𝑏] ⋅ [𝑥𝑐, 𝑥𝑑] ⋅ [𝑥𝑒, 𝑥𝑓]

with {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} = {0, 1, 2, 3, 4, 5}.

Again it is possible (but now with considerably more effort) to lift 𝛼3 to a generator of 𝜋6(𝑆2) in
terms of free groups.We return to the notation of simplicial free groups: we consider the free group
𝐹 = ⟨𝑧0, … , 𝑧4⟩ and normal subgroups 𝑅0 = ⟨𝑧0⟩𝐹 , 𝑅𝑖 = ⟨𝑧−1

𝑖−1
𝑧𝑖⟩𝐹 for 𝑖 ∈ {1, … , 4} and 𝑅5 = ⟨𝑧4⟩𝐹 .

In other words, we set 𝑧𝑖 ∶= 𝑥0 ⋯𝑥𝑖 . Here is a lift of 𝛼3 to 𝐹 that defines a simplicial cycle, that is,
which lies in the intersection 𝑅0 ∩ ⋯ ∩ 𝑅5: it is the product of the following fourteen elements

�̃�3 = [[𝑧0, 𝑧4], [𝑧2, 𝑧4], [𝑧1, 𝑧3][𝑧0,𝑧4]]−1 ⋅ [[𝑧1, 𝑧4], [𝑧2, 𝑧4], [𝑧0, 𝑧3][𝑧1,𝑧4]]

⋅ [[𝑧1, 𝑧4], [𝑧2, 𝑧3], [𝑧0, 𝑧4][𝑧1,𝑧4]]−1 ⋅ [[𝑧0, 𝑧4], [𝑧2, 𝑧3], [𝑧1, 𝑧4][𝑧0,𝑧4]]

⋅ [[𝑧2, 𝑧4], [𝑧0, 𝑧4], [𝑧1, 𝑧3][𝑧2,𝑧4]] ⋅ [[𝑧2, 𝑧4], [𝑧1, 𝑧4], [𝑧0, 𝑧3][𝑧2,𝑧4]]−1

⋅ [[𝑧2, 𝑧3], [𝑧1, 𝑧4], [𝑧0, 𝑧4][𝑧2,𝑧3]] ⋅ [[𝑧2, 𝑧3], [𝑧0, 𝑧4], [𝑧1, 𝑧4][𝑧2,𝑧3]]−1

⋅ [[𝑧3, 𝑧4], [𝑧1, 𝑧4], [𝑧0, 𝑧2][𝑧3,𝑧4]] ⋅ [[𝑧3, 𝑧4], [𝑧0, 𝑧4], [𝑧1, 𝑧2][𝑧3,𝑧4]]−1

⋅ [[𝑧3, 𝑧4], [𝑧2, 𝑧4], [𝑧0, 𝑧1][𝑧3,𝑧4]]−1 ⋅ [[𝑧1, 𝑧4], [𝑧3, 𝑧4], [𝑧0, 𝑧2][𝑧1,𝑧4]]−1

⋅ [[𝑧0, 𝑧4], [𝑧3, 𝑧4], [𝑧1, 𝑧2][𝑧0,𝑧4]] ⋅ [[𝑧2, 𝑧4], [𝑧3, 𝑧4], [𝑧0, 𝑧1][𝑧2,𝑧4]].

One can directly check that �̃�3 defines a simplicial cycle and that modulo the seventh term of the
lower central series it represents exactly the element 𝛼3.
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844 BARTHOLDI and MIKHAILOV

Remark 8.6. We have 𝜋6(𝑆2) = ℤ∕3 × ℤ∕4, and it is also possible to give an explicit generator of
the 4-torsion. In the same notation as above, it is

�̃�4 = [[[𝑧3, 𝑧1], [𝑧3, 𝑧2]], [[𝑧4, 𝑧0], [𝑧4, 𝑧2]]]

⋅ [[[𝑧4, 𝑧1], [𝑧4, 𝑧2]], [[𝑧3, 𝑧0], [𝑧3, 𝑧2]]]

⋅ [[[[𝑧4, 𝑧1], [𝑧4, 𝑧2]], [[𝑧4, 𝑧0], [𝑧4, 𝑧2]]], [[𝑧3, 𝑧2], [𝑧3, 𝑧1]]]

⋅ [[[𝑧3, 𝑧1], [𝑧3, 𝑧2]], [[[𝑧4, 𝑧2], [𝑧4, 𝑧0]], [[𝑧4, 𝑧2], [𝑧4, 𝑧1]]]]

⋅ [[[𝑧3, 𝑧2], [𝑧3, 𝑧1]], [[𝑧4, 𝑧2], [𝑧4, 𝑧0]]]

⋅ [[[𝑧4, 𝑧2], [𝑧4, 𝑧1]], [[𝑧3, 𝑧2], [𝑧3, 𝑧0]]]

⋅ [[[𝑧4, 𝑧2], [𝑧3, 𝑧0]], [[𝑧4, 𝑧2], [𝑧3, 𝑧1]]]

⋅ [[[𝑧4, 𝑧1], [𝑧3, 𝑧2]], [[𝑧4, 𝑧2], [𝑧3, 𝑧0]]]

⋅ [[[𝑧4, 𝑧2], [𝑧3, 𝑧1]], [[𝑧4, 𝑧0], [𝑧3, 𝑧2]]]

⋅ [[[𝑧4, 𝑧0], [𝑧3, 𝑧2]], [[𝑧4, 𝑧1], [𝑧3, 𝑧2]]]

⋅ [[[𝑧4, 𝑧2], [𝑧3, 𝑧1]], [[𝑧4, 𝑧3], [𝑧2, 𝑧0]]]

⋅ [[[𝑧4, 𝑧3], [𝑧2, 𝑧1]], [[𝑧4, 𝑧2], [𝑧3, 𝑧0]]]

⋅ [[[𝑧4, 𝑧3], [𝑧2, 𝑧0]], [[𝑧4, 𝑧1], [𝑧3, 𝑧2]]]

⋅ [[[𝑧4, 𝑧0], [𝑧3, 𝑧2]], [[𝑧4, 𝑧3], [𝑧2, 𝑧1]]]

⋅ [[[𝑧4, 𝑧3], [𝑧2, 𝑧0]], [[𝑧4, 𝑧3], [𝑧2, 𝑧1]]].

Note that �̃�2
4
is, up to the symmetric commutator [𝑅0, … , 𝑅5]Σ, equal to

[[[[𝑧0, 𝑧1], [𝑧0, 𝑧2]], [[𝑧0, 𝑧1], [𝑧0, 𝑧3]]], [[[𝑧0, 𝑧1], [𝑧0, 𝑧2]], [[𝑧0, 𝑧1], [𝑧0, 𝑧4]]]]. (8.5)

Here is a brief explanation of the origin of �̃�4. The elements of the𝐸1-page of the spectral sequence
can be coded by generators of lambda-algebra. Serre elements, which we study, correspond to the
elements 𝜆1. The element �̃�4 corresponds to 𝜆2𝜆1 of the lambda-algebra. The𝐸∞

∗,5 column of 𝑆
2 has

the following nontrivial terms: 𝐸∞
8,5

= ℤ∕2 (generator 𝜆2𝜆1), 𝐸∞
6,5

= ℤ∕3 (generator 𝜆1 for 𝑝 = 3),
𝐸∞

16,5
= ℤ∕2 (generator 𝜆3

1
). The 4-torsion in 𝜋6(𝑆2) is glued from two terms in 𝐸∞: 𝜆3

1
and 𝜆2𝜆1. A

representative of 𝜆3
1
is the bracket (8.5), see, for example, [15]. More generally, each 𝜆𝑖 corresponds

to an operation on a simplicial group, with 𝜆1 corresponding (for 𝑝 = 2) to a simple bracketing
𝑢 ↦ [𝑠0𝑢, 𝑠1𝑢]. Iterating it three times gives (8.5); see [46] for details.
To show that �̃�4 represents the 4-torsion, we observe first that it is a cycle, namely that it lies

in 𝑅0 ∩ ⋯ ∩ 𝑅5, and second we show that, modulo 𝛾9𝛾2
8
, it represents the element 𝜆2𝜆1 of the

simplicial Lie algebra, given as a sum

[[[𝑧0, 𝑧3], [𝑧2, 𝑧4]] + [[𝑧0, 𝑧4], [𝑧2, 𝑧3]] + [[𝑧3, 𝑧4], [𝑧0, 𝑧2]],

[[𝑧1, 𝑧3], [𝑧2, 𝑧4]] + [[𝑧1, 𝑧4], [𝑧2, 𝑧3]] + [[𝑧3, 𝑧4], [𝑧1, 𝑧2]]]

= − [[[𝑧3, 𝑧1], [𝑧3, 𝑧2]], [[𝑧4, 𝑧0], [𝑧4, 𝑧2]]]

 17538424, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12301 by U
niversitaet D

es Saarlandes, W
iley O

nline L
ibrary on [05/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 845

− [[[𝑧4, 𝑧1], [𝑧4, 𝑧2]], [[𝑧3, 𝑧0], [𝑧3, 𝑧2]]]

+ [[[𝑧3, 𝑧2], [𝑧3, 𝑧1]], [[𝑧4, 𝑧2], [𝑧4, 𝑧0]]]

+ [[[𝑧4, 𝑧2], [𝑧4, 𝑧1]], [[𝑧3, 𝑧2], [𝑧3, 𝑧0]]]

+ [[[𝑧4, 𝑧2], [𝑧3, 𝑧0]], [[𝑧4, 𝑧2], [𝑧3, 𝑧1]]]

+ [[[𝑧4, 𝑧1], [𝑧3, 𝑧2]], [[𝑧4, 𝑧2], [𝑧3, 𝑧0]]]

+ [[[𝑧4, 𝑧2], [𝑧3, 𝑧1]], [[𝑧4, 𝑧0], [𝑧3, 𝑧2]]]

+ [[[𝑧4, 𝑧0], [𝑧3, 𝑧2]], [[𝑧4, 𝑧1], [𝑧3, 𝑧2]]]

+ [[[𝑧4, 𝑧2], [𝑧3, 𝑧1]], [[𝑧4, 𝑧3], [𝑧2, 𝑧0]]]

+ [[[𝑧4, 𝑧3], [𝑧2, 𝑧1]], [[𝑧4, 𝑧2], [𝑧3, 𝑧0]]]

+ [[[𝑧4, 𝑧3], [𝑧2, 𝑧0]], [[𝑧4, 𝑧1], [𝑧3, 𝑧2]]]

+ [[[𝑧4, 𝑧0], [𝑧3, 𝑧2]], [[𝑧4, 𝑧3], [𝑧2, 𝑧1]]]

+ [[[𝑧4, 𝑧3], [𝑧2, 𝑧0]], [[𝑧4, 𝑧3], [𝑧2, 𝑧1]]].

9 EXAMPLES

The homotopy classes presented above yielded with relatively little computational effort Lie
algebras and groups with 𝑝-torsion in some high-degree dimension quotient. Using more
computational resources, we were able to find 𝑝-torsion in lower degree for 𝑝 = 2 and
𝑝 = 3.
A general simplification (see Propositions 8.2 and 8.3) is that we can start by an element 𝛼𝑝 of

degree 𝑝 and not 2𝑝, by writing generators 𝑥𝑖𝑗 in place of [𝑥𝑖, 𝑥𝑗]. Indeed all the computations that
express 𝛼𝑝 as an symmetrized associative product actually take place inL𝑝L2(ℤ2𝑝) ⊂ L2𝑝(ℤ2𝑝).
In fact, this amounts to working in Milnor’s simplicial construction 𝐹[𝑆2], whose geometric real-
ization is Ω𝑆3, and in its Lie analog 𝐿[𝑆2]. Observe that, for spheres 𝑆𝑑 of dimension 𝑑 > 3, as
well as of Moore spaces, there is a description of homotopy groups as centers of explicitly defined
finitely generated groups [45]. However, these groups are not as easily defined as in the case of
𝑆2, when we quotient by the symmetric commutator. This is why we concentrated on 𝑆2 ∨ 𝑆2 in
this article.

9.1 𝒑 = 𝟐

The construction given in the proof of Theorem 1.2 has generators 𝑥0, 𝑥1, 𝑥2 and 𝑥3 ∶= −𝑥0 −

𝑥1 − 𝑥2. The element 𝜔 belongs to 𝛿14(𝐴) ⧵ 𝛾14(𝐴). It is possible to be a little bit more econom-
ical, by keeping the nilpotency degrees of the 𝑦𝑖 more under control: the best we could achieve
is

𝐴 = ⟨𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦
(1)
0

, 𝑦
(2)
1

, 𝑦
(2)
2

, 𝑦
(2)
3

∣

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 0, 𝑥0 = 26𝑦0, 26𝑥1 = 25𝑦1, 25𝑥2 = 23𝑦2, 23𝑥3 = 𝑦3⟩
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846 BARTHOLDI and MIKHAILOV

and the element 𝜔 = [[𝑥0, 𝑥2], [𝑥1, 𝑥2]]. In that Lie algebra, we have 𝜔 ∈ 𝛿7(𝐴) ⧵ 𝛾7(𝐴) and
2𝜔 ∈ 𝛾7(𝐴). This can be checked by hand, or computer using the program lienq by Csaba
Schneider [54], or its improvement anq [1]; see the Appendix.
Rewriting [𝑥𝑖, 𝑥𝑗] as 𝑥𝑖𝑗 allows more simplifications; we may consider general presentations of

the form

𝐴 = ⟨𝑥01, 𝑥02, 𝑥03, 𝑥12, 𝑥13, 𝑥23, 𝑦(2)
01

, 𝑦(2)
02

, 𝑦(2)
03

, 𝑦(2)
12

, 𝑦(2)
13

, 𝑦(2)
23

∣

𝑥01 + 𝑥02 + 𝑥03 = −𝑥01 + 𝑥12 + 𝑥13 = −𝑥02 − 𝑥12 + 𝑥23 = 0,

2𝑎𝑖𝑗 𝑥𝑖𝑗 = 2𝑏𝑖𝑗 𝑦𝑖𝑗 for all 𝑖, 𝑗⟩.
Suppose that the element 𝜔 is 2𝑛[𝑥02𝑥12] and we want to show that it belongs to 𝛿4(𝐴) ⧵ 𝛾4(𝐴).
Using the associative rewriting [𝑥02, 𝑥12] = 𝑥23𝑥01 + 𝑥12𝑥03 − 𝑥02𝑥13 from (8.4), we will have 𝜔 ∈

𝛿4(𝐴) as soon as 𝐴 has relations of the form 2𝑛𝑥23 = 2𝑎23𝑦23 and 2𝑎23𝑥01 = 𝑦01 and similarly for
the other generators. The condition𝜔 ∉ 𝛾4(𝐴) can be checked by a direct calculation, for example,
using anq.
Wemay also replace the variables 𝑥𝑖𝑗 by 2𝑏𝑖𝑗 𝑥𝑖𝑗 for well-chosen 𝑏𝑖𝑗 . This amounts, essentially, to

letting the 𝑥𝑖𝑗 have degree less than 1. For instance, replacing 𝑥𝑖𝑗 by 2𝑖+𝑗𝑥𝑖𝑗 in the example above
and simplifying somewhat, we get

𝐴 = ⟨𝑥01, 𝑥02, 𝑥12, 𝑦(2)
01

, 𝑦(2)
02

, 𝑦(2)
03

, 𝑦(2)
12

, 𝑦(2)
13

, 𝑦(2)
23

∣

22𝑥01 = 𝑦01, 24𝑥02 = 𝑦02, 26𝑥12 = 𝑦12,

26(−𝑥01 − 2𝑥02) = 26𝑦03, 25(𝑥01 − 4𝑥12) = 24𝑦13, 25(𝑥02 + 2𝑥12) = 22𝑦23⟩
with 𝜔 ∶= 25[𝑥02, 𝑥12] ∈ 𝛿4(𝐴) ⧵ 𝛾4(𝐴). We have 𝜔 ≡ 25[𝑥01, 𝑥02] + 26[𝑥01, 𝑥12] + 27[𝑥02, 𝑥12]

modulo 𝛾4(𝐴). We may also choose 𝑛 ⩾ 4 and let 𝑦0𝑗 have degree 𝑛 − 2 for all 𝑗, obtaining in
this manner examples with 2-torsion in 𝛿𝑛(𝐴)∕𝛾𝑛(𝐴).
It is straightforward to convert the example above into a group: it will be

𝐺 = ⟨𝑥01, 𝑥02, 𝑥12, 𝑦
(2)
01

, 𝑦
(2)
02

, 𝑦
(2)
03

, 𝑦
(2)
12

, 𝑦
(2)
13

, 𝑦
(2)
23

∣

𝑥4
01 = 𝑦01, 𝑥16

02 = 𝑦02, 𝑥64
12 = 𝑦12,

𝑥−64
01 𝑥−128

02 = 𝑦64
03, 𝑥32

01𝑥−128
12 = 𝑦16

13, 𝑥32
02𝑥64

12 = 𝑦4
23⟩

and the element𝜔 = [𝑒0, 𝑒1]32[𝑒0, 𝑒2]64[𝑒1, 𝑒2]128 belongs to 𝛿4(𝐺) ⧵ 𝛾4(𝐺). Increasing the degree of
the 𝑦0𝑗 leads, for every 𝑛 ⩾ 4, to a group𝐺 with 2-torsion in 𝛿𝑛(𝐺)∕𝛾𝑛(𝐺). This is essentially Rips’s
original example (1.1), except that his example contains more relations that make the group finite.

9.2 𝒑 = 𝟑

As in the 𝑝 = 2 case, we may construct a Lie algebra with generators 𝑥𝑖𝑗 as follows:

𝐴 = ⟨𝑥𝑖𝑗, 𝑦
(𝑖+𝑗+1)

𝑖𝑗
for 0 ⩽ 𝑖 < 𝑗 ⩽ 5,

𝑥01 + 𝑥02 + 𝑥03 + 𝑥04 + 𝑥05 = 0,
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 847

−𝑥01 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 = 0,

−𝑥02 − 𝑥12 + 𝑥23 + 𝑥24 + 𝑥25 = 0,

−𝑥03 − 𝑥13 − 𝑥23 + 𝑥34 + 𝑥35 = 0,

−𝑥04 − 𝑥14 − 𝑥24 − 𝑥34 + 𝑥45 = 0,

3𝑖+𝑗𝑥𝑖𝑗 = 𝑦𝑖𝑗 for 0 ⩽ 𝑖 < 𝑗 ⩽ 5⟩
and the element 𝜔 = 315([𝑥04, 𝑥14, 𝑥23] − [𝑥04, 𝑥24, 𝑥13] + [𝑥04, 𝑥34, 𝑥12] + [𝑥14, 𝑥24, 𝑥03] −

[𝑥14, 𝑥34, 𝑥02] + [𝑥24, 𝑥34, 𝑥01]) that belongs to 𝛿18(𝐴) ⧵ 𝛾18(𝐴).
Again there is substantial flexibility in this example: the degrees of the 𝑦𝑖𝑗 may be adjusted,

and the last relations may be changed to 3𝑎𝑖𝑗 𝑥𝑖𝑗 = 3𝑐𝑖𝑗 𝑦𝑖𝑗 for well-chosen 𝑎𝑖𝑗, 𝑐𝑖𝑗 . The variables
𝑥𝑖𝑗 themselves may be replaced by 3𝑏𝑖𝑗 𝑥𝑖𝑗 for well-chosen 𝑏𝑖𝑗 . Finally, some extra linear con-
ditions may be imposed on the variables, such as 𝑥02 = 𝑥13 = 𝑥15 = 𝑥24 = 𝑥34 = 0. After some
experimentation, we arrived at the following reasonably small example:

𝐴 = ⟨𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑦
(2)
𝑖

for 𝑖 ∈ {0, … , 3}, 𝑦
(3)
𝑖𝑗

for 0 ⩽ 𝑖 < 𝑗 ⩽ 3 ∣

32𝑖𝑒𝑖 = 𝑦𝑖, 312−𝑖𝑒𝑗 + 312−𝑗𝑒𝑖 = 312−2𝑖−2𝑗𝑦𝑖𝑗 for (𝑖, 𝑗) ∈ {(0, 1), (0, 2), (1, 3), (2, 3)}⟩ (9.1)

with 𝜔 = 39[𝑒2, 𝑒1, 𝑒0].

Proposition 9.1. For the Lie ring 𝐴 defined in (9.1) we have 𝜔 ∈ 𝛿7(𝐴) ⧵ 𝛾7(𝐴) and 3𝜔 ∈ 𝛾7(𝐴).

Proof. Expanding 𝜔 associatively, we get

𝜔 = 39(𝑒0𝑒1𝑒2 − 𝑒0𝑒2𝑒1 − 𝑒1𝑒2𝑒0 + 𝑒2𝑒1𝑒0).

We may rewrite it as

𝜔 = − 𝑒0(39𝑒2 + 310𝑒3)𝑒1 − 𝑒1(39𝑒2 + 310𝑒3)𝑒0

+ 𝑒0(39𝑒1 + 311𝑒3)𝑒2 + 𝑒2(39𝑒1 + 311𝑒3)𝑒0

+ (310𝑒0 + 312𝑒2)𝑒3𝑒1 + 𝑒1𝑒3(310𝑒0 + 312𝑒2)

− (311𝑒0 + 312𝑒1)𝑒3𝑒2 − 𝑒2𝑒3(311𝑒0 + 312𝑒1).

Each of the summands belongs to 𝜛7(𝐴): they are all products of 𝑒𝑘, 𝑒𝓁 and 312−𝑖𝑒𝑗 + 312−𝑗𝑒𝑖 for
some {𝑖, 𝑗, 𝑘,𝓁} = {0, 1, 2, 3}. The binomial term equals 312−2𝑖−2𝑗𝑦𝑖𝑗 = 32𝑘+2𝓁𝑦𝑖𝑗 , so the summand
is the product of 32𝑘𝑒𝑘, 32𝓁𝑒𝓁 and 𝑦𝑖𝑗 , namely the product of 𝑦𝑘, 𝑦𝓁 , 𝑦𝑖𝑗 , of respective degrees 2,2,3.
To check that𝜔 does not belong to 𝛾7(𝐴) but that 3𝜔 does, we compute nilpotent quotients of𝐴.

We did the calculation using two different programs: lienq by Csaba Schneider and LieRing [35]
for GAP [18] by Willem de Graaf and Serena Cicalò. □

In the next subsection, we give a direct proof that the associated group has 3-torsion in 𝛿7∕𝛾7.
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848 BARTHOLDI and MIKHAILOV

9.3 A small, finite 𝟑-group 𝑮 with 𝜹𝟕(𝑮) ≠ 𝜸𝟕(𝑮)

We consider the group 𝐺 given by the presentation (9.1), namely,

𝐺 = ⟨𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑦(2)
𝑖

for 𝑖 ∈ {0, … , 3}, 𝑦(3)
𝑖𝑗

for 0 ⩽ 𝑖 < 𝑗 ⩽ 3 ∣

𝑒32𝑖

𝑖
= 𝑦𝑖, 𝑒312−𝑖

𝑗
𝑒312−𝑗

𝑖
= 𝑦312−2𝑖−2𝑗

𝑖𝑗
for (𝑖, 𝑗) ∈ {(0, 1), (0, 2), (1, 3), (2, 3)}⟩ (9.2)

with 𝜔 = [𝑒2, 𝑒1, 𝑒0]39 .

Proposition 9.2. In the group defined by (9.2), we have 𝜔 ∈ 𝛿7(𝐺).

Proof. We will use the following well-known identity, which holds for any element 𝑥 ∈ 𝐺 and
𝑑 ⩾ 2:

𝑥𝑑 − 1 =

𝑑∑
𝑘=1

(
𝑑

𝑘

)
(𝑥 − 1)𝑘. (9.3)

We compute modulo 𝜛7(𝐺), and from now on write ≡ to mean equivalence modulo 𝜛7(𝐺). We
get

𝜔 − 1 ≡ 39([𝑒2, 𝑒1, 𝑒0] − 1) as [𝑒2, 𝑒1, 𝑒0] ∈ 𝛾4(𝐺)

= 39[𝑒1, 𝑒2]𝑒−1
0 (([𝑒2, 𝑒1] − 1)(𝑒0 − 1) − (𝑒0 − 1)([𝑒2, 𝑒1] − 1))

= 39[𝑒1, 𝑒2]𝑒−1
0

(
𝑒−1

2 𝑒−1
1 ((𝑒2 − 1)(𝑒1 − 1) − (𝑒1 − 1)(𝑒2 − 1))(𝑒0 − 1)

−(𝑒0 − 1)𝑒−1
2 𝑒−1

1 ((𝑒2 − 1)(𝑒1 − 1) − (𝑒1 − 1)(𝑒2 − 1))
)
;

and as 39 is divisible by the product of exponent of 𝑒0, 𝑒1, 𝑒2 modulo 𝛾2(𝐺),

≡ 39((𝑒0 − 1)(𝑒1 − 1)(𝑒2 − 1) − (𝑒0 − 1)(𝑒2 − 1)(𝑒1 − 1)

− (𝑒1 − 1)(𝑒2 − 1)(𝑒0 − 1) + (𝑒2 − 1)(𝑒1 − 1)(𝑒0 − 1)).

Let us write 𝑓𝑖 ∶= 𝑒𝑖 − 1 for 𝑖 ∈ {0, 1, 2, 3}. Then, as in the proof of Proposition 9.1, we have

𝜔 − 1 ≡ 39(𝑓0𝑓1𝑓2 − 𝑓0𝑓2𝑓1 − 𝑓1𝑓2𝑓0 + 𝑓2𝑓1𝑓0)

= − 𝑓0(39𝑓2 + 310𝑓3)𝑓1 − 𝑓1(39𝑓2 + 310𝑓3)𝑓0

+ 𝑓0(39𝑓1 + 311𝑓3)𝑓2 + 𝑓2(39𝑓1 + 311𝑓3)𝑓0

+ (310𝑓0 + 312𝑓2)𝑓3𝑓1 + 𝑓1𝑓3(310𝑓0 + 312𝑓2)

− (311𝑓0 + 312𝑓1)𝑓3𝑓2 − 𝑓2𝑓3(311𝑓0 + 312𝑓1).

Next, using (9.3) we have

𝑒312−𝑗

𝑖
𝑒312−𝑖

𝑗
− 1 = (𝑒312−𝑗

𝑖
− 1) + (𝑒312−𝑖

𝑗
− 1) + (𝑒312−𝑗

𝑖
− 1)(𝑒312−𝑖

𝑗
− 1)

= 312−𝑗𝑓𝑖 +

(
312−𝑗

2

)
𝑓2

𝑖 +

(
312−𝑗

3

)
𝑓3

𝑖
+ ⋯
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GROUP AND LIE ALGEBRA FILTRATIONS AND HOMOTOPY GROUPS OF SPHERES 849

+ 312−𝑖𝑓𝑗 +

(
312−𝑖

2

)
𝑓2

𝑗 +

(
312−𝑖

3

)
𝑓3

𝑗
+ ⋯

+ 324−𝑖−𝑗𝑓𝑖𝑓𝑗 + ⋯

= 𝑦312−2𝑖−2𝑗

𝑖𝑗
− 1 = 312−2𝑖−2𝑗(𝑦𝑖𝑗 − 1) +

(
312−2𝑖−2𝑗

2

)
(𝑦𝑖𝑗 − 1)2 + ⋯

Again using (9.3), the relations 𝑒32𝑖

𝑖
= 𝑦𝑖 imply 32𝑖𝑓𝑖 ∈ 𝜛2. Now 312−2𝑖−2𝑗 divides

(312−𝑗

3

)
∕32𝑖 , so(312−𝑗

2

)
𝑓2

𝑖
∈ 312−2𝑖−2𝑗𝜛3. Similarly, 312−2𝑖−2𝑗 divides

(312−𝑗

3

)
and

(312−𝑗

4

)
so all termswith a binomial

coëfficient belong to 312−2𝑖−2𝑗𝜛3 + 𝜛5. The same holds for all terms in the last two rows. We
therefore have

312−𝑗𝑓𝑖 + 312−𝑖𝑓𝑗 ∈ 312−2𝑖−2𝑗𝜛3 + 𝜛5.

We note 312−2𝑖−2𝑗 = 32𝑘+2𝓁 whenever {𝑖, 𝑗, 𝑘,𝓁} = {0, 1, 2, 3}. Returning to computations modulo
𝜛7, we consider a typical summand 𝑓𝑘(312−𝑗𝑓𝑖 + 312−𝑖𝑓𝑗)𝑓𝓁 in our decomposition of 𝜔 − 1. We
write 312−𝑗𝑓𝑖 + 312−𝑖𝑓𝑗 = 312−2𝑖−2𝑗𝑢 + 𝑣 with 𝑢 ∈ 𝜛3, 𝑣 ∈ 𝜛5 to get

𝑓𝑘(312−𝑗𝑓𝑖 + 312−𝑖𝑓𝑗)𝑓𝓁 = 𝑓𝑘(32𝑘+2𝓁𝑢 + 𝑣)𝑓𝓁 = (32𝑘𝑓𝑘)𝑢(32𝓁𝑓𝓁) + 𝑓𝑘𝑣𝑓𝓁 ,

where each summand belongs to 𝜛7. □

Proposition 9.3. In the group defined by (9.2), the element𝜔 defined above does not belong to 𝛾7(𝐺),
but its cube does.

Proof. The proof is computer-assisted. It suffices to exhibit a quotient 𝐺 of 𝐺 in which the image
of 𝜔 does not belong to 𝛾7(𝐺) but its cube does, and we shall exhibit a finite 3-group as quotient.
Tomake the computationsmoremanageable, we replace the generators 𝑦𝑖 and 𝑦𝑖𝑗 by generators

𝑧0, … , 𝑧3, and impose the choices

𝑦0 = [𝑧0, 𝑧1], 𝑦1 = [𝑧0, 𝑧2], 𝑦2 = [𝑧0, 𝑧3], 𝑦3 = [𝑧1, 𝑧2],

𝑦01 = 1, 𝑦02 = [𝑧1, 𝑧3, 𝑧3], 𝑦13 = [𝑧1, 𝑧3, 𝑧1], 𝑦23 = [𝑧1, 𝑧3, 𝑧0].

In this manner, we obtain an 8-generated group ⟨𝑒0, … , 𝑒3, 𝑧0, … , 𝑧3⟩. We next impose extra
commutation relations: [𝑒2, 𝑧2], [𝑒3, 𝑧2], [𝑒1, 𝑧3], [𝑒2, 𝑧3], [𝑒3, 𝑧3].
We compute a basis of left-normed commutators of length at most 6 in that group; notice

that 𝜔 may be expressed as [𝑧3, 𝑧2, 𝑧3, 𝑧1, 𝑧1, 𝑒3]35 , and impose extra relations making 𝛾6 cyclic
and central.
The resulting finite presentation may be fed to the program pq by Eamonn O’Brien [47], to

compute the maximal quotient of 3-class 17. This is a group of order 33996, and can (barely) be
loaded in the computer algebra system GAP [18] so as to check (for safety) that the relations of 𝐺

hold, and that the element 𝜔 has a nontrivial image in it.
Finally, the order of the groupmay be reduced by iteratively quotienting bymaximal subgroups

of the center that do not contain 𝜔. □

The resulting group, which is the minimal-order 3-group with nontrivial dimension quotient
that we could obtain, has order 3494.
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850 BARTHOLDI and MIKHAILOV

It may be loaded in any GAP distribution by downloading the ancillary file 3group.gap to the
current directory and running Read("3group.gap"); in a GAP session.

APPENDIX: THE PROGRAM ANQ

Wehave developed a power computer program to explore nilpotent quotients of finitely presented
Lie rings. It is freely available at https://github.com/laurentbartholdi/anq. The first example
in Subsection 9.1 is entered by putting the following in a file:

< x0, x1, x2, x3, omega, omega2, y0; y1; y2; y3 | x0+x1+x2+x3,
x0 = 2ˆ7*y0, 2ˆ1*x1 = y1, 2ˆ2*x2 = y2, 2ˆ4*x3 = y3,
omega := [[x0,x2],[x1,x2]], omega2 := 2*omega >

Without going into details: generators are listed, separated by commas (,) or semicolons (;);
the degree of a generator is onemore than the number of preceding semicolons. Relations are then
listed after the |. The last two relations are aliases: they define a generator in terms of previously-
listed generators. (Being an alias merely speeds up the program.)

anq supports a variety of rings; in particular, finite ringsℤ∕𝑝𝑛ℤ in which arithmetic is very fast;
fixed-precision integers (which abort under overflow); and arbitrary-precision integers (which
tend to be quite slow). As for the example above we are interested in 2-torsion, we compile an
executable for 𝑝 = 2 and 𝑛 large:

% make nq_l_2_64

The “l” means “Lie algebra,” and 𝑝 and 𝑛 are given separated by underscores (_). Replacing
“l” by “g” would compile a group quotient program. If the presentation above was saved in file
twotorsion, we could then invoke

% ./nq_l_2_64 -N4 -W9 ./twotorsion | grep omega
# omega |–> 256*a149 + 4*a150 + 252*a152 + 1*a156 + 2*a157

+ 256*a159 + 1*a161
# omega2 |–>

This tells us that, in the maximal quotient of the given Lie algebra of nilpotency class 4 and
maximal degree 9, the element 𝜔 is nontrivial but its double is trivial. Note that the nilpotency
class option “-N4” forces all five-fold iterated commutators to vanish, and also serves as a speedup;
as the generators y1,y2,y3 have degree 2,3,4, respectively, the effective nilpotency class of the
quotient is at most 1 + 2 + 3 + 4 = 10, if each yi is written as an (𝑖 + 1)-fold iterated commutator
of degree-1 generators.
We have in this manner verified that 𝜔 does not belong to 𝛾10, but that 2𝜔 does belong to 𝛾10. It

remains to check, by hand, that 𝜔 belongs to 𝛿10 to conclude that indeed the example above has
2-torsion in 𝛿10∕𝛾10.
Note that the same verification could have been made by computing with coefficients ℤ∕215;

but the answer with coefficients ℤ∕214 would have been inconclusive.
The Lie algebra example (9.1) was also checked using anq, as follows:

% make nq_l_3_38
% echo ’< e0, e1, e2, e3, omega, omega3; y0, y1, y2, y3; y00,

y01, y02, y03, y12, y13, y23 |
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3ˆ0*e0 = y0, 3ˆ2*e1 = y1, 3ˆ4*e2 = y2, 3ˆ6*e3 = y3,
3ˆ12*e1 + 3ˆ11*e0 = 3ˆ10*y01,
3ˆ12*e2 + 3ˆ10*e0 = 3ˆ8*y02,
3ˆ11*e3 + 3ˆ9*e1 = 3ˆ4*y13,
3ˆ10*e3 + 3ˆ9*e2 = 3ˆ2*y23,
omega := 3ˆ9*[e2,e1,e0], omega3 := 3*omega >’ | ./nq_l_3_38 -W6 -

N3 | grep omega
# omega |–> 2*a323
# omega3 |–>
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