Please use this identifier to cite or link to this item: doi:10.22028/D291-39321
Title: Characterizing the IoT ecosystem at scale
Author(s): Saidi, Said Jawad
Language: English
Year of Publication: 2022
DDC notations: 004 Computer science, internet
510 Mathematics
600 Technology
Publikation type: Dissertation
Abstract: Internet of Things (IoT) devices are extremely popular with home, business, and industrial users. To provide their services, they typically rely on a backend server in- frastructure on the Internet, which collectively form the IoT Ecosystem. This ecosys- tem is rapidly growing and offers users an increasing number of services. It also has been a source and target of significant security and privacy risks. One notable exam- ple is the recent large-scale coordinated global attacks, like Mirai, which disrupted large service providers. Thus, characterizing this ecosystem yields insights that help end-users, network operators, policymakers, and researchers better understand it, obtain a detailed view, and keep track of its evolution. In addition, they can use these insights to inform their decision-making process for mitigating this ecosystem’s security and privacy risks. In this dissertation, we characterize the IoT ecosystem at scale by (i) detecting the IoT devices in the wild, (ii) conducting a case study to measure how deployed IoT devices can affect users’ privacy, and (iii) detecting and measuring the IoT backend infrastructure. To conduct our studies, we collaborated with a large European Internet Service Provider (ISP) and a major European Internet eXchange Point (IXP). They rou- tinely collect large volumes of passive, sampled data, e.g., NetFlow and IPFIX, for their operational purposes. These data sources help providers obtain insights about their networks, and we used them to characterize the IoT ecosystem at scale. We start with IoT devices and study how to track and trace their activity in the wild. We developed and evaluated a scalable methodology to accurately detect and monitor IoT devices with limited, sparsely sampled data in the ISP and IXP. Next, we conduct a case study to measure how a myriad of deployed devices can affect the privacy of ISP subscribers. Unfortunately, we found that the privacy of a substantial fraction of IPv6 end-users is at risk. We noticed that a single device at home that encodes its MAC address into the IPv6 address could be utilized as a tracking identifier for the entire end-user prefix—even if other devices use IPv6 privacy extensions. Our results showed that IoT devices contribute the most to this privacy leakage. Finally, we focus on the backend server infrastructure and propose a methodology to identify and locate IoT backend servers operated by cloud services and IoT vendors. We analyzed their IoT traffic patterns as observed in the ISP. Our analysis sheds light on their diverse operational and deployment strategies. The need for issuing a priori unknown network-wide queries against large volumes of network flow capture data, which we used in our studies, motivated us to develop Flowyager. It is a system built on top of existing traffic capture utilities, and it relies on flow summarization techniques to reduce (i) the storage and transfer cost of flow captures and (ii) query response time. We deployed a prototype of Flowyager at both the IXP and ISP.
Internet-of-Things-Geräte (IoT) sind aus vielen Haushalten, Büroräumen und In- dustrieanlagen nicht mehr wegzudenken. Um ihre Dienste zu erbringen, nutzen IoT- Geräte typischerweise auf eine Backend-Server-Infrastruktur im Internet, welche als Gesamtheit das IoT-Ökosystem bildet. Dieses Ökosystem wächst rapide an und bie- tet den Nutzern immer mehr Dienste an. Das IoT-Ökosystem ist jedoch sowohl eine Quelle als auch ein Ziel von signifikanten Risiken für die Sicherheit und Privatsphäre. Ein bemerkenswertes Beispiel sind die jüngsten groß angelegten, koordinierten globa- len Angriffe wie Mirai, durch die große Diensteanbieter gestört haben. Deshalb ist es wichtig, dieses Ökosystem zu charakterisieren, eine ganzheitliche Sicht zu bekommen und die Entwicklung zu verfolgen, damit Forscher, Entscheidungsträger, Endnutzer und Netzwerkbetreibern Einblicke und ein besseres Verständnis erlangen. Außerdem können alle Teilnehmer des Ökosystems diese Erkenntnisse nutzen, um ihre Entschei- dungsprozesse zur Verhinderung von Sicherheits- und Privatsphärerisiken zu verbes- sern. In dieser Dissertation charakterisieren wir die Gesamtheit des IoT-Ökosystems indem wir (i) IoT-Geräte im Internet detektieren, (ii) eine Fallstudie zum Einfluss von benutzten IoT-Geräten auf die Privatsphäre von Nutzern durchführen und (iii) die IoT-Backend-Infrastruktur aufdecken und vermessen. Um unsere Studien durchzuführen, arbeiten wir mit einem großen europäischen Internet- Service-Provider (ISP) und einem großen europäischen Internet-Exchange-Point (IXP) zusammen. Diese sammeln routinemäßig für operative Zwecke große Mengen an pas- siven gesampelten Daten (z.B. als NetFlow oder IPFIX). Diese Datenquellen helfen Netzwerkbetreibern Einblicke in ihre Netzwerke zu erlangen und wir verwendeten sie, um das IoT-Ökosystem ganzheitlich zu charakterisieren. Wir beginnen unsere Analysen mit IoT-Geräten und untersuchen, wie diese im Inter- net aufgespürt und verfolgt werden können. Dazu entwickelten und evaluierten wir eine skalierbare Methodik, um IoT-Geräte mit Hilfe von eingeschränkten gesampelten Daten des ISPs und IXPs präzise erkennen und beobachten können. Als Nächstes führen wir eine Fallstudie durch, in der wir messen, wie eine Unzahl von eingesetzten Geräten die Privatsphäre von ISP-Nutzern beeinflussen kann. Lei- der fanden wir heraus, dass die Privatsphäre eines substantiellen Teils von IPv6- Endnutzern bedroht ist. Wir entdeckten, dass bereits ein einzelnes Gerät im Haus, welches seine MAC-Adresse in die IPv6-Adresse kodiert, als Tracking-Identifikator für das gesamte Endnutzer-Präfix missbraucht werden kann — auch wenn andere Geräte IPv6-Privacy-Extensions verwenden. Unsere Ergebnisse zeigten, dass IoT-Geräte den Großteil dieses Privatsphäre-Verlusts verursachen. Abschließend fokussieren wir uns auf die Backend-Server-Infrastruktur und wir schla- gen eine Methodik zur Identifizierung und Lokalisierung von IoT-Backend-Servern vor, welche von Cloud-Diensten und IoT-Herstellern betrieben wird. Wir analysier- ten Muster im IoT-Verkehr, der vom ISP beobachtet wird. Unsere Analyse gibt Auf- schluss über die unterschiedlichen Strategien, wie IoT-Backend-Server betrieben und eingesetzt werden. Die Notwendigkeit a-priori unbekannte netzwerkweite Anfragen an große Mengen von Netzwerk-Flow-Daten zu stellen, welche wir in in unseren Studien verwenden, moti- vierte uns zur Entwicklung von Flowyager. Dies ist ein auf bestehenden Netzwerkverkehrs- Tools aufbauendes System und es stützt sich auf die Zusammenfassung von Verkehrs- flüssen, um (i) die Kosten für Archivierung und Transfer von Flow-Daten und (ii) die Antwortzeit von Anfragen zu reduzieren. Wir setzten einen Prototypen von Flowyager sowohl im IXP als auch im ISP ein.
Link to this record: urn:nbn:de:bsz:291--ds-393218
hdl:20.500.11880/35568
http://dx.doi.org/10.22028/D291-39321
Advisor: Feldmann, Anja
Date of oral examination: 24-Feb-2023
Date of registration: 3-Apr-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
said_jawad_saidi_thesis.pdfPh.D. Dissertation14,81 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.