
Universität des Saarlandes

Characterizing the IoT Ecosystem at Scale

A dissertation submitted towards the degree
Doctor of Natural Sciences

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Said Jawad Saidi

Saarbrücken, 2022

Day of Colloquium 24 / 02 / 2023

Dean of the Faculty Univ.-Prof. Dr. Jürgen Steimle

Chair of the Committee Prof. Dr. Ingmar Weber

Reporters Prof. Dr. Anja Feldmann

Prof. Dr. Georgios Smaragdakis

Prof. Dr. Jörg Ott

Academic Assistant Dr. Jialong Li

ii

Abstract

Internet of Things (IoT) devices are extremely popular with home, business, and
industrial users. To provide their services, they typically rely on a backend server in-
frastructure on the Internet, which collectively form the IoT Ecosystem. This ecosys-
tem is rapidly growing and offers users an increasing number of services. It also has
been a source and target of significant security and privacy risks. One notable exam-
ple is the recent large-scale coordinated global attacks, like Mirai, which disrupted
large service providers. Thus, characterizing this ecosystem yields insights that help
end-users, network operators, policymakers, and researchers better understand it,
obtain a detailed view, and keep track of its evolution. In addition, they can use
these insights to inform their decision-making process for mitigating this ecosystem’s
security and privacy risks. In this dissertation, we characterize the IoT ecosystem
at scale by (i) detecting the IoT devices in the wild, (ii) conducting a case study to
measure how deployed IoT devices can affect users’ privacy, and (iii) detecting and
measuring the IoT backend infrastructure.

To conduct our studies, we collaborated with a large European Internet Service
Provider (ISP) and a major European Internet eXchange Point (IXP). They rou-
tinely collect large volumes of passive, sampled data, e.g., NetFlow and IPFIX, for
their operational purposes. These data sources help providers obtain insights about
their networks, and we used them to characterize the IoT ecosystem at scale.

We start with IoT devices and study how to track and trace their activity in the
wild. We developed and evaluated a scalable methodology to accurately detect and
monitor IoT devices with limited, sparsely sampled data in the ISP and IXP.

Next, we conduct a case study to measure how a myriad of deployed devices can
affect the privacy of ISP subscribers. Unfortunately, we found that the privacy of
a substantial fraction of IPv6 end-users is at risk. We noticed that a single device
at home that encodes its MAC address into the IPv6 address could be utilized as
a tracking identifier for the entire end-user prefix—even if other devices use IPv6
privacy extensions. Our results showed that IoT devices contribute the most to this
privacy leakage.

Finally, we focus on the backend server infrastructure and propose a methodology to
identify and locate IoT backend servers operated by cloud services and IoT vendors.
We analyzed their IoT traffic patterns as observed in the ISP. Our analysis sheds
light on their diverse operational and deployment strategies.

The need for issuing a priori unknown network-wide queries against large volumes
of network flow capture data, which we used in our studies, motivated us to develop
Flowyager. It is a system built on top of existing traffic capture utilities, and it relies
on flow summarization techniques to reduce (i) the storage and transfer cost of flow
captures and (ii) query response time. We deployed a prototype of Flowyager at both
the IXP and ISP.

iii

Zusammenfassung

Internet-of-Things-Geräte (IoT) sind aus vielen Haushalten, Büroräumen und In-
dustrieanlagen nicht mehr wegzudenken. Um ihre Dienste zu erbringen, nutzen IoT-
Geräte typischerweise auf eine Backend-Server-Infrastruktur im Internet, welche als
Gesamtheit das IoT-Ökosystem bildet. Dieses Ökosystem wächst rapide an und bie-
tet den Nutzern immer mehr Dienste an. Das IoT-Ökosystem ist jedoch sowohl eine
Quelle als auch ein Ziel von signifikanten Risiken für die Sicherheit und Privatsphäre.
Ein bemerkenswertes Beispiel sind die jüngsten groß angelegten, koordinierten globa-
len Angriffe wie Mirai, durch die große Diensteanbieter gestört haben. Deshalb ist es
wichtig, dieses Ökosystem zu charakterisieren, eine ganzheitliche Sicht zu bekommen
und die Entwicklung zu verfolgen, damit Forscher, Entscheidungsträger, Endnutzer
und Netzwerkbetreibern Einblicke und ein besseres Verständnis erlangen. Außerdem
können alle Teilnehmer des Ökosystems diese Erkenntnisse nutzen, um ihre Entschei-
dungsprozesse zur Verhinderung von Sicherheits- und Privatsphärerisiken zu verbes-
sern. In dieser Dissertation charakterisieren wir die Gesamtheit des IoT-Ökosystems
indem wir (i) IoT-Geräte im Internet detektieren, (ii) eine Fallstudie zum Einfluss
von benutzten IoT-Geräten auf die Privatsphäre von Nutzern durchführen und (iii)
die IoT-Backend-Infrastruktur aufdecken und vermessen.

Um unsere Studien durchzuführen, arbeiten wir mit einem großen europäischen Internet-
Service-Provider (ISP) und einem großen europäischen Internet-Exchange-Point (IXP)
zusammen. Diese sammeln routinemäßig für operative Zwecke große Mengen an pas-
siven gesampelten Daten (z.B. als NetFlow oder IPFIX). Diese Datenquellen helfen
Netzwerkbetreibern Einblicke in ihre Netzwerke zu erlangen und wir verwendeten sie,
um das IoT-Ökosystem ganzheitlich zu charakterisieren.

Wir beginnen unsere Analysen mit IoT-Geräten und untersuchen, wie diese im Inter-
net aufgespürt und verfolgt werden können. Dazu entwickelten und evaluierten wir
eine skalierbare Methodik, um IoT-Geräte mit Hilfe von eingeschränkten gesampelten
Daten des ISPs und IXPs präzise erkennen und beobachten können.

Als Nächstes führen wir eine Fallstudie durch, in der wir messen, wie eine Unzahl
von eingesetzten Geräten die Privatsphäre von ISP-Nutzern beeinflussen kann. Lei-
der fanden wir heraus, dass die Privatsphäre eines substantiellen Teils von IPv6-
Endnutzern bedroht ist. Wir entdeckten, dass bereits ein einzelnes Gerät im Haus,
welches seine MAC-Adresse in die IPv6-Adresse kodiert, als Tracking-Identifikator für
das gesamte Endnutzer-Präfix missbraucht werden kann — auch wenn andere Geräte
IPv6-Privacy-Extensions verwenden. Unsere Ergebnisse zeigten, dass IoT-Geräte den
Großteil dieses Privatsphäre-Verlusts verursachen.

Abschließend fokussieren wir uns auf die Backend-Server-Infrastruktur und wir schla-
gen eine Methodik zur Identifizierung und Lokalisierung von IoT-Backend-Servern
vor, welche von Cloud-Diensten und IoT-Herstellern betrieben wird. Wir analysier-
ten Muster im IoT-Verkehr, der vom ISP beobachtet wird. Unsere Analyse gibt Auf-
schluss über die unterschiedlichen Strategien, wie IoT-Backend-Server betrieben und
eingesetzt werden.

v

Die Notwendigkeit a-priori unbekannte netzwerkweite Anfragen an große Mengen von
Netzwerk-Flow-Daten zu stellen, welche wir in in unseren Studien verwenden, moti-
vierte uns zur Entwicklung von Flowyager. Dies ist ein auf bestehenden Netzwerkverkehrs-
Tools aufbauendes System und es stützt sich auf die Zusammenfassung von Verkehrs-
flüssen, um (i) die Kosten für Archivierung und Transfer von Flow-Daten und (ii) die
Antwortzeit von Anfragen zu reduzieren. Wir setzten einen Prototypen von Flowyager
sowohl im IXP als auch im ISP ein.

vi

Acknowledgments

During my Ph.D. journey, I had the privilege of working alongside some of the bright-
est people I’ve ever encountered. With this, I would like to express my deepest grat-
itude to Prof. Anja Feldmann, my advisor, without whom this journey would not
have been possible. From 2016 when she gave me the chance to join her research
group as a student worker, till today, she has always given me excellent advice and
support––both in research and personal situations. We worked on many stressful
deadlines that were sometimes late at night or early morning together; she showed
me how to maintain my focus and get the job done. I’ve always looked up to her, ad-
mired her integrity, and appreciated the countless research and management insights
she taught me. It was a privilege to work with you, Anja.

Georgios Smaragdakis, I’m extremely grateful to you for all the mentorship, advice,
and support throughout the years. One should be very lucky to have a mentor like
you. We had so many fun meetings that I lost count of them. Your dedication and
attitude toward work are so encouraging that I enjoyed every moment of working with
you. I learned so many things from you, from writing papers to formulating problem
statements. Thank you for all the support that often went beyond just “work”. As
we promised, the next time we go for a coffee together, it will be on me.

My colleagues, many of them who are now my friends, have supported me at almost
every turn of my studies. From jump-starting my career to giving technical, research,
and personal advice and help. Apoorv Shukla, my friend, has always gone above
and beyond to help me. He supervised my M.Sc. thesis and later supported me in
becoming a colleague. We had memorable times, delicious Indian dinners, teas, and
discussions in Berlin. I am grateful for all of that.

Thank you, Zubair Sediqi, an incredible friend and a dependable colleague, for all
the good times we spent together. Time with you is always well-spent.

Dr. Srdjan Matic, thank you for always checking on me. I really enjoyed collaborating
with you and Dr. Oliver Gasser. Mirko, we spent long hours organizing the courses. I
have always admired your discipline and dependability. I would like to thank Lars, a
talented researcher with an awesome sense of humor, has always reached out to help
his colleagues; Florian Streibelt, Franziska Lichtblau, Ingmar Poese, Aniss Magh-
soudlou and Seifeddin Fathali who never said No to my requests. Niklas Semmler,
Mohammad, Sayed Ali, Cristi, Emilia, Danesh, and Bala, I wish you success in your
endeavors.

I worked with talented students Arthur and Peter. Thank you both for all your
hard work and efforts. A special thanks to our admin team and executive secretary,
Rainer, Joerg, and Iris, for their excellent assistance and ensuring that infrastructure
and administrative works run smoothly.

Finally, I would like to thank my family, who are the single most valuable thing in
my life. My wife, Sheela, patiently supported me and our son, Said Ibrahim. With

vii

me being away or stressed with the deadlines, she suffered a lot, yet, she always
had my back. My Mum and Dad, Zahra and Said Kamaludin are the two people I
really don’t know how to thank. I am eternally grateful for all their sacrifices. They
nurtured me and supported our family at every turn so we could reach this point in
our lives. My siblings, Dr. Said Jalal Saidi and Farida Said, have always inspired me.
We supported each other through the good times as well as dark times.

This work was supported in part by the European Research Council (ERC) grant
ResolutioNet (ERC-StG-679158).

viii

Publications

Pre-published Papers

Parts of this thesis are based on the following peer-reviewed papers that have already
been published. All my collaborators are among my co-authors.

International Conferences

Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Haddadi, Daniel J
Dubois, David Choffnes, Georgios Smaragdakis, and Anja Feldmann. “A haystack
full of needles: Scalable detection of iot devices in the wild”. In: Proceedings of
the ACM Internet Measurement Conference. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 87–100. isbn: 9781450381383. doi: 10.1145/
3419394.3423650. url: https://doi.org/10.1145/3419394.3423650

Said Jawad Saidi, Srdjan Matic, Oliver Gasser, Georgios Smaragdakis, and Anja
Feldmann. “Deep Dive into the IoT Backend Ecosystem”. In: Proceedings of the
22nd ACM Internet Measurement Conference. IMC ’22. Nice, France: Association
for Computing Machinery, 2022, pp. 488–503. isbn: 9781450392594. doi: 10.1145/
3517745.3561431. url: https://doi.org/10.1145/3517745.3561431

Peer-reviewed Journals

Said Jawad Saidi, Aniss Maghsoudlou, Damien Foucard, Georgios Smaragdakis, Ing-
mar Poese, and Anja Feldmann. “Exploring Network-Wide Flow Data with Flowyager”.
In: IEEE Transactions on Network and Service Management 17.4 (2020), pp. 1988–
2006. doi: 10.1109/TNSM.2020.3034278

Said Jawad Saidi, Oliver Gasser, and Georgios Smaragdakis. “One Bad Apple Can
Spoil Your IPv6 Privacy”. In: ACM Special Interest Group on Data Communica-
tions(SIGCOMM) Computer Communication Review 52.2 (June 2022), pp. 10–19.
issn: 0146-4833. doi: 10.1145/3544912.3544915. url: https://doi.org/10.
1145/3544912.3544915

Workshops and Poster Sessions

Said Jawad Saidi, Damien Foucard, Georgios Smaragdakis, and Anja Feldmann.
“Flowtree: Enabling Distributed Flow Summarization at Scale”. In: Proceedings
of the ACM SIGCOMM 2018 Conference on Posters and Demos. SIGCOMM ’18.
Budapest, Hungary: Association for Computing Machinery, 2018, pp. 30–32. isbn:

ix

https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1109/TNSM.2020.3034278
https://doi.org/10.1145/3544912.3544915
https://doi.org/10.1145/3544912.3544915
https://doi.org/10.1145/3544912.3544915

9781450359153. doi: 10.1145/3234200.3234225. url: https://doi.org/10.
1145/3234200.3234225

Pre-published Papers: Not Part of This Thesis

I have contributed to the following peer-reviewed papers that have already been
published but are not part ot this thesis.

Peer-reviewed Journals

Apoorv Shukla, Said Jawad Saidi, Stefan Schmid, Marco Canini, Thomas Zinner, and
Anja Feldmann. “Towards Consistent SDNs: A Case for Network State Fuzzing”. In:
IEEE Transactions on Network and Service Management 17.2 (2019), pp. 668–681.
doi: 10.1109/TNSM.2019.2955790

x

https://doi.org/10.1145/3234200.3234225
https://doi.org/10.1145/3234200.3234225
https://doi.org/10.1145/3234200.3234225
https://doi.org/10.1109/TNSM.2019.2955790

Contents

1 Introduction 1
1.1 Dissertation Goal . 4
1.2 Contributions . 4
1.3 Collaborations and Pre-published Work 6
1.4 Thesis Structure . 7

2 Background 11
2.1 Internet Structure . 11

2.1.1 Traditional View . 11
2.1.2 Modern View . 12
2.1.3 Internet Exchange Points . 13

2.2 Network Flow Capturing . 14
2.2.1 NetFlow . 15
2.2.2 IPFIX . 16

2.3 Exploring Network-wide Flow Capture Data 16
2.3.1 A Priori Unkown Queries . 16
2.3.2 Related Work . 17

2.4 Chapter Summary . 19

3 Setup for IoT Studies 21
3.1 Internet of Things Ecosystem: Terminologies 21
3.2 IoT Communication Protocols . 23

3.2.1 Message Queuing Telemetry Transport (MQTT) 24
3.2.2 Advanced Message Queuing Protocol (AMQP) 24
3.2.3 Hyper Text Transfer Protocol (HTTP) 24
3.2.4 Constrained Application Protocol (CoAP) 25

3.3 Detecting IoT Devices . 25
3.4 IoT Backend Servers . 26
3.5 ISP and IXP Vantage Points . 27

3.5.1 European Tier-1 Internet Service Provider 28
3.5.2 European Internet Exchange Point 28

3.6 Ethical Considerations for Other Datasets 29
3.6.1 Active Scanning . 29
3.6.2 DNS Resolution . 29
3.6.3 External Data . 29

3.7 Chapter Summary . 30

4 Flowyager: Exploring Network-Wide Flow Capture Data 31
4.1 System Requirements . 32
4.2 Flowyager Architecture . 33
4.3 Flowtree . 36

4.3.1 Hierarchical Heavy Hitters . 36
4.3.2 Flowtree Data Structure . 38
4.3.3 Flowtree: Visualizing the Concepts 39

xi

Contents

4.3.4 Flowtree Operators . 41
4.4 FlowDB . 42

4.4.1 FlowDB Implementation . 43
4.4.2 FlowQL Query Language . 43

4.5 Experimental Deployments . 44
4.6 Flowyager Prototype Evaluation . 46

4.6.1 Flowtree Evaluation . 46
4.6.2 Flowyager Evaluation . 51
4.6.3 Flowyager Limitations . 53

4.7 Investigating DDoS attacks with Flowyager 54
4.8 Chapter Summary . 56

5 Detection of IoT Devices in the Wild 57
5.1 IoT – Controlled Experiments . 58

5.1.1 Network Setting . 58
5.1.2 Ground Truth Traffic Setting 60
5.1.3 Active and Idle IoT Experiments 61

5.2 IoT Traffic – Visibility . 62
5.3 IoT Device detection methodology . 64

5.3.1 Classifying IoT Domains . 65
5.3.2 Identifying Dedicated Infrastructures 66

5.3.2.1 From IoT-Specific Domains to Service IPs: DNSDB . 67
5.3.2.2 From IoT-Specific Domains to Service IPs: Censys . . 68
5.3.2.3 Removal of Shared IoT Backend Infrastructures . . . 69

5.3.3 IoT Services to Device Detection Rules 69
5.3.3.1 Determining IoT Detection Level 69
5.3.3.2 Generation of Detection Rules 70

5.4 Methodology: Crosscheck . 71
5.5 Results: IoT in the Wild . 73

5.5.1 Ethical Considerations and Privacy Implications 73
5.5.2 Vantage Point: ISP . 74
5.5.3 Vantage Point: IXP . 78

5.6 Discussion and Related Work . 78
5.6.1 Device Usage Detection . 79
5.6.2 Potential Security Benefits . 79
5.6.3 Limitations . 79
5.6.4 Lessons Learned . 80

5.7 Chapter Summary . 80

6 IoT Devices: A Case Study on Leaking Users’ Privacy 83
6.1 Background . 84
6.2 Methodology . 84
6.3 Datasets . 86
6.4 Privacy Violations at the Edge . 86

6.4.1 Quantifying EUI-64 Prevalence 86
6.4.2 Popularity of EUI-64 Manufacturers 88

xii

Contents

6.4.3 EUI-64 Manufacturer Categorization 89
6.4.4 EUI-64 Use Among IoT Devices 91
6.4.5 Traffic Profile by Manufacturer 93
6.4.6 Analysis of Non-EUI-64 IPv6 Addresses 93
6.4.7 Collateral Privacy Leakage . 94

6.5 Discussion . 95
6.6 Chapter Summary . 96

7 IoT Backend Servers: A Deep Dive into Backend Providers 99
7.1 Scenario and Related Work . 100

7.1.1 IoT Backend Providers . 101
7.1.2 Related Work . 101

7.2 Methodology . 101
7.2.1 Selection of IoT Backend Providers and Study Periods 102
7.2.2 Identification of IoT Domain Patterns 102
7.2.3 Identification of Server IPs . 103
7.2.4 Validation of Server IPs . 105
7.2.5 Contribution of Each Dataset 105
7.2.6 Limitations . 106

7.3 IoT Backend Characterization . 107
7.3.1 Stability of IoT Backends . 107
7.3.2 Footprint . 109
7.3.3 Network Diversity . 110
7.3.4 Protocol Support . 110

7.4 IoT Traffic Flows . 111
7.4.1 Vantage Point . 111
7.4.2 IoT Backend Platforms: Visibility 111
7.4.3 ISP Subscriber Line Activity by IoT Backend Platform 113
7.4.4 IoT Backend Traffic . 115
7.4.5 IoT backend provider–Port Usage 116
7.4.6 Traffic Characteristics . 117
7.4.7 Crossing Region Borders . 119

7.5 IoT Backend Disruptions . 120
7.5.1 AWS Outage . 121
7.5.2 Potential Disruptions . 122

7.6 Chapter Summary . 123

8 Conclusion and Outlook 125
8.1 Summary . 125
8.2 Reflections . 127
8.3 Future Work . 128

Bibliography 129

List of Figures 148

xiii

Contents

List of Tables 150

xiv

1
Introduction

The introduction of the Internet of Things (IoT) has led users and businesses to de-
ploy many sensors and smart Internet-connected devices in homes, factories, stores,
cities, and remote locations. Estimates indicate that the number of deployed devices
has already surpassed the human population, and it will reach 28 Billion by 2025 [7].
IoT devices that are installed at homes, provide a wide array of services, e.g., smart
speakers, home appliances, and surveillance cameras, to name a few. Companies de-
ploy them to gather insights and control their business and manufacturing processes.
Typically, IoT devices, as clients, rely on a server infrastructure on the Internet to
provide their services. Together with their backend servers, IoT devices form the IoT
Ecosystem.

This ecosystem’s health and secure operation are crucial to the continuity of IoT
services and the security of the Internet. While the IoT ecosystem provides attractive
services to home and industry users, they are often unaware of the security and privacy
consequences associated with these services. On the client side, exploited IoT devices
can (i) be used as an attack vector to infiltrate networks and exfiltrate private user
information [8] (ii) be used as a weapon to launch large-scale coordinated attacks
on other targets [9], (iii) become attack victim themselves, such that an adversary
disables or limits the functionalities of an IoT service [10]. On the server side, a
disruption stemming from a successful denial of service or a compromising attack
on the IoT backend server infrastructure lets an adversary disable or control a large
number of IoT devices [11].

As the IoT ecosystem grows [7], researchers and network operators are curious to
have a better understanding of this ecosystem. They are interested to know the pop-
ulation and type of deployed IoT devices and their interactions with backend servers.
Moreover, users are interested to know the security or privacy consequences of oper-
ating such devices. IoT companies want to understand the security risks threatening
their services and infrastructure [12]. A characterization of the IoT ecosystem at scale
can yield insights about its state, evolution, and security and privacy risks. These
insights can serve the curiosity of Internet researchers and network operators, and
subsequently, can be used to mitigate threats involving the IoT ecosystem.

Understanding and characterizing the IoT ecosystem is challenging though, partly
due to its rapid growth, evolution, and heterogeneity. As mentioned above, deployed
IoT devices are increasing, and so are the infrastructure to support them. New IoT
companies are rolling out IoT devices, services, and applications into the market, and

1

Chapter 1 Introduction

many cease to exist [13]. These frequent changes add to the heterogeneity of deployed
IoT devices.

IoT devices have diverse traffic patterns. They use a wide range of protocols to
communicate with a diverse set of backend servers. For example, they may rely on
general-purpose application layer protocols such as Hyper Text Transfer Protocol
(HTTP) or use specialized IoT-related protocols, such as Message Queueing Teleme-
try Transport (MQTT). Some devices rely on a few backend servers, while others
contact many destinations. The frequency of communication and the volume of ex-
changed data between IoT devices and their servers are also diverse. As an example,
watching videos using Smart-TVs requires downloading large data volumes, while
home cameras are typically upload-intensive (sending video feeds).

On the server side, companies rely on different strategies to set up their backend
server infrastructure to manage, ingest data, and monitor their fleet of deployed IoT
devices. They set up their IoT backend servers using one or a combination of dedi-
cated infrastructure, cloud services, or shared infrastructure such as Content Delivery
Networks (CDNs). The market demand for IoT backend servers has resulted in the es-
tablishment of specialized IoT backend provider companies that sell specialized IoT
backend server infrastructure and related services. Popular public cloud providers
such as Amazon, Google, and Microsoft [14–16] have also entered this market and
added the IoT backend server as-a-service to their product portfolio.

So far, solutions often use active measurement techniques to analyze and characterize
the IoT ecosystem on the Internet. A wealth of research and solutions scan the
IPv4 Internet to detect and enumerate the IPv4 addresses hosting IoT devices or
servers [17–26]. They analyze banners or look for the presence of IoT-related protocols
to infer the presence of an IoT device or server. If possible, these solutions also
provide information on the detected entity’s type, make, and model. For example,
an IPv4 address hosts an IoT device which is an IP camera from manufacturer X.
Furthermore, they often augment these datasets with metadata such as Autonomous
System Number (ASN), banner, geo-location, and security analysis. Kumar et al. [27]
deployed agents inside the premise of end-users and scanned the home network for
deployed IoT devices.

Existing active measurement solutions provide invaluable insights about millions of
deployed IoT devices and servers. However, their methodologies (i) only report the
behavior of targets in response to probe packets, not the traffic as observed through
passive monitoring [28], (ii) are intrusive to the end-users, and raise privacy concerns
if we deploy agents at the end-users’ premises, (iii) are challenging to identify devices
that reside behind a Network Address Translation (NAT), (iv) may miss many IoT
backend servers due to protocol handshake failures and services running on unex-
pected port numbers [20], and (v) cover almost exclusively IPv4 Internet and may
not easily scale to cover IPv6 Internet (due to the vast number of IPv6 addresses).

A major body of work use passively collected network traffic data to gain insights
into the activity of IoT devices. Such studies complement the active measurement
approaches with insights that otherwise are not readily observable. For example, with

2

an Internet Service Provider (ISP) as a vantage point, researchers can potentially
observe the traffic patterns of thousands of devices and servers.

To this end, passive approaches start by detecting the IoT devices in network packet
captures [29] or flow captures such as NetFlow [30] and IPFIX [31]. They develop
fingerprints (signatures) of IoT devices by extracting unique features of devices’ net-
work traffic. Alternatively, they train a machine learning model to learn these finger-
prints [32–35]. They infer the presence of an IoT device by finding these signatures
in network traffic.

Deploying passive IoT device detection approaches at scale in networks such as ISPs,
and IXPs is challenging. For example, solutions that require the analysis of full
packet captures in an ISP with millions of subscribers and 10TB/s peak traffic require
substantial resources and investment. Thus, although several passive approaches de-
ployed their solutions in smaller environments, e.g., test-beds [33, 36], home networks,
campus and enterprise networks [35, 37], only a few studies have attempted to deploy
their solutions at scale and report statistics on the number of detected devices. [1,
34, 38, 39]. Note, these studies mostly took place either concurrent with or after our
studies.

We looked into the related research on the characterization of IoT backend servers
as observed in the passively collected data. Despite the critical role of IoT backend
servers in the overall health and security of the IoT ecosystem [11, 40], compared
with the IoT device detection research, it has received significantly less attention.
To our surprise, for the activity of IoT backend servers, we found only one study by
Mazhar et al. [28] that briefly discusses the IoT backend servers at a smaller scale.
Their analysis revealed that while the IoT space is fragmented, few popular cloud and
DNS services act as a central hub for the majority of the devices and their data.

Major network operators, including ISPs and Internet eXchange Points (IXPs), are
taking steps to combat attacks on and from the IoT ecosystem. As most IoT device
operators are subscribers of ISPs, these providers, with millions of subscribers, are
often the first or last line of defense against attack traffic before it reaches or after
it leaves the customer networks. Hence, as explored by recent works [41, 42], ISPs
have a significant potential (i) to observe the state of the IoT ecosystem at scale (ii)
to detect IoT-related security incidents (iii) help their customers to mitigate attacks
involving the IoT ecosystem.

To this end, large network operators are developing methodologies and systems to
detect and handle security and privacy threats involving IoT ecosystem [41, 42]. One
natural first step toward developing these methodologies is detecting and enumerating
the IoT devices and their backend servers that communicate through the provider’s
network. Once detected, providers will be able to measure their traffic patterns and
obtain a better understanding of this ecosystem. Specifically, ISPs are interested in
estimating the population of different IoT devices, their destinations, i.e., servers,
protocols, and the characteristics of their exchanged traffic. These insights aid ISPs
in identifying and measuring the security and privacy risks common among their IoT
subscriber lines. In summary, detecting IoT devices and servers, studying their traffic

3

Chapter 1 Introduction

patterns, and identifying and measuring security privacy and risks using large vantage
points such as ISPs and IXPs, allow us to characterize the IoT ecosystem at scale.

However, to use ISPs and IXPs as vantage points, we have to deal with the poor
availability and low granularity of data sources. The available data sources are often
in the form of large volumes of passively collected, aggregated, and sampled data, e.g.,
NetFlow [30] and IPFIX [31], which providers routinely collect for their operational
purposes. Thus, for the characterization of the IoT ecosystem, we need methodolo-
gies that handle large volumes of sparsely-sampled data and do not rely on packet
payloads.

Hence, three factors motivate this dissertation: (i) The IoT ecosystem is rapidly
growing and evolving. (ii) The threats involving the IoT ecosystem are increasing.
(iii) Large network providers need methodologies to handle these threats.

1.1 Dissertation Goal

In this dissertation, our overarching research goal is the following question: How can
we, using the data-driven methodologies, characterize the IoT ecosystem at scale? To
find an answer to this research question, we strive to answer the following subques-
tions:

(i) How to detect IoT devices using sparsely-sampled flow capture data from a large
vantage point such as an ISP or IXP?
(ii) How to detect IoT backend server infrastructure on the Internet and characterize

their deployments?
(iii) How to characterize the traffic patterns of IoT devices and backend servers as

observed in an ISP?
(iv) How the deployment of IoT devices at homes can affect users’ privacy?

Since our efforts require exploring large volumes of flow capture data and issuing
apriori unknown queries, we also considered How do we improve response time while
querying large volumes of network flow capture data?

Our methodologies aid researchers and network operators in obtaining a more detailed
view and understanding of the IoT ecosystem. Our insights can inform the decision
process and policy-making of Internet-governing organizations and network operators
when dealing with the IoT ecosystem and its threats.

1.2 Contributions

As we intended to perform a data-driven study of the IoT ecosystem at scale, we
collaborated with a large European ISP and a large European IXP to have them as
our vantage points. We start with one of the main components of the IoT ecosystem:
IoT devices. We developed methodologies to detect and enumerate IoT devices in

4

1.2 Contributions

the wild. Then, we performed a case study on how the deployment of millions of
IoT devices can affect the privacy of ISP’s subscriber lines. We identified a privacy
leakage common among millions of IPv6 subscribers, showing that IoT devices are
the major contributors to this privacy leakage. Finally, we turned our attention
to IoT backend servers by performing one of the first studies on the IoT backend
providers. We developed methodologies to detect the Internet-facing infrastructure
of top IoT backend providers. We analyzed their traffic patterns, security incidents,
and outages.

Our methodologies rely on large volumes of sparsely sampled and passively collected
flow captures, such as Netflow and IPFIX, from our vantage points. Hence, we also
designed and implemented a system called Flowyager that allows network operators
to store, index, and query flow-capture data interactively.

Our four main contributions are as follows:

1. Scalable Detection of IoT Devices in the Wild
We developed a methodology for identifying IoT devices by focusing on their back-
end infrastructure’s domains and IP addresses. To this end, we derived distinct
signatures in terms of IP/domain/port destinations to recognize IoT devices. With
our signatures, we were able to recognize the presence of devices from 31 out of 40
manufacturers in our testbed. Moreover, we showed that it is possible to detect the
presence of IoT devices at subscriber lines using sparsely sampled flow captures from
a large residential ISP and a major IXP, even if the device is idle, i.e., not in ac-
tive use. Specifically, we were able to recognize that 20% of 15 million subscriber
lines used at least one of the 56 different IoT products in our testbed. Finally, we
highlighted that our technique scales, is accurate, and can identify millions of IoT
devices within minutes in a non-intrusive way from passive, sampled data. In the
case of the ISP, we were able to detect the presence of devices from 72% of our target
manufacturers within 1 hour, sometimes minutes.

2. IoT-driven Privacy Leakage of IPv6 Users
We performed a case study at a large European ISP on how the deployment of IoT
devices can affect the privacy of subscriber lines. We identified a privacy leakage
related to the usage of legacy IPv6 addressing mechanism EUI-64. We showed that
the existence of even a single device without privacy extensions in an end-user prefix
could defeat the ISP-deployed prefix rotation and IPv6 privacy extensions adopted by
hardware vendors to preserve user privacy. We measured the impact of this privacy
leakage in terms of the number of affected subscriber lines. Our analysis found that
around 19% of end-user prefixes host at least one device that does not use IPv6
privacy extensions. We also showed that a popular content provider, application,
or service contacted by a device not using privacy extensions, can track the user
and other contacting devices across rotating prefixes. We performed a root cause
analysis and revealed that IoT devices contribute the most to this privacy leakage.
In most cases, a single device without privacy extensions was responsible for the
privacy leakage. Unfortunately, these devices have been manufactured by market
leaders. Thus, it would have been possible to prevent this privacy leakage if these

5

Chapter 1 Introduction

manufacturers had adopted best common practices, i.e., IPv6 privacy extensions.
We, finally, provided recommendations to remedy the privacy violation.

3. A Study on the Infrastructure of IoT Backend Providers
We developed a methodology to infer the network and location of major IoT backend
providers. Our methodology relies on a fusion of information from public documen-
tation, passive DNS, and active measurements. We analyzed the IoT backend servers
with regard to deployment, operation, and dependencies. While most of the popular
IoT backend providers have footprints covering multiple locations and countries, our
analysis showed that some operate only in one country or rely on infrastructure from
other IoT backend providers. We found that it is not unusual for IoT protocols, e.g.,
MQTT, to use non-standard ports or reuse Web ports. The latter makes the identifi-
cation of IoT backend infrastructure as well as IoT traffic challenging using traditional
methods––our proposed methodology resolves this issue. Using passive data from a
large European ISP, we examined the IoT traffic patterns of multiple providers at
scale. We noticed that a significant fraction of IoT Traffic —more than 35%— is
exchanged with IoT backend servers outside Europe, which raises performance and
regulatory concerns. Our traffic analysis highlighted that the IoT population and
activity per application differ vastly. While some applications behave more like the
typical user-generated traffic, i.e., diurnal patterns, peak evening hours, and were
downstream-heavy, this was not the case for all IoT applications.

4. Interactive Exploration of Network-Wide Flow Data
We designed, deployed, and evaluated Flowyager, a system that is built on the ex-
isting voluminous network captures and enables interactive data exploration. We
showed that with Flowyager, the query response time for network-wide queries can be
reduced from hours or minutes to seconds. We proposed a lightweight self-adjusting
data structure, Flowtree, that inherits the performance of previously proposed hier-
archical heavy hitter structures for computing flow summaries. Flowtree summarizes
elephants, as well as mice flows, and supports multiple operators, such as merge, com-
press, and diff, to summarize information across multiple sites and time periods. We
share our experience of rolling out Flowyager in different operational environments,
namely a large IXP and a tier-1 ISP, and showcase how to tackle various network
management tasks. We made Flowyager and its code available for non-commercial
use.

1.3 Collaborations and Pre-published Work

Chapter 5: IoT Devices: Detection in the Wild

This chapter is based on a paper published at IMC 2020 conference, in collaboration
with the authors in [1]. Specifically, the author’s main contributions to this paper
are as follows: (i) joint development of the methodology to generate IoT detection
rules, (ii) analysis of ISP and Home vantage point data, and (iii) plotting and joint
narrative conception and writing.

Chapter 6: IoT Devices: A Case Study on Leaking Users’ Privacy

6

1.4 Thesis Structure

This chapter presents a paper published at CCR 2022 with the collaboration of au-
thors listed in [4]. Our main contributions to this paper are as follows: (i) joint
conception of the scenario for privacy violation, (ii) development of the methodology
to classify devices using EUI-64 addressing, (iii) analysis of passive ISP data, and (iv)
plotting, and joint narrative conception.

Chapter 7: IoT Backend Servers: A Deep Dive into Backend Providers

Chapter 7 presents a paper that is published in the proceedings of the IMC 2022
conference. This paper is the result of the collaboration with the authors noted in [2].
In particular, the following are the author’s main contributions: (i) joint development
of the methodology to extract IoT-related domains and build regular expressions,
(ii) analysis of ISP dataset, and (iii) visualization, joint narrative conception, and
writing.

Chapter 4: Flowyager: Exploring Network-Wide Flow Capture Data

Chapter 4 presents a paper that with the collaboration of authors listed in [3] is
published in the IEEE TNSM journal. The author’s main contributions to this paper
are as follows: (i) joint development and implementation of Flowtree data structure,
(ii) evaluation of the Flowtree data structure, (iii) joint design of Flowyager system,
(iv) implementation and evaluation of FlowDB and FlowAGG modules, (v) joint data
visualization, plotting, narrative conception, and writing.

1.4 Thesis Structure

The structure of this dissertation is organized as follows:

Chapter 2: Background

This chapter lays the foundation with the necessary concepts to better understand
the rest of the thesis. It provides an overview of the structure of the Internet, the
role of ISPs and IXPs in the Internet, and network flow capturing utilities.

Chapter 3: Setup for IoT Studies

This chapter describes the concepts, terminologies, and experiment settings shared
by Chapters 5- 7. We start with an introduction to the concept of the Internet of
Things (IoT). Next, we introduce the client-server landscape of the IoT ecosystem
and the important protocols used for communication between IoT devices and back-
end servers. We provide an overview of existing solutions for detecting IoT devices in
networks by explaining their data sources and methodologies. We further highlight
the need for scalable methodologies that detect IoT devices using passively-collected,
sparsely-sampled network flow data. We introduce the role of IoT backend servers in
the IoT ecosystem in general and highlight the role of IoT backend provider compa-
nies.

Finally, this chapter describes the settings of two large networks we used for data
collection in our studies: a large Tier-1 European ISP and an international IXP. We

7

Chapter 1 Introduction

explain the data sets collected at each network, and more importantly, we discuss the
ethical considerations we undertook for our studies.

Chapter 4: Flowyager: Exploring Network-Wide Flow Capture Data

In this chapter, we investigate the problem of improving the response time in a pri-
ori unknown network-wide queries in environments such as ISPs and IXPs. Many
network operations require answering network-wide flow queries in seconds, ranging
from attack investigation and management to traffic management. ISPs and IXPs
collect network flow records such as Netflow and IPFIX for operational purposes.
Although flow records are collected at each router, using available traffic capture
utilities, querying the resulting datasets from hundreds of routers remains a signifi-
cant challenge due to the sheer traffic volume and distributed nature of flow records.
Hence, we present Flowyager, a system that is built on top of existing traffic cap-
ture utilities. Flowyager generates and analyzes tree data structures that we call
Flowtrees, which are succinct summaries of the raw flow data made available by cap-
ture utilities. Flowtrees are self-adjusted data structures that drastically reduce space
and transfer requirements by 75% to 95%, compared to raw flow records. Flowyager
manages the storage and transfers of Flowtrees, supports Flowtree operators, and
provides a structured query language for answering flow queries across sites and time
periods. By deploying a Flowyager prototype at a large IXP and an ISP, we showcase
its capabilities for networks with hundreds of router interfaces.

Chapter 5: Detection of IoT Devices in the Wild

In Chapter 5, we focus on the IoT device component of the IoT ecosystem. We de-
veloped a methodology to detect IoT devices using passively collected and sparsely
sampled flow data from a large European ISP and a European IXP. We built on
the insight that IoT devices typically communicate with their backend server infras-
tructure to provide their services. Hence, they generate traffic patterns, i.e., a set
of domains, IP addresses, and port numbers that can be used to identify subscriber
lines with IoT devices.

We started by investigating the visibility of the traffic from a single device on a
single subscriber line in ISP data. Then, we investigated at what granularity we
can detect IoT devices and how fast we can detect them in the sampled datasets.
We performed a large-scale study in a large European ISP and IXP to identify the
number of subscriber lines hosting the studied IoT devices. Finally, we make a case
for ISPs to detect IoT devices by discussing their potential security benefits.

Chapter 6: IoT Devices: A Case Study on Leaking Users’ Privacy

In Chapter 6, we investigate how the deployment of IoT devices can affect the
privacy of millions of subscribers of a major European ISP. We demonstrate that
using legacy IPv6 address assignment mechanisms such as IPv6 EUI64 (Extended
Unique Identifier) can make subscriber lines prone to tracking. We show that ISPs
and many device manufacturers use best common practices for privacy, namely prefix
rotation and IPv6 privacy extensions. Yet, despite these efforts, a single device with

8

1.4 Thesis Structure

IPv6 EUI64 on the home network can spoil the privacy of potentially all IPv6-enabled
devices and, eventually, end-users’ privacy across these devices.

By analyzing passive data from a large ISP, we find that around 19% of end-users’
privacy can be at risk. Our results show that IoT devices contribute the most to
this privacy leakage and, to a lesser extent, personal computers and mobile devices.
To our surprise, some of the most popular IoT manufacturers have not yet adopted
privacy extensions that could otherwise mitigate this privacy risk.

Chapter 7: IoT Backend Servers: A Deep Dive into Backend Providers

In this chapter, we turn our attention to the backend server component of the IoT
ecosystem. In particular, we conducted one of the first studies on IoT backend server
providers. IoT backend providers are companies that offer software and server infras-
tructure to manage, control, and monitor IoT devices and ingest their data.

Given the limited resources on the devices and the increasingly rich and resource-
intensive applications of IoT devices, we underline the importance of offloading some
of these functionalities to IoT backend servers in the ‘cloud.’ Recently, the big tech-
nology giants, such as Amazon [14], Google [15], and Microsoft [16] started to offer
IoT backend solutions as a service. Such companies are IoT backend providers and
enable third-party IoT application providers to scale up and deliver their solutions
to potentially billions of IoT devices deployed around the globe.

Despite the critical role that these IoT backend providers play in the operation and
security of IoT applications, little is known about their locations, strategies, and
volume share. We developed new methods to identify their footprints and gain in-
sights into their modus operandi. This chapter describes our methodology to detect
and infer the location of the Internet-facing infrastructure of these providers. We
characterize their traffic patterns as observed in a large European ISP. Finally, we
conducted a case study to measure the impact of an outage in a large public cloud
provider on the services of IoT backend providers.

9

2
Background

Internet is woven into various parts of modern society’s fabric. Many critical systems,
such as financial systems, telecommunications, transportation control, and military
systems – to name a few – rely on the Internet to provide their services. Some
countries have even codified Internet access as a human right [43] into their laws.

The Internet was initially designed as a network primarily used for military purposes.
Since its inception, the Internet, as we have it today, has experienced significant
growth and has evolved into a complex global network connecting billions of users and
devices worldwide. To this extent, although built by humans, the Internet has become
a phenomenon that we, humans, no longer know its exact topology. There is much
more unknown about the Internet than what is known about it. Hence, researchers
worldwide are actively using various measurement techniques to characterize and
understand the current state of the Internet.

However, there are certain structures and guiding principles that allow the Internet
to still work. Recent studies have shown that it can even handle the substantial
amount of traffic that was suddenly added due to the lockdowns imposed during the
COVID-19 global pandemic [44]. In this chapter, we describe the structure of the
Internet, the role of ISPs and IXPs, and their monitoring technologies.

2.1 Internet Structure

This section provides an overview of how the Internet’s structure has evolved over
the past decades. The terminology and figures are based on [45].

2.1.1 Traditional View

Traditionally, the structure of the Internet, as described in classic computer network-
ing text books [45], is modeled into three layers structure as shown in Figure 2.1. The
end-users who want to access the Internet pay an Internet Service Provider(ISP) to
obtain connectivity. These ISPs are called access/Tier-3 ISPs and are at the bottom
layer of the model(See Figure 2.1). Such ISPs provide connectivity services to a
limited geographical region, typically at the level of cities or sometimes a country.

11

Chapter 2 Background

Tier-1
ISP

Tier-2/Regional
ISP

Tier-3/
Access

ISP

Tier-1 ISP

Tier-2/Regional
ISP

Tier-2/Regional
ISP

Tier-3/
Access

ISP

Tier-3/
Access

ISP

Tier-3/
Access

ISP
Tier-3/
Access

ISP

Higher Tier
ISPs

Lower Tier
ISPs

Peering
links

Customer
Provider

link

Figure 2.1: Traditional Model of Internet Structure. Figure based on [45]

When a user fetches content, e.g., visits a website or watches a movie, in the back-
ground, their device sends a request to a computer called a server, which typically sits
in a data center somewhere in the world. In this scenario, the access ISP connecting
the user is called eyeball ISP.

Upper in the hierarchy, access ISPs pay larger Regional ISPs, which serve larger
geographical regions such as multiple countries, to carry their traffic. When an ISP
pays another to forward its traffic, we say there is a Customer-Provider relationship
between them. Regional ISPs pay the Tier-1 ISPs to forward their traffic. However,
sometimes, two ISPs establish peering aggreements by setting up direct links and
forwarding each other’s traffic free of charge.

At the top layer of the Internet are Tier-1 ISPs. These are large carriers whose
infrastructure span multiple continents and even around the globe. They are heavily
interconnected and exchange traffic among each other free of charge.

2.1.2 Modern View

The strictly hierarchical model demonstrated in Figure 2.1 no longer describes the
structure of the Internet. During the past decades, the Internet has undergone sub-
stantial transformation to a more flat Internet [46], which we illustrate in Figure 2.2.

As mentioned earlier, two ISPs may establish direct links and exchange traffic free of
charge; such a business relationship is called peering. This idea became popular, and
the community decided to scale it by having multiple networks gather at a shared
data center facility to establish peering links. This would allow more networks to
benefit from the advantages of peering relationships and reduce the cost of setting up

12

2.1 Internet Structure

Tier-1
ISP

Tier-2/
Regional

ISP

Tier-3/
Access

ISP

Tier-2/
Regional

ISP

Tier-2/
Regional

ISP

Tier-3/
Access

ISP

Tier-3/
Access

ISP

Tier-3/
Access

ISP
Tier-3/
Access

ISP

Peering
links

Customer
Provider

links

IXPs

Tier-1 ISP

Content
Provider

and
CDNs

Figure 2.2: Flat Internet Structure: Rise of IXPs and Content Providers. Figure
based on [45]

interconnections. As such, Internet Exchange Points(IXP) came into existence. We
further elaborate on the anatomy of an IXP in Section 2.1.3.

Large content provider companies, e.g., Google and Facebook, have built several
data centers and deployed extensive network infrastructure worldwide. They are
establishing direct connectivity to the access ISPs, bypassing the higher Tier ISPs,
thus saving costs and having more control over how their traffic is delivered to the
end-users[45].

Similar to content providers, Content Distribution Networks (CDNs) and cloud ser-
vices, e.g., Amazon AWS [47] and Microsoft Azure [48] have also established data
centers in multiple locations and laid their private network infrastructure spanning
around the globe. A prominent example of CDNs is Akamai [49], which places servers
closer to users, thus seeking connectivity to more access ISPs. The interconnection
of content providers, CDNs, and cloud providers with the access ISPs, and the rise
of IXPs, have made the Internet’s structure complex and flat.

2.1.3 Internet Exchange Points

In this thesis, we collaborate with an IXP as one of our vantage points to collect
our datasets. IXPs provide physical infrastructure for multiple networks to establish
peering links in a shared facility. Their main business model is based on setting up
a layer two switching fabric and selling its ports to the members. Networks that
want membership in IXP shall install their border routers in the IXP facility and

13

Chapter 2 Background

Peering links
over IXP

Border router
of an IXP
member

IXP’s layer 2 Switching Fabric

Figure 2.3: Architecture of an Internet Exchange Point(IXP): IXP members connect
their border routers to the switching fabric of IXP and establish peering
links.

connect their routers to the switching fabric. Figure 2.3 illustrates an overview of the
architecture of an IXP.

Note that the IXP members are not necessarily all ISPs; Enterprise, Academic, and
Government networks may also become members. Nevertheless, each member has
a different peering policy, mainly driven by its business objectives. For example,
members with an open peering policy typically establish peering links with as many
networks as possible. On the other hand, members with a selective peering policy
establish peering links if the link fits their business objectives. Large Tier-1 providers
typically have a selective peering policy and establish peering links with equally large
providers.

2.2 Network Flow Capturing

Network operators are interested in analyzing their traffic to gain insights into net-
works’ health, security, and status over multiple time periods. For example, they may
want to know the top 10 applications/port numbers contacted by their users in the
past week. Another example is the queries for detecting and investigating an attack,
e.g., the source IP addresses generating attack traffic or the destination IP addresses
(attack targets).

Network operators have to deal with large volumes of network traffic to answer such
queries. Consider a network with thousands of routers distributed at different ge-
ographical locations that carry several Terabytes of traffic per second. In such an

14

2.2 Network Flow Capturing

environment, one may be tempted to capture the network traffic, then transfer them
to a central location for storage and processing. However, given the sheer size of the
network traffic, such approaches are prohibitively expensive.

Therefore, operators typically rely on network flow capturing utilities, such as Net-
Flow, IPFIX, and sFlow, to keep track of Network Flows in their network devices. A
network flow describes of series of packets with the same five tuples in their headers.
These five tuples are source IP(src IP), destination IP(dst IP), source port number(src
port), destination port number(dst port), and transport layer protocol(proto). More-
over, a network operator may configure the capturing utility to collect other metadata
such as the number of packets/bytes in the flow, start and end timestamps, src/dst
MAC addresses, device ID, interface ID, the direction of flow and so forth.

To this end, the flow capturing utility aggregates the packets into flows and increments
their respective counters. Finally, it exports the Flow Records to a flow collector when
one or more of the following events happen: (i) one or more flows complete, (ii) the
device has to release resources, (iii) a maximum time out for keeping track of a flow
is reached. A flow collector saves the flow records to a disk for further processing.
Thus, by keeping only the header information of the packets, flow capturing utilities
reduce the storage and bandwidth requirements.

Still, capturing and generating statistics, e.g., packet and byte counts, for each flow
may require substantial resources of a networking device –especially in large networks
with terabytes of traffic per second in their peak time. Moreover, the volume of
exported flows may also be quite large. To further reduce resource usage, the network
operators configure the flow capturing utilities to perform sampling. They configure
the capturing utility with the sample rate of 1/n. The sampling rate instructs the
capturing utility to randomly or deterministically select one packet out of n packets
for processing. With the 1:1 sampling rate, all packets will be effectively selected
for processing. On the other hand, with the lower sampling rates, the amount of
resources for capturing and storing the flow records and the accuracy of the statistics
calculated from these records decreases. Moreover, the odds of missing some of the
flows with sparsely sampled flow data also increase.

In the following subsections, we briefly introduce two prominent flow capturing util-
ities, which are also used in our studies.

2.2.1 NetFlow

NetFlow is a flow capturing utility introduced in Cisco networking devices [50]. Net-
work admins enable it and select a sampling rate on network device interfaces. Then,
the device selects one out of n consecutive packets for NetFlow processing. The
NetFlow process uses the previously-mentioned five-tuple fields from the packet to
create a flow record. As further packets of a flow are sampled, Netflow updates the
statistics of that flow, e.g., updates the packet/byte count. NetFlow can keep track
of the state of a flow; if it detects a flow termination, e.g., by detecting a TCP-FIN,
TCP-RST flag, or expiration of a timeout counter, it exports the flow record to a flow

15

Chapter 2 Background

collector. NetFlow uses port 2055 of UDP to export the flow records. Although Cisco
originally introduced NetFlow, many vendors have added support for this protocol
to their devices. The latest version of Netflow is v9 and defines 79 field types.

2.2.2 IPFIX

The success of the NetFlow protocol persuaded the Internet community to gather
and create a standardized flow capture protocol. The Internet Engineering Task
Force(IETF), specified the IP Flow Information Export(IPFIX) protocol in RFC
5101 and 7011 [31, 51]. IPFIX is an open standard protocol based on NetFlow. It
provides backward compatibility to the NetFlow v9 by defining the same data fields
and types. However, IPFIX supports even more data fields, and so far, 491 data fields
have been registered by IANA [52].

IPFIX works similarly to NetFlow and exports the flow records to flow collectors.
Device administrators can configure the IPFIX process to include different data fields
in their exported flow records. A combination of data fields is called template.
Apart from the flow records, an IPFIX exporter periodically sends its templates to
the collectors. The default port number for exporting IPFIX packets is 4739.

2.3 Exploring Network-wide Flow Capture Data

Network operators have to continuously keep track of the activity in their networks
over both long and short time windows. Over long time windows, e.g., days or hours,
network operators are interested in provisioning network capacity or making informed
peering decisions. Over short time windows, e.g., minutes, network operators would
like to identify and rectify unusual events, e.g., attacks or network disruptions. To
that end, they typically rely on flow-level or packet-level captures from routers within
their network [53]. They also need systems to process these captures and do important
network-management tasks. We provide a summary of tasks and how previous work
tackled them in Table 2.1.

In the rest of this chapter, we describe (i) the problem of issuing a priori unknown
queries to explore network capture data, (ii) an overview of related work for exploring
network-wide flow data.

2.3.1 A Priori Unkown Queries

Recently, query-driven solutions, e.g., Sonata [59], Stroboscope [70], and Marple [60],
made it possible to compile specific queries into telemetry programs and collect data
from all queried network nodes. These solutions provide exceptional flexibility, but
they require the network operator to know a priori (i) the nature of the network
problem, (ii) the network-related query that has to be compiled into telemetry pro-
grams, (iii) the network node where the telemetry capability is available, and (iv)

16

2.3 Exploring Network-wide Flow Capture Data

Application Related Work

Aggregated flow statistics (range queries over
IP/ports/time/location)

[54–60]

Counting traffic [54, 57–59, 61–66] [67–74]
Traffic matrix [63, 67]
DDoS diagnosis [59, 61, 63, 67, 72, 75–77]
Super-spreaders Detection [59, 61, 72]
top-K number of flows [62, 73, 74, 78]
Flows above threshold T (Heavy Hitters) [56–59, 61, 62, 69, 71, 72, 79, 80]
Heavy Changers Detection [61, 71, 72, 79–81]
Blackhole Detection [63, 82–84]
Port-based / 4/5-tuple queries [54, 59, 61–63, 68, 69, 71]

Table 2.1: Typical network queries and systems to tackle them. Currently, no system
addresses all of them.

the node where the query has to be executed. Unfortunately, in large networks with
hundreds of interfaces, operational issues arise at different parts of the network, and
the required queries are not known in advance. Network engineers often have to try
different queries to locate the source and type of problem interactively. Thus, compil-
ing such queries into telemetry programs takes a prohibitively large time . Another
obstacle toward adopting such solutions is that this requires hardware investments
by the network operator. For example, Marple relies on P4-programmable software
switches that are not yet widely adopted by Internet Exchange Points (IXP) operators
and Internet Service Providers (ISP).

To the best of our knowledge, there is at this point no system that offers answers to
a priori unknown network-wide queries in a scalable interactive manner, even though
the necessary raw network data, e.g., via NetFlow [50, 85], sFlow [86], IPFIX [31], or
libpcap [29] is collected by most operators.

From an operational point of view, fast exploration of large volumes of network
flows over time and across sites is useful to answer a range of operational queries
(see Table 2.1). Yet, network operators need to be able to tackle such tasks in a
unified and systematic way with reliable and scalable tools. Existing data analytics
systems, e.g., Spark [87], are not tailored to analyze network data when it comes
to scalability, interactivity, handling of geo-distributed data, or answering a priori
unknown network-wide queries.

2.3.2 Related Work

There are existing network analytics systems such as [88, 89] that typically transfer
the raw traces to a centralized data warehouse for archiving and processing. However,
transferring the raw traces is increasingly expensive due to the data volume —e.g.,
Terabytes of flow data generated in a single day can be out of sync, and all need to
be transferred.

Moreover, additional constraints are posed by national regulations when networks
operate at regions under different jurisdictions: for example, transferring data that

17

Chapter 2 Background

includes user identifiers, e.g., IP addresses allocated to EU citizens, without their
consent, violates the EU General Data Protection Regulation (GDPR) [90]. Fines
are steep, namely up to 4% of worldwide turnover or 20 million Euros, whichever is
higher. In Chapter 4, we present our system Flowyager to tackle this issue.

Network monitoring systems: Alternative proposals suggest to enable power-
ful custom data collection per query and realize this by combining traffic mirroring
and deterministic packet sampling. These include query-based monitoring such as
Stroboscope [70], network troubleshooting using mirroring [91, 92], analysis of in-
network packet traces [63, 93], as well as monitoring links on-demand as shown by
Gigascope [54], pruning-based solutions such as Cheetah [94] or other SDN-based
monitoring, such as [95] or precision [96]. The main disadvantage of these systems
is that the target flows, sites, and periods of interest need to be known in advance,
which is often not the case in practice.

Streaming network telemetry systems, from more classic approaches such as A-GAP [74]
to the numerous modern solutions, such as Sonata [59], FlowBlaze [97] or Posei-
don [98], build on the same ideas but require programmability from network devices,
e.g., P4 switches or FPGA. These systems assume that users can predefine what
is relevant and optimize the monitoring accordingly, often following a top-down ap-
proach [99]. As a consequence, if, potentially, all flows are of interest, these sys-
tems can degrade to “standard” flow monitoring which for large networks is chal-
lenging. Marple [60] adds flexibility to network-wide monitoring but requires P4-
programmable capabilities that have not been yet widely adopted in wide-area net-
works by ISP and IXP operators.

Big data analytics systems: Some operators directly feed their flow captures
into state-of-the-art analytics systems, often based on the map-reduce principle, e.g.,
Spark [87] and Hadoop [100], or column-based databases, e.g., ClickHouse [101]. This
has scalability issues. Thus, recently proposed big data analytic systems—see [102–
106] as well as [107] and references within–suggest to use a distributed setup whereby
data is locally preprocessed, e.g., by aggregation or sampling, and then centrally
analyzed. This reduces the need to transfer the raw data. Note that none of the above
focuses on network management tasks. Thus, their programming interface follows the
map and reduce paradigm which differs from network operation tasks. Even though
such systems can provide significant speedup for tasks that can be parallelized, not all
network management tasks may benefit. Such big data analytics systems are flexible
w.r.t. the queries supported. Yet, they typically are not compatible with existing
network monitoring software, do not fully support principled aggregation (over time,
space and flows), do not offer any history, and do not give any performance (accuracy
or runtime) guarantees. We designed our system Flowyager in Chapter 4 to address
these shortcomings.

Data summaries–Heavy Hitters: Previous work on computing network sum-
maries has focused on how to efficiently compute heavy hitters (HH) [85, 108–110]
and hierarchical heavy hitters (HHH) [57, 111, 112] using minimal resources to be
able to compute them on the router itself. These solutions provide an online summary
of the (hierarchical) heavy hitters for a fixed observation window, at one location,

18

2.4 Chapter Summary

and only on a given subset of the data. In contrast, to answer interactive network
management queries (see Table 2.1), we need summaries over different subsets of the
data, per site/router and across sites/routers, and at many different time granulari-
ties, from minutes to days — or even months.

Heavy hitters change as data is aggregated: popularities increase overall as more
data comes in. Consequently, the threshold to be considered a heavy hitter should
be raised. In contrast, some HHH data structures, e.g., [57] use a single manually
defined absolute threshold (e.g., frequency above 1000) to characterize heavy hitters,
resulting in a data structure unable to adapt its definition of heavy hitter as the
underlying data changes. Flowyager builds upon heavy hitter data structures by
adding support for aggregation (over time, location, and flows) and adding flexibility
w.r.t. the supported queries.

Data summaries–Sketches: Another approach for computing network summaries
are sketches, e.g., [71, 113, 114] as well as systems that utilize sketches for network
monitoring and debugging [61, 72, 115–117]. The capabilities of sketches include
counting, top-K, HH, and HHH. They are highly space-efficient data structures that
support many types of queries. Yet, most do not support range queries, e.g., queries
that involve a range of sites and/or time periods. Moreover, extracting an estimate
from sketches is often not time-efficient. We note that the focus of sketches is similar
to that of HHH, i.e., computing online summaries for a fixed observation window
with minimal resources. Flowyager could be built upon sketches but we decided to
build upon a HHH data structure.

2.4 Chapter Summary

This chapter briefly overviewed the Internet’s structure and the role of ISPs and
IXPs. We introduced two popular network flow capturing utilities: NetFlow and
IPFIX. We underlined the importance of exploring the network flow captures to gain
insights into the health and security of networks. We also introduced the problem
of issuing a priori unknown queries to achieve important network management tasks
and the extent the existing solutions address this problem.

19

3
Setup for IoT Studies

The previous chapter explained the necessary background to understand this thesis.
This chapter lays the groundwork for our IoT studies by clarifying the essential terms
such as IoT, IoT devices, IoT backend servers, IoT ecosystem, and IoT device de-
tection. We discuss the related work in IoT device detection and characterization of
the IoT backend servers. Several popular IoT protocols are also covered. We provide
the details of our collaboration with a European ISP and a large IXP and the ethical
considerations we took while handling their datasets.

3.1 Internet of Things Ecosystem: Terminologies

What almost everyone agrees about IoT is that there is no universally agreed-upon
definition of IoT. Despite the increasing role and deployment of the Internet of Things
(IoT), academia, industry, media, and organizations have provided various definitions
for the term “IoT”, partly due to their own perspectives on the IoT and the ever-
evolving nature of the IoT ecosystem. For example, International Telecommunication
Union, a United Nations agency, defines IoT as “a global infrastructure for the infor-
mation society, enabling advanced services by interconnecting (physical and virtual)
things based on existing and evolving interoperable information and communication
technologies.” [118] Amazon AWS, a major cloud computing company, defines IoT
with respect to its relationship to the cloud: “[...] IoT refers to the collective network
of connected devices and the technology that facilitates communication between de-
vices and the cloud, as well as between the devices themselves.” [119]. Enumerating
and analyzing all of the definitions provided for the IoT is beyond the scope of this
thesis. Indeed, there have been attempts to bring various stakeholders together and
provide a unified definition of IoT; one notable example is the “Define IoT” initiative
by IEEE [120].

Nevertheless, the invariant part of these definitions is that IoT is a collection of
network-connected objects. In this thesis, we require these objects to be connected
to the Internet. As we perform a data-driven analysis of the IoT ecosystem in collab-
oration with ISP and IXP vantage points, non-Internet-connected objects will not be
visible in our datasets. Hence, the objects in private networks without Internet con-
nectivity and those which exclusively communicate over non-IP networks(for example,
the devices that only use Short Message Service(SMS) for their communication) are
beyond the scope of this thesis.

21

Chapter 3 Setup for IoT Studies

Server

IoT Backend Server
Infrastructure

IoT Devices

Vantage Point

Network Traffic
Between IoT Devices
and Backend Servers}

Figure 3.1: IoT Ecosystem.

See Figure 3.1, we envision a client-server communication model where a client relies
on services offered by a server; they exchange traffic, and we observe their traffic
from our vantage points. In this model, the network-connected objects that act as
clients are IoT devices, and those who act as servers are IoT backend servers.
To this end, the collection of IoT devices and their backend servers form the IoT
ecosystem.

IoT devices may include sensors, controllers, actuators, and household appliances
[121]. However, with the advancement of technology, manufacturers pack more pro-
cessing power and functionalities into a single device. Indeed, we can install new
applications on some devices and extend their functionalities. Thus, as first intro-
duced by Mazhar et al. [28], we can devise a spectrum of devices based on their
supported functionalities. See Figure 3.2 for this spectrum. On the left end of this
spectrum, we see simple IoT devices with a single purpose and limited functionalities.
These are sensors, actuators, smart light bulbs, and home appliances.

As we move to the right end of the spectrum, the number of functionalities and the
processing power of the devices increase. On the right-most end, we find general-
purpose devices such as laptops, personal computers, and smart mobile phones. In
the middle, devices are less sophisticated than general-purpose ones but can have
more functionalities than the left end of the spectrum. These devices, like Smart
TVs and Smart Speakers, allow users to install a limited set of new applications and
extend their basic functionalities. In this thesis, we exclude the right-most part of
this spectrum as they are not generally considered IoT devices [28].

22

3.2 IoT Communication Protocols

Single Purpose
IoT Devices:

Sensors,
Home Appliances

More sophisticated
IoT Devices:
Smart TVs,

Smart Speakers

General Purpose
Non-IoT Devices:

Smart Phones,
Laptops and PCs

Figure 3.2: Spectrum of IoT devices to Non-IoT devices. Figure based on
Mazharet al. [28]

3.2 IoT Communication Protocols

In terms of memory, storage, and processing power, today’s general-purpose com-
puting devices, e.g., smartphones, laptops, and personal computers, are becoming
remarkably powerful. In comparison, IoT devices tend to have more constrained
computing resources. Partly because IoT devices are meant to be “cheap” and de-
ployed en-masse for a specific application, thus packing high-performance computing
hardware may inflate the cost of the device.

Moreover, high-performance computing parts often use more energy than the lower-
performance ones, while IoT devices may have to operate in environments with min-
imal energy supplies. Although users may install IoT devices in their homes, many
businesses deploy them at remote locations, often with poor network connectivity and
power options. Even if installed indoors, it may not always be possible to plug IoT
devices into a virtually unlimited power source such as a wall power socket. Thus,
many IoT devices rely on limited energy sources such as batteries.

Users may install IoT devices in a mobile environment, e.g., a vehicle or a container
loaded on a ship, where the device’s location constantly changes and may pass through
areas with low bandwidth and intermittent network connectivity.

Therefore, for some applications, developers have to design the hardware under lim-
iting factors such as (i) low power, (ii) limited physical space, (iii) low bandwidth,
and (iv) intermittent network connectivity –all while minimizing the costs. Such con-
straints may lead IoT manufacturers to put lower-performance computing resources
in their devices to reduce energy consumption.

Limiting factors not only affect the choice of hardware; they also affect the software
that runs on an IoT device. The software should be able to execute using the avail-
able computing resources, e.g., low memory, bandwidth, and CPU performance, and
gracefully handle frequent network connectivity or power interruptions.

To this end, industry and researchers have proposed several protocols to operate
in challenging environments of IoT devices. Message Queuing Telemetry Transport

23

Chapter 3 Setup for IoT Studies

(MQTT), Advanced Message Queuing Protocol (AMQP), and Constrained Applica-
tion Protocol (CoAP) are among these protocols. Still, some developers may use
other protocols, such as Hyper Text Transfer Protocol (HTTP). More sophisticated
IoT devices may use a combination of protocols to support their different function-
alities. For example, they may rely on Network Time Protocol(NTP) [122] for time
synchronization. In this section, we describe MQTT, AMQP, HTTP, and CoAP,
popular choices among IoT developers [123].

3.2.1 Message Queuing Telemetry Transport (MQTT)

MQTT is an application-layer, light-weight, publish-subscribe(pub/sub) protocol. It
is designed for transporting messages in machine to machine(M2M/IoT) communi-
cation [124]. According to a survey of IoT developers by Eclipse foundation [123],
MQTT was the top choice among the survey participants. MQTT is designed to
operate in environments with low processing power and bandwidth and follows the
client/server model. In this model, IoT devices are clients. An MQTT IoT client,
e.g., a sensor, sends messages to an MQTT server called the broker. MQTT also has
a secure version that works over Transport Layer Security (TLS). IANA has assigned
port numbers TCP/8883 and TCP/1883 to the secure and non-secure versions of
MQTT, respectively. MQTT protocol specification has undergone several revisions,
and the latest version is MQTTv5.

3.2.2 Advanced Message Queuing Protocol (AMQP)

AMQP is another open application layer pub/sub protocol for transporting messages
between two processes over IP networks. While it is popular among IoT developers, it
is not limited to IoT applications. Developers and organizations who wish to exchange
messages between their business systems may also use this protocol. AMQP supports
a non-secure and secure version which runs over TLS. The secure version, AMQPS,
uses port 5671 (TCP/UDP), and the non-secure one uses 5672.

3.2.3 Hyper Text Transfer Protocol (HTTP)

Regarding traffic and usage, HTTP is one of the most widely used application layer
protocols on the Internet [125]. IoT devices may use HTTP for several purposes.
Some use it to send their telemetry data to the server, while others, e.g., Smart TVs,
use it for video streaming. Some devices even host a small HTTP server, which pro-
vides a web interface for the users to configure the device. Some developers use HTTP
to circumvent network firewalls configured only to allow outgoing connections of well-
known protocols such as HTTP. The non-secure version of HTTP uses TCP/80, and
its secure version, HTTPS, uses port 443.

24

3.3 Detecting IoT Devices

3.2.4 Constrained Application Protocol (CoAP)

Standardized in RFC 7252 [126], CoAP is a transfer protocol designed for sending
messages by devices with minimal computing resources. CoAP is based on HTTP
but requires significantly fewer resources on the device and the network and offers
multicast support. CoAP typically uses UDP 5683 for non-secure and 5684 for secure
(TLS-based) communication.

3.3 Detecting IoT Devices

In IoT device detection, we detect what IoT device is where in the network. In this
process, also known as IoT device fingerprinting, we identify an IoT device or its type
based on its unique intrinsic or behavioral properties [127].

IoT device detection is an essential first step toward characterizing the IoT ecosystem.
It allows network operators to keep track of devices connected to their networks and
later aids them in identifying the malicious and misbehaving IoT devices [127].

The problem of IoT device detection has gained traction among researchers. They
investigated it in diverse networks using different datasets. Network sizes can vary
from small test beds to larger ones like campuses and service provider networks.
They collect various datasets from IoT devices’ radio signals in the physical layer
to packet payloads in the application layer. They rely on one or a combination
of active and passive measurement techniques to obtain these datasets. In active
measurement, they send probes to the devices and capture their responses, while
in passive measurements, they passively capture the network traffic or radio signals
transmitted by the IoT devices. Since our datasets from the vantage points only
contain network traffic data, we only consider the solutions that use network traffic
of devices.

Active measurement solutions such as [17–26, 128], scan the IPv4 Internet and
apply different techniques on the received responses to perform IoT device detection.
Kumar et al. [27] deployed agents at home users’ premises and scanned their private
networks to infer the presence of IoT devices. Sivanathan et al. [24] relied on specific
port numbers that may also be used for specialized industrial IoT systems [25], though
the approach used cannot be easily extended to general-purpose IoT devices and smart
home systems that utilize popular ports, e.g., 443, 80.

Active measurement techniques, though scalable, have several drawbacks: they (i)
only report the behavior of targets in response to the probe packets, not the traffic as
observed through passive monitoring [28], (ii) are intrusive to the end-users and raise
privacy concerns if we deploy agents at end-users’ premises, (iii) are challenging to
identify devices that reside behind a Network Address Translation(NAT), (iv) cover
almost exclusively IPv4 Internet and have scalability issues to cover IPv6 internet(due
to the vast number of IPv6 addresses).

25

Chapter 3 Setup for IoT Studies

Passive measurement techniques like [32, 33, 35, 36, 129–132] use the passively-
collected network traffic for IoT device detection. The authors in [32, 35, 129–131]
use a broad range of network features from packet captures, or DNS traffic [33, 36] to
train a machine learning model and detect IoT devices in a lab environment. They
rely on testbed data [35, 132, 133], or tools for the active discovery of the household
devices and their network traffic [134]. On a larger scale, Mazhar et al. [28] used
instrumented home gateways to look at IoT traces from over 200 households in a US
city. Their analysis revealed that while the IoT space is fragmented, few popular
cloud and DNS services act as a central hub for most of the devices and their data.

However, to our knowledge, only a few works –and only concurrent or later than our
studies– have applied their solutions in the wild and at scale, e.g., on the Internet or in
large networks like ISPs. The main challenge is the poor availability and low granular-
ity of data sources. The available data sources are often in the form of large volumes
of passively collected, aggregated, and sparsely sampled data, e.g., NetFlow [30] and
IPFIX [31]. Although authors in [39] identify IoT devices by observing passive DNS
traffic, such methodologies often raise substantial privacy concerns as they require
looking into the packet payloads. There have been efforts to understand IoT traffic
patterns using data from transit networks [135], though it has been challenging to
validate the derived signatures successfully. Guo et al. [38] proposed a method to
identify IoT devices by observing unique IP addresses that the device contact. We
contrast this methodology with ours in Section 5.6.

These related works indicate that for detecting and enumerating IoT devices at scale,
we need scalable methodologies that (a) are not intrusive to the end-users, (b) do not
rely on payload, and (c) handle sparsely sampled data.

3.4 IoT Backend Servers

IoT backend servers are essential parts of the IoT ecosystem. As IoT devices tend to
have constrained resources and lack the resources to do all the processing locally, they
may have to offload some of the processing to more powerful servers on the Internet.
For example, an IP camera may not have enough storage to store large amounts of
video files; hence it eventually has to store them on a server. Moreover, IoT devices
rely on their backend servers to receive critical updates. Many IoT devices can be
controlled remotely via the Internet, and implementing this functionality without
using some backend server on the Internet is significantly challenging.

The growth of IoT applications and the demand for the backend infrastructure to
support them have led to the emergence of IoT Backend Providers: companies
that sell specialized IoT backend server infrastructure and related services to IoT
developers. Large cloud providers have also entered this market and added the IoT
backend as-a-service to their products.

Despite the importance of the backend servers in the security and operation of IoT
applications, they are not extensively studied. Similar to the IoT device detection

26

3.5 ISP and IXP Vantage Points

studies, we categorize the existing related work on IoT backend servers into Active
Measurement and Passive Measurement approaches.

Active Measurement. Izhikevich et al. [20] perform active scanning campaigns
and include IoT services that are often reachable on non-IoT ports. Several com-
mercial and non-profit solutions periodically scan the Internet using a wide range of
ports, including IoT standard ports and offer annotated datasets [21–23, 136]. These
solutions typically use a successful IoT protocol handshake as an indicator of an IoT
backend server. While they may find many IoT backend servers, they may not be
able to detect the IoT backend servers which run multi-purpose protocols such as
HTTP(S).

Active measurement campaigns are used by, e.g., used by Srinivasa et al. [17] to de-
tect IoT clients in the wild and characterize IoT device misconfigurations. Note that
they explicitly look for devices and not the IoT backend servers. The same is valid for
work that tries to identify the IoT devices that participate in attacks, e.g., the Mirai
attack [9]. We conclude that most work using active scans focuses on IoT protocols,
and the rest focuses on IoT devices and their security properties.

Passive Measurement. Passive measurement techniques primarily focus on the
detection of IoT devices rather than the characterization of their backend servers.
The ones focusing on backend servers lack the scale: they instrument a testbed [133]
or a dataset from a few hundred home users [28]. In [133], researchers instrumented
a testbed to obtain a full capture of IoT device traffic and analyzed the destinations
that devices contact. They found that many IoT devices contact servers that do not
belong to their manufacturers, and in most cases, they contact destinations outside of
the device’s region. In [28] the authors used instrumented home gateways to look at
IoT traces from over 200 households in a US city. Their analysis revealed that while
the IoT space is fragmented, few popular cloud and DNS services act as a central hub
for most of the devices and their data.

The recent work on the IoT backend providers is even more limited. Alrawi et al. [40]
pointed to the importance of studying the IoT backend providers. He et al. [137] de-
veloped a methodology to identify the traffic destined for IoT backend providers. One
particular work performed a security vulnerability analysis of 10 backend providers
and found exploitable flaws in their services [11]. Thus, IoT backend providers have
not received much attention despite their importance. This has motivated us to study
the infrastructure of these companies in Chapter 7.

3.5 ISP and IXP Vantage Points

We intend to perform a data-driven characterization of the IoT ecosystem. We col-
laborated with an ISP and an IXP in our studies. This section provides the details
of each vantage point and the ethical considerations for handling their datasets.

27

Chapter 3 Setup for IoT Studies

3.5.1 European Tier-1 Internet Service Provider

In Chapters 4 - 7, we collaborated with a large European ISP network. As a vantage
point, it provides datasets for our studies. Besides being a Transit Tier-1 network, it
serves 15 million broadband subscriber lines. It uses NetFlow-v9 to export flow cap-
tures and to sample traffic in the ingress direction of its routers. We obtained access
to the NetFlow-v9 streams from all of the routers. In addition to its massive scale,
the collaboration with an ISP allows observing the traffic from almost all subscriber
lines in both directions(sent and received). In contrast, in vantage points such as
IXPs, for each member, we may only observe the traffic for the portion of the traffic
forwarded via IXP (due to possible asymmetry between the forward and backward
traffic path of the traffic).

Ethical Considerations Studying traffic data from ISPs may raise ethical concerns
as it may be considered an analysis of customer activities. However, it is not the
goal of our studies. In each chapter, we provide further details about its ethical
considerations. Nevertheless, we undertook the following steps shared across all of
our studies.

The data is processed in situ and on the ISP’s premise. Following best operational
practices, the flow data is deleted at an expiration date set at the data collection
time. For our analysis, no data is copied, transferred, or stored outside the dedicated
servers that the ISP uses for NetFlow analysis.

Moreover, since parts of the Netflow data can be used as Personal Identifiable Infor-
mation (PII) for subscriber lines, they are anonymized. More specifically, the data is
anonymized by the BGP prefix before it hits the disc. We also note that to minimize
spoofing, the ISP uses best common practices, including network ingress filtering
according to BCP38 [138].

3.5.2 European Internet Exchange Point

We provided a detailed introduction of IXPs in Section 2.1.3. In our studies in
Chapter 4 and 5, we also collaborated with a large European IXP. It is one of the
largest IXPs in the world, with more than 900 members and peak traffic of 12 Tb/s as
of July 2022. It utilizes IPFIX (sees Section 2.2) to sample the traffic in the ingress
direction. We obtained access to IPFIX streams, which are backward compatible
with NetFlow-v9 and do not contain packet payloads.

The IXP’s dataset augments our studies by adding visibility over the traffic from
other members, including multiple ISPs. However, while massive, the IXP dataset,
unlike ISPs, may not contain all the traffic in all directions of all subscribers. Indeed,
due to traffic asymmetry on the Internet, the forward and backward traffic between
a source-destination on Internet may not cross the IXP. Even in a single direction,
only some portion of traffic may pass through the IXP. Thus, the IXP’s flow captures
may have a partial view of traffic of a member.

28

3.6 Ethical Considerations for Other Datasets

Ethical Considerations

Like ISP datasets, studying traffic data from IXPs may raise ethical concerns as it
may contain PII. Following best operational practices, the IPFIX data is anonymized
and is deleted at an expiration date set at the data collection time. For our analysis,
no data is copied, transferred, or stored outside the dedicated servers that the IXP
uses for IPFIX analysis.

3.6 Ethical Considerations for Other Datasets

Besides the passive network flow captures from ISP and IXP, we performed active
scans, resolved DNS queries, and obtained external datasets in our studies. This part
explains our ethical consideration steps for handling such datasets.

3.6.1 Active Scanning

In our methodologies in Chapter 7, we performed active scanning. We took care
to minimize any potential harm to the operation of routers and networks. First,
the measurement load was very low, i.e., a single packet per destination. We also
performed a randomized spread of load at each target IPv6 in the hit list. Moreover,
we coordinated with our local network administrators to ensure that our scanning
did not harm the local or upstream network.

For the active scanning, we use best current practices [136, 139, 140] to ensure that
our prober IP address has a meaningful DNS PTR record. We run a Web server
with experiment and opt-out information that responds to the resolution of the DNS
PTR domain. We did not receive complaints or opt-out requests during our active
experiments.

3.6.2 DNS Resolution

Our methodology in Chapter 7 required active DNS resolutions. We took the follow-
ing ethical considerations: We made sure that the load in the DNS resolvers is low,
i.e., we allow ten seconds before subsequent resolution, and we utilize all the available
resolvers. To perform these resolutions, we used three locations, two in Europe and
one in the The United States. All the locations were well connected to the Internet.
Our resolutions added negligible additional load to the network.

3.6.3 External Data

In Chapter 5 and 7, we applied for research accounts to both Censys and DNSDB.
The accounts allowed us to query and download the data that had been collected, i.e.,
active IP and port scans, TLS certificates, and passive DNS requests and responses.

29

Chapter 3 Setup for IoT Studies

3.7 Chapter Summary

This chapter is based on all our studies in chapters 5 - 7. We defined the terms
and described concepts important for understanding IoT-related studies. An ISP
and an IXP are our two main vantage points: we provided the details about their
structure and datasets. More importantly, we explained the ethical considerations
to handle their large-scale datasets. We also investigated the related work on IoT
device detection and IoT backend servers. We underlined the need for further research
into IoT backend servers, especially given their important role in the operation and
security of the IoT ecosystem.

30

4
Flowyager: Exploring Network-Wide

Flow Capture Data

In Background chapter(Chapter 2), we introduced the problem of a priori unknown
network-wide queries against large volumes of flow capture data. Our studies in up-
coming chapters required processing such datasets. In addition, with the proliferation
of IoT devices among millions of ISP subscribers, ISP operators can take advantage
of systems. Given that exploited IoT devices can be weaponized and participate
in large-scale coordinated Distributed Denial of Service(DDoS) attacks [141, 142],
network operators have to continuously keep track of the activity in their networks
over both long and short time windows. Over short time windows, e.g., minutes,
network operators would like to identify and rectify unusual events e.g., attacks or
network disruptions. Over long time windows, e.g., days or hours, network operators
are interested in provisioning network capacity or making informed peering decisions.
We also note that a system which supports these capabilities shall (i) be scalable
(ii) reuse existing flow captures (iii) support interactive and ad-hoc queries, and (iv)
support queries across network sites and over time.

In this chapter, we introduce Flowyager, a system built on top of existing voluminous
network captures, which enables interactive data exploration. Toward this goal, we
propose a lightweight self-adjusting data structure, Flowtree, that inherits the per-
formance of previously proposed hierarchical heavy hitter structures for computing
flow summaries. Flowtree summarizes elephants as well as mice flows and supports
multiple operators, such as merge, compress, and diff, to summarize information
across multiple sites and time periods. Next, we propose an SQL-inspired language,
FlowQL, which provides a unified interface to ask arbitrary ad-hoc queries about
flow captures, including drill-down queries. Then, we show that with Flowyager, the
query response time for network-wide queries can be reduced from hours or minutes
to seconds. Finally, we share our experience of rolling out Flowyager at different
operational environments, namely a large IXP and a tier-1 ISP and showcase how
to tackle various network management tasks. We have made Flowyager and its code
available for non-commercial use under the following link [143].

31

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

4.1 System Requirements

In this section, we devise the requirements of a system that should be able to answer
a priori unknown network-wide queries with a fast response, enabling interactive
exploration of network data across network sites and over time, as follows:

(1) Scalability: The system should grow with the network size, the number of data
sources, and the analysis requirements. With this, it should enable distributed de-
ployment and does not require all data to be transferred to a central location.
(2) Reuse of existing flow captures: As it takes significant effort to deploy novel
network capture utilities, the system should work on top of existing, widely deployed,
and supported flow capture capabilities, such as NetFlow, sFlow, IPFIX, or libpcap.
In high-speed links, these tools typically sample packets [144] to provide summaries
of flow activity.
(3) Support of interactive and ad-hoc queries: To easily explore network data, the
system needs to offer an interface that is flexible and interactive (meaning response
times in the order of seconds) to improve user productivity and enable drill-down
capabilities. Possible queries vary, and a system should not only focus on batch-
style known queries but also enable quick ad-hoc exploration of the data, i.e., answer
queries that are not known in advance, and allow for follow-up queries. Answer-
ing network-wide queries should not require custom code or scripting as network
operators usually neither have the required time nor the resources (e.g., storage or
computing). The goal is to reduce the response time of queries from hours or dozens
of minutes to seconds and, thus, enable interactive and drill-down queries.
(4) Support of queries across network sites and over time: Most queries are not
just for some specific time period or network site. Rather, they correlate data span-
ning multiple periods, across network sites, and at different granularities, e.g., per
site, region, time of day, and event. The system should be able to collect, index, and
store summary data across multiple sites and over time.

Although most networks gather raw flow data, answering network-wide queries is
difficult due to: (a) the distributed nature of data collection (per interface and router)
at different locations, i.e., at multiple border and/or backbone routers, (b) the massive
and ever-increasing size of the flow data (despite sampling) incurring an excessive cost
to store, transfer, and analyze flow data–indeed, it often has to be deleted after some
time to be able to store more recent data, and (c) the international footprint with the
requirement to comply with local legislation that may prohibit raw data transfer.

To achieve the above, we need data structures that generate succinct and space-
efficient summaries, as well as indexing of network flow captures that are light (easy
to transfer), can be analyzed locally, and enable answering interactive a priori un-
known network-wide queries. These data structures should be used to accurately and
quickly answer queries and tackle network management tasks that involve multiple
sites and/or span multiple periods in a user-friendly and unified way.

32

4.2 Flowyager Architecture

Network
Monitor-
ing

Data Ana-
lytics

HHH Sketch Flowyager

Input: Packets 3 7 7 7 3

Input: Flows 3 7 7 7 3

Distributed Queries 3 7 7 7 3

Online 7 3 7 7 3

Arbitrary Queries 7 3 7 7 3

Query language 7 3 7 7 3

Summarization 3 3 3 3 3

Low Installation Cost 3 7 3 3 3

Low Maintenance Cost 3 7 3 3 3

Adaptivity to Data 3 7 3 3 3

Table 4.1: Comparison of systems w.r.t. functionality offered. 3: full support, 7:
no support.

4.2 Flowyager Architecture

To address the requirements outlined in the beginning of this chapter, we build a scal-
able distributed network data analysis architecture, Flowyager. Its input is existing
per-interface network flow captures, either flow summaries—reporting on packet, byte,
or flow counts per 5-tuple (src/dst IP address, src/dst port, protocol)—or packet-level
summaries (e.g., trace sample). We emphasize that we do not propose yet another
NetFlow. Its output is network reports including packet, byte, or flow counts across
network sites and time periods. Prime users, i.e., network operators, can access the
data via FlowQL, an SQL-inspired query language that returns results in seconds
and, thus, enables interactive ad-hoc queries with drill-down capabilities. Recall the
related approaches from 2.3.2, for a comparison between Flowyager and other ap-
proaches, we refer to Table 4.1.

To underline Flowyager’s capabilities for exploring network data, we show in Fig 4.1
and Fig. 4.2 screenshots of Flowyager’s Web interface. The Web interface highlights
that searches are possible across time ranges, site sets, and feature sets. Moreover, it
showcases Flowyager’s drill-down capabilities that are also visually supported.

Flowyager is a modular system that consists of three main components:

1. FlowAGG, which takes existing flow (or packet) captures as input and com-
putes flow summaries, using Flowtrees (see below), which it stores and exports.
Besides, FlowAGG may, if it has enough storage, keep a local copy of the flow
captures themselves.

2. FlowDB, which takes flow summaries as input, stores, and indexes them, while
using them to answer FlowQL queries. It can use FlowAGG internally to com-
pute further flow summaries.

3. FlowQL, which uses the flow summaries kept within FlowDB to answer interac-
tive or batch-style queries including Hierarchical Heavy Hitter/top-K queries,
Above-Thresh queries, or top-K heavy changer queries across time and sites.

33

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

Figure 4.1: Flowyager: Interacting with 1-feature Flowtrees.

To better understand the system architecture, Figure 4.3 gives an overview of the
overall system, while Figure 4.4 presents Flowyager’s processing pipeline.

Each router sends its data to a NetFlow collector 1©, which forwards it to one of
potentially many distributed FlowAGG instances 2©. Each FlowAGG instance com-
putes summaries 3© and then uploads these either to another FlowAGG instance or
directly to FlowDB 4©1. FlowDB then processes the summaries 5© and uses them to
answer user queries 6©.

Flowtree is a data summary of a stream of raw flow data that supports efficient 1-d
HHH extraction and other operators. Flowtrees are the data primitives of Flowyager.
Details on the design and implementation of Flowtree data structure and Flowtree
operators are presented in Section 4.3.

FlowAGG uses a separate plug-in, written in C, for each data source, including
IPFIX, NetFlow, sFlow, and libpcap.

FlowDB is responsible for collecting and storing the Flowtrees. It also provides an
interface that the user of the Flowyager can use to answer network-wide queries based
on the stored Flowtrees, FlowQL, whose design is largely inspired by GSQL [54]
which uses an SQL-like query language. Using GSQL directly does not suffice due
to the unique capabilities of Flowyager. Details on the design and implementation of
FlowDB are presented in Section 4.4.

1For simplicity we restrict our discussion to a centralized instance of FlowDB. However, it is possible
to use a hierarchical design similar to what has been proposed for logs of distributed servers [145,
146]

34

4.2 Flowyager Architecture

Figure 4.2: Flowyager: Interacting with 2-feature Flowtrees.

FlowCapture
transmitted

Aggregated
FlowCapture
transmitted

Flowtree /
query
exchange
FlowQL
connection

Database to index Flowtrees

5

Share Flowtrees or
enable dist. access

SQL-like

Query

interface 6FlowAgg summarizes
flows via Flowtree 3

FlowCapture Collector

send flow captures to

AGG nodes

4

Routers send flow

captures to NetFlow
Collector

1

2

Figure 4.3: Flowyager architecture.

In total, it took approximately 21k lines of code (LoC) in C and C++ to realize
Flowyager. About 16k LoCs are for FlowDB, 1.5k for FlowAGG, 2.5k for Flowtree
library, and 1k for shared components.

35

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

...

FlowCapture
Collector A FlowAgg A

...

FlowDB
Create Compress Upload

FlowCapture
Collector B

FlowCapture
transmitted

Aggregated
FlowCapture
transmitted

Flowtree
transmitted

Flowtree
locally
transmitted

1

2 3

5

1

2

1

1

FlowAgg B

Create Compress Upload

3

4

4

N
et

w
or

k
A

N
et

w
or

k
B

Router

Router

Router

Router

Figure 4.4: Flowyager Processing Pipeline.

4.3 Flowtree

Flowtree is the data structure used as a data primitive in Flowyager. Before we dive
into the details of Flowtree and its operators, we provide background on Hierarchical
Heavy Hitter (HHH) data structures.

4.3.1 Hierarchical Heavy Hitters

To enable Flowyager, we need succinct summaries from flow captures that are light to
transfer yet, allow for real-time, interactive queries using different flow feature sets.
A flow feature refers to any of the components of a flow’s 5-tuples, namely protocol,
src and dst IP, src and dst port. A feature set includes a subset of the possible five
flow features.

We take advantage of the fact that most of the data on the Internet is skewed in
the sense that Zipf’s law [147–149] typically applies. However, flat summaries, i.e.,
histograms, do not suffice. Rather, we need hierarchical heavy hitters (HHH) 2. HHH
utilize attribute hierarchies and identify the most popular elements across a hierarchy.
For IPv4 prefixes, we use the network prefix length as an obvious feature hierarchy.
As such, 10.1.2.0/23 is the parent of 10.1.2.0/24 and 10.1.3.0/24. For ports, we can
use port ranges, e.g., 80/15 is the parent of 80/16 and 81/16. Each feature hierarchy,
by default, uses a mask. An IP a.b.c.d is part of the prefix a.b.c.d|n1 and a.b.c.d|n1

is a more specific prefix and, thus, a child of a.b.c.d|n2 if n1 > n2. The same applies
to ports, whereby, e.g., 0|8 refers to the ports from [0, 63]. It is possible to define
custom hierarchies, e.g., all Web ports, all DNS ports, or all well-known ports.

Ideally, one would use 5-dimensional hierarchical heavy hitters (5-d HHH) across
all flow features. Unfortunately, this is infeasible due to its computational com-
plexity [111, 150]. Rather, we use 1-d HHH, which can be updated in amortized
O(1) time per entry while maintaining the accuracy for HHH and space efficiency of

2The set of HHH for a single hierarchical attribute with popularity counts and a threshold θ corre-
sponds to finding all nodes in the hierarchy such that their HHH count exceeds θ ∗ N , whereby
the HHH count is the sum of all descendant nodes which have no HHH ancestors.

36

4.3 Flowtree

O(H/εlog(εN)), whereby N is the number of items processed, H is the number of
hierarchy levels, and ε bounds the precision [111, 150].

Contrary to previous work, we do not restrict the 1-d HHH to a single flow feature.
Our first key functionality is that we can generalize 1-d HHH by defining a joined
hierarchy for a given feature set, e.g., a joined hierarchy for both dst IP and dst port,
whereby the parent of 10.1.2.0/24|80/16, as well as 10.1.3.0/24|81/16 (IP range|port
range) is 10.1.2.0/23|80/15. The parent of 10.1.2.0/23|80/15 is 10.1.0.0/22|80/14 and
its great-grandparent is 10.1.0.0/21|80/13. For visualization of a sample 2-f hierarchy
see Figure 4.5. In effect, we rely on generalized flows: Flows summarize related
packets over time at a specific aggregation level. Possible feature sets include “4-
feature” flows (i.e., (src IP, dst IP, src port, dst port)), “2-feature” flows, e.g., (dst
IP, dst port) (DIDP).

The joined hierarchy can capture the correlation of more than one dimension, e.g., the
correlation between IP activity and port activity. It allows identifying heavy hitters
on sets of features and thus, investigating more complex use cases. For example,
in an attack, both the target IP and port are important to investigate the type of
attack. In general, any query involving multiple features can benefit from this joined
hierarchy.

Our second key functionality is that if the 1-d HHH data structure supports the
operators merge (∪) and compress, we can compute summaries across time and/or
space. In effect, these two operators allow us to add the features time and location.
Given two data structures, A1 for time period t1 (location l1) and A2 for t2 (l2), we
get the joined data structure by A12 = (A1∪A2). The compress operator is especially
useful in reducing the memory footprint of the structure. This operator prunes the
tree leaves, and if needed the internal nodes, whose contributions are less than some
configurable thresholds, and summarizes their contribution to their parents.

Other operators are diff, query, drill-down, HHH resp. TOP-k, Above-x The diff
operator is useful for identifying changes, the drill-down operator to explore sub-
regions. The HHH and Above-x operators allow us to find popular feature sets. The
operators are used for interactive queries via FlowQL.

(10.1.2.0/23,
80/15)

(10.1.2.0/24,
80/16)

(10.1.0.0/21,
80/13)

(10.1.0.0/22,
80/14)

(10.1.3.0/24,
81/16)

(10.1.0.0/23,
82/15)

…

…

…

Figure 4.5: Example: 2-Feature flow hierarchy.

37

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

Algorithm 1 Flowtree: Creation/up-
date
Function: Build_Flowtree (pkts resp. flows)

1: Initialize Flowtree
2: for all pkts/flows do
3: Extract_features(pkt resp. flow).
4: Construct node from features.
5: Add (Flowtree, node, feature set).

Function: Add (Flowtree, node, features)
1: Add_node(Flowtree, node, features).
2: next = next_parent(node).
3: while next != parent(node) or (next ∈ tree).

do
4: Add_node(Flowtree, next, NULL) with

probability p.
5: next = next_parent(next).

Function: Add_node(Flowtree, node, features)
1: if node exists then
2: comp_pop[node] += stats(flow/pkt).
3: else
4: Insert node with comp_pop[node] =

stats(flow/pkt).
5: parent(node) = find_parent(Flowtree,

node).
6: for child in children(parent(node)) do
7: if child ∈ node then
8: parent(child) = node.

Algorithm 2 Flowtree: Stats and
Compress operator
Function: Stats(Flowtree)

1: Initialize pop to comp_pop for all nodes
2: Node_list = nodes of Flowtree in DFS order
3: for node in Node_list do
4: pop[parent(node)] += pop[node]

Function: Delete(Flowtree, node)
1: parent = find_parent(Flowtree, node).
2: comp_pop[parent] += comp_pop[node].
3: children(parent) += children(node).
4: Free node

Function: Compress(Flowtree,
thresh_comp_pop, thresh_pop)

1: Stats(Flowtree).
2: for each node do
3: if (node is leaf and

comp_pop[node] < thresh_comp_pop)
then

4: Delete(Flowtree, node)
5: else if (comp_pop[node] <

thresh_comp_pop
and pop[node] < thresh_pop) then

6: Delete(Flowtree, node)

Algorithm 3 Flowtree: Operators
Function: Merge(Flowtree 1, Flowtree 2)

1: Flowtree = Flowtree 1
2: for each node in Flowtree 2 do
3: Add_node(Flowtree 1, node)

Function: Diff(Flowtree 1, Flowtree 2)
1: Flowtree = Merge(Flowtree 1,Flowtree 2)
2: for each node n in Flowtree 2 do
3: comp_pop(n) = abs(comp_pop(n) - 2*comp_pop2(n))

4.3.2 Flowtree Data Structure

After evaluating different 1-d HHH data structures, including those of Cormode et
al. [111, 150], Basat et al. [57], and Mitzenmacher et al. [112], we decided to augment
the structure by Cormode et al.: this data structure is self-adjusting and its entries can
be easily extracted via enumeration; thus, it provides natively drill-down capabilities.
Flowyager does not intrinsically depend on this data structure; rather, it can be
built on top of any data structure that supports abstract hierarchies and the basic
operators.

Flowtree data structure: Generalized flows form a tree via its hierarchy, where
each node corresponds to a flow. An edge exists between any two nodes a, b if a is a
subnode of b in the feature hierarchy, i.e., if a ⊂ b —see Figures 4.7a and 4.7b. We
annotate each node with its popularities, including packet count, flow count, and byte

38

4.3 Flowtree

count for UDP and TCP. The popularity of a node is the sum of its own popularity
and the popularity of the children—see Figure 4.6c.

However, during the construction of the trees, we only keep the nodes’ “comple-
mentary popularity”, namely the popularity (pop) that is not covered by any of the
children. Thus, it is possible to prune such a tree by pushing the contribution of the
pruned nodes to their parent. This is a key functionality for efficiently updating our
self-adjusting data structure. Flowtree keeps “popular” nodes and prunes “unpopu-
lar” ones by summarizing them at their parent. Flowtree inherits the insertion and
self-adjusting strategy from Cormode et al. but rather than allowing the number of
nodes to grow unlimited, we limit the maximum number of nodes that a tree can
contain by repeatedly pruning (compressing) the tree when necessary. Still, Flowtree
closely matches the excellent performance and accuracy bounds for 1-d HHH in terms
of space efficiency and precision.

4.3.3 Flowtree: Visualizing the Concepts

We start with the visualization of the differences between popularities and comple-
mentary popularities in Figure 4.7. Next, we show the two different feature hier-
archies, namely a 1-feature hierarchy on IP addresses, and a 4-feature hierarchy on
src/dst IP addresses and src/dst ports with and without popularities, see Figures 4.6a
and 4.7.

a.0.0.0/8

a.b.c.0/24

a.d.c.e/32
a.b.0.0/30

a.d.c.0/28

(a) 1-feature Flowtree: IP.

10

12

3

15

5

(b) Comp_pop Flowtree.

[22]

[12]
[5]

[20]

[45]

(c) Popularity in Flowtree

Figure 4.6: Flowtree concept.

Initially, a Flowtree has exactly one entry—the root. When adding a node, we add a
new leaf node if necessary and a subset of the nodes on the path to the first existing
parent (in the worst case, the root) and update the statistics of the leaf node. We
call these intermediate nodes the internal nodes. Thus, each node maintains the
complementary popularity (comp_pop), the popularity (pop) that is not covered by
any of the children, see Alg. 1. Popularities are computed from the complementary
popularities by summing the complementary popularities of all nodes in its subtree,
including its own. This can be done via a depth-first search in O(# nodes) time, see
Algorithm 2. This uses two functions for finding the parents of a node. parent(node)

39

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

(a.b.c.i/30, e.f.g.h/32,
80, 1500)

(a.b.c.d/32, e.f.g.h/32,
80, 1500)

(a.b.c.i/30, e.f.g.j/30,
{80,443}, 1024-1536)

(a.b.c.i/30, e.f.g.j/30,
{80,443}, 1500)

(a.b.c.m/30, e.f.g.l/32,
80, 1500)

(a.b.c.i/30, e.f.g.k/31,
443, 1500)

(a) 4-feature Flowtree:
src/dst IP and port.

(a.b.c.i/30, e.f.g.h/32,
80, 1500)

(a.b.c.d/32, e.f.g.h/32,
80, 1500)

(a.b.c.i/30, e.f.g.j/30,
{80,443}, 1024-1536)

(a.b.c.i/30, e.f.g.j/30,
{80,443}, 1500)

(a.b.c.m/30, e.f.g.l/32,
80, 1500)

(a.b.c.i/30, e.f.g.k/31,
443, 1500)

0[189]

0[189]

0[55]

14[14]11[11]

134[134]

(b) 4-feature Flowtree with
complementary_pop. and pop.

Figure 4.7: 4-feature Flowtree.

0[41]

12[12]

0[103]

0[12]

5[5]
7[7]15[15]

8[8]

0[14]

6[6]

popularity?

heavy
hitters?

0[62]

20[20]

30[30]
?

?

(a) Queries:
(a) Node is in Flowtree, is it
a heavy hitter?
(b)Estimating the popular-
ity of a node that is not in
Flowtree

!

!

!

!

(b) Above-t Query: k=29. The
annotated nodes will be re-
turned

Figure 4.8: Flowtree queries.

refers to the direct parent in the feature hierarchy, while find_parent(node) refers to
the parent in the Flowtree.

Updating an existing node corresponds to finding it, which takes time O(1) using an
appropriate hash-map. Adding a new node may take up to O(# hierarchy level) time
(using an appropriate hash-map). Yet, the expected number of new nodes is small if
the distribution of the data is skewed.

To limit the Flowtree’s memory footprint, we periodically, or on demand, delete nodes
with low popularity. We first compute the popularities by using the stats function in
Algorithm 2 and then prune nodes whose complementary resp. absolute popularity
are below an adjustable threshold. This ensures that at any time, the number of

40

4.3 Flowtree

10

12

3

15

5

4

10

3

U = 10

16

13

15

8

8 8

(a) Merge

10

12

2

15

5

\ =
3

10

1

8

10

2

1

15

(b) Diff

Figure 4.9: Flowtree Operators: Merge and Diff

nodes in a Flowtree is proportional to the number of processed flows resp. less than
a predefined maximum. The complementary popularity of a deleted node, as well as
its children, are pushed to its parent. The overall cost of such a compression step
is O(# nodes). Note that since only nodes with small popularity are deleted, the
complementary popularity of an interior node is a good estimate of the cardinality of
the contributing flow set. Finally, to control the rate of the growth of the tree and
prevent the frequent addition and deletion of internal nodes, we insert the internal
nodes with a probability of p. The default value of p is 0.3.

4.3.4 Flowtree Operators

Query and drill-down: The base operators are query (see Figure 4.8) and drill-
down. If the feature f is a node in the Flowtree, the answer is computed from
the node statistics. Otherwise, we find the potential node, q, that corresponds to
f and estimate its popularity based on the popularity of the predecessor of q, p,
and its children, C. We split the children into two subsets: Cf and Co = C − Cf ,
whereby Cf includes those that are a subset of f in the hierarchy. Now,

∑
c∈Cf

pop(c)
is a lower bound for the popularity of f and two estimates of f ’s popularity are
pop(p) −

∑
c∈Co

pop(c) or comp_pop(p) +
∑

c∈Cf
pop(c), see Figure 4.8. If the

feature set does not correspond to a node p, the query is expanded to a tree-walk
starting at the smallest possible parent of p. The output of the query are then all
nodes and their popularities that match the input feature set. For example, src_ip =
a.b.0.0|16 and src_port = 80|16 start at node (a.b.0.0|16,80|8) and outputs only the
nodes where src_port is 80 and src_ip is a subprefix of a.b/16. Drill-down queries
retrieve the children of a node. Note that we can derive estimates for all flows, from
mice to elephants: even for low-popularity nodes, the number of flows remains a good
estimate for the number of contributing flows.

Above-t: Results in a tree-walk and all nodes whose popularity are above the
threshold value are returned.

Top-k : To compute the top-k, we identify the Flowtree entry with the largest pop-
ularity, delete its contribution, and then iterate. Hereby, we use a priority queue.

Merge: We merge two Flowtrees by adding the nodes of one to the other. Note that
the update will only be done for the complementary popularities— see Algorithm 3

41

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

and Figure 4.9a—, with missing nodes being assigned a popularity of zero. The
statistics have to be recomputed and, to reduce the memory footprint, we compress
the joined tree. If the total absolute contributions of the two trees differ significantly,
one should rescale the complementary popularities of the trees before merging.

Diff and HeavyChanger: Just as one can merge Flowtrees, one can also compute
the difference between two trees. This is a merge operation with subtraction instead
of addition—see Alg. 3 and Fig. 4.9b. Heavy changers are detected by using Top-k
on the diff of the two trees.

Flowtrees maintain counters for various features of the flows. In the current imple-
mentation, we use counters for the packet, byte, and flow counts. This structure
supports cardinality-based queries but is limited to the elements (features) already in
the tree (nodes). It is possible to maintain additional counters and support additional
cardinality-based queries, e.g., using counters for ports, but at the cost of requiring
additional space. In some cases, this is necessary. For example, such cardinality-based
queries will enable the detection of non-volumetric attacks, e.g., semantic attacks. By
allocating more space and maintaining more counters, it is possible to detect differ-
ent types of attacks, e.g., “slow” DDoS attacks (Slowloris). We plan to explore the
accuracy of cardinality-based queries and the effect of allocating more space and
maintaining more counters in Flowtrees as part of our future in future work.

4.4 FlowDB

FlowDB collects and stores Flowtree summaries computed by FlowAGG in persistent
storage. Each Flowtree has a unique key made from its timestamp, which along with
its granularity, reflects a time interval, the id of the site/location, and its feature-set.
The values are the Flowtrees, which are stored as byte buffers. Figure 4.10 visualizes
FlowDB’s architecture.

Add
Flowtree

Get
Flowtree

FlowQL
query

FlowQL
response

in case of
cache miss

Flowtree as
a response

*

3

Flow
DB

FlowAgg

FlowDB API

In-Memory Cache & Index

Persistent Storage (MongoDB)

App

*

FlowAgg… …

3
31

3

a

b

c

a

b

d

c

a d

cb

App

Query Engine:
FlowQL

Figure 4.10: FlowDB overview.

42

4.4 FlowDB

4.4.1 FlowDB Implementation

Currently, our database of choice is MongoDB [151] because it is lightweight, al-
though any other key-value datastore can be used. We use an in-memory index and
an in-memory cache to accelerate query processing. The in-memory index is a col-
lection of T*-trees that track Flowtrees and enable range queries over different time
periods. The in-memory cache uses a least recently used (LRU) policy to keep re-
cently added or queried trees in memory. FlowDB is designed with parallelization in
mind: it can receive multiple streams of Flowtrees from multiple FlowAGG daemons
while answering queries to multiple users simultaneously. Parallelization is utilized
in performing major tasks such as handling requests from FlowAGG daemons and
remote API calls, storing Flowtrees in persistent storage, and query processing. Upon
receiving a query, the system first checks whether the queried trees are in memory.
In case of cache misses, it retrieves trees from storage.

The system is highly configurable in terms of memory usage by setting a maximum
number of Flowtrees in memory, cache eviction interval, degree of parallelization,
etc. The maximum number of Flowtrees in memory controls the memory footprint
of FlowDB. To access the database, FlowDB offers both an API with the services
Add Flowtree and Get Flowtree and an interface for FlowQL. FlowAGG and other
components of Flowyager use the Apache Thrift Remote Procedure Call (RPC) frame-
work [152] for communication.

To enable Geo-Distributed Query Execution, the in-memory index keeps track of
whether a Flowtree is stored locally or at a remote FlowDB. Thus, if necessary, all
remote Flowtrees can be fetched via the FlowDB API to answer a FlowQL query. In
our planned geo-distributed query execution, we partition site-IDs and map a site-ID
to a FlowDB instance. Once a FlowDB instance receives a query, it will check whether
the given site-ID is stored locally. If the required Flowtree is not stored locally, it can
issue a request to the target FlowDB instance and retrieve the Flowtree. Once the
Flowtree is retrieved, it will be merged with the Flowtrees that are already present,
and the intended query is fulfilled. The evaluation of this feature is beyond the scope
of the current manuscript.

4.4.2 FlowQL Query Language

To realize FlowQL, we took inspiration from SQL keywords, yet we developed our own
grammar. We used ANTLR [153] to generate the parser for the grammar. We offer an
interactive command-line shell and a graphical user interface using R shiny [154]–cf.
the screenshots from Fig 4.1 and Fig. 4.2. More specifically, with FlowQL, the user
chooses their operator via a SELECT clause, one or multiple time periods via a FROM
clause, and the feature set via a WHERE clause.

SELECT: specifies the answer type. Allowed values include ‘pop’ for popularity or
flow/byte/packet count, ‘top-K’ for the top-k most popular flows, ‘HHH-P’ for the
1-d hierarchical heavy hitters with flow counts above P% of total traffic, ‘hc-K’ for

43

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

Dataset Time range #Interface Input Size Type Time bin
IXP Sep’19 1–7 ≈ 1,250 ≈ 10TB Flow 15m
ISP Apr’19 1–2 ≈ 1,300 ≈ 25TB Flow 15m

MAWI May’18 9–10 2 ≈ 1TB Packet 1m

Table 4.2: Deployment overview: IXP, ISP, and MAWI.

the top-k heavy changers, ‘above-T’ for all flows with popularity above t, and ‘*’ for
all flows satisfying the WHERE clause.
FROM: specifies one or multiple time periods.
WHERE: selects the feature sets and one or multiple conditions. Possible feature ele-
ments are site_id, src_ip, dst_ip, src_port, dst_port, proto. Possible values are ANY
or any region, IP prefix, or port range (using the IP|mask resp. the port|portmask
syntax). Combinations are feasible via (AND, OR, and ()).

Thus, FlowQL queries have the following syntax:
SELECT [pop, top-k, hc-k, above-t, hhh-k, *]

FROM (time YYYY-MM-DD hh:mm to YYYY-MM-DD hh:mm)+

WHERE ([Conditions via AND, OR,), (, feature = value])+

Using FlowQL, we found that we often wanted to repeat the same query across
multiple time bins or sites. Thus, we added two iterators: answer-bin-x that iterates
across time bins of size x minutes and site_id=ITR-x|n that iterates across all sites
within a site set, specified with an interval, e.g., [x, x+2n − 1], or using a pattern.

We additionally provide drill-down queries to drill down and inspect a specific time
range in more detail. A particular granularity in which one desires to inspect the
traffic should be specified in a drill-down query. For instance, to see the result of a
query in 15-minute time bins, one should specify bin15 in the query.

4.5 Experimental Deployments

We rolled out and tested Flowyager in three different types of networks, namely a
large European IXP (IXP), a tier-1 ISP (ISP), and our testbed using a sample dataset
(MAWI)—see Table 4.2 for an overview. In this study, we report on experiments on
stored data that we use for reproducibility. At two locations, the IXP and the ISP,
we are in the process of moving towards live data import after extensive testing on
site.

Ethical considerations: We are fully aware of the sensitivity of network data
and, therefore, only work with a subset of the packet header information, namely
src IP, dst IP, src port, dst port, protocol, whereby all IPs have been consistently
anonymized per octet (bijective substitution using a hash function), even though this
may negatively affect prefix aggregation. Note that the live operational deployment
of Flowyager will not require such anonymization.

IXP Dataset: This dataset consists of IPFIX flow captures at one of the largest
Internet Exchange Points (IXPs) in the world with more than 800 members and more

44

4.5 Experimental Deployments

Short Form Meaning
SIDI src IP and dst IP
SPDP src port and dst port
SISP src IP and src port
SIDP src IP and dst port
DISP dst IP and src port
DIDP dst IP and dst port
SI src IP
DI dst IP
SP src port
DP dst port
FULL src IP, dst IP, src port, and dst port

Table 4.3: Overview of the feature sets of Flowtree.

than 8 Tbps peak traffic. The IPFIX flow captures are based on random sampling
of 1 out of 10k packets that cross the IXP switching fabric. The anonymized capture
includes information about the IP and transport layer headers, as well as packet and
byte counts. To evaluate the system at real-world scales, we included all sites during
the first week of September 2019. Each site corresponds to the router interface of an
IXP member connected to the IXP’s switching fabric.

We deployed Flowyager within a virtual machine (VM) on a server at the IXP’s
premises. The VM is assigned 400 GB of memory and 40 threads on a machine with
two Intel-Xeon-gold 6148 CPUs each with 40 threads.

ISP Dataset: This dataset consists of approx. 1,300 NetFlow streams (one per
interface) from a major tier-1 ISP. We receive NetFlow data from 40 routers located
in 30 cities in 4 European countries, as well as the US. The ISP’s internal systems
preprocess the raw NetFlow streams into 26 separate ASCII data streams. The
NetFlow packet sampling is identical across all the routers. We include all data
from Apr. 01, 2019 (00:01:00 UTC) to Apr. 03, 2019 (02:01:00 UTC). We deployed
Flowyager as a Docker container with 94 GB memory and 32 threads on a machine
with two Intel Xeon E5-2650 CPUs.

MAWI Dataset: This dataset consists of packet-level capture collected at the
transit 1 Gbps link of the WIDE academic network to its upstream ISP on May 9-10,
2018. Each packet capture lasts for 15 mins and contains around 120 M packets.
The anonymized trace is publicly available [155] and we use it to be able to release
sample queries and results. We interpret each direction as a site. For this dataset,
we deployed Flowyager on a testbed machine, with 128 AMD-EPYC 7601 CPUs and
1.5TB memory.

Flowyager setup: In terms of the basic setup for the Flowyager evaluation, we
choose fixed time periods rather than a fixed number of flows. The advantage of
the former is that we can easily summarize across time and that we can even look
at coarser time granularities. The advantage of the latter is a constant number of
entries to summarize. We choose the former rather than the latter as summarizing
and investigating across time are typical network operator tasks. We keep Flowtrees
for every 15 minutes for every site for the IXP and ISP datasets and 1 minute for the

45

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0%
25

%
50

%
75

%
10

0%

10
0

10
2

10
4

10
6

Number of flows per Flowtree (log scale)

P
er

ce
nt

ag
e

Dataset

● ISP

IXP

Figure 4.11: ECDF of # of entries–all
sites (IXP and ISP).

●
●

●
●

●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ●

●
●

● ● ● ● ● ● ● ● ● ●

IXP ISP

10
k

20
k

30
k

40
k

50
k

10
k

20
k

30
k

40
k

50
k

0
5

10

Maximum number of Flowtree nodes

T
im

e
(S

ec
)

Feature Set

●

●

FULL

SIDI

SPDP

SISP

SIDP

DISP

DIDP

SI

DI

SP

DP

Figure 4.12: Flowtree build time (IX-
P/ISP: four/one 15-min.
trees) vs. max. # of nodes
per feature set.

MAWI dataset. We generate 11 different feature trees, namely all four 1-feature trees,
all six 2-feature trees, and a 4-feature tree, see Table 4.3 for the details. By default,
we limit each Flowtree to 40k nodes. 1-feature port Flowtrees are limited to 10k
nodes. In addition, we generate aggregated trees for 15 minutes, 1 hour, 1 day, and
1-week time granularities, each with at most 40k nodes. This results in one tree per
site for each time granularity and a single tree for all sites for each time granularity.

4.6 Flowyager Prototype Evaluation

Next, we describe our experience with deploying Flowyager, which we will make
publicly available for non-commercial use. Our evaluation highlights the four main
strengths of Flowyager: reduced storage footprint, low transfer cost, rapid response
to a wide range of queries, and high accuracy. Since these characteristics are related
to our choice of underlying data structure and its resp. parameters, we start by
evaluating Flowtree— the current basis of Flowyager.

4.6.1 Flowtree Evaluation

Input data skewness: One motivation for using HHHs is to take advantage of the
skewed input data. We indeed confirm that the flow captures are skewed in the sense
that for all feature sets, all time periods, and all sites with enough traffic, the traffic
volume follows a skewed distribution.

Next, the data structure should be able to summarize time periods with small as well
as large numbers of flows as underlined by Figure 4.11, which shows the empirical
cumulative distribution (ECDF) of the number of flow entries per 15-minute Flowtree
for the IXP and the ISP datasets using a logarithmic x-axis. We find a huge skew.
More than 37.5% of the time periods (per site) have less than 1,000 entries, yet more
than 12.5% have more than 50k entries. This underlines that the data structure has

46

4.6 Flowyager Prototype Evaluation

●
●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

HHH 0.01% top−1K
5K 15

K
25

K
35

K
45

K
55

K
65

K
75

K
85

K
95

K

5K 15
K

25
K

35
K

45
K

55
K

65
K

75
K

85
K

95
K

0.000

0.001

0.002

0.003

0.004

Maximum number of Flowtree nodes

A
R

E

●

●

SIDI
SPDP
SISP
SIDP
DISP
DIDP
SI
DI
SP
DP
FULL

(a) ARE vs. # of Flowtree nodes (all feature sets at IXP).

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

HHH 0.01% top−1K

5K 15
K

25
K

35
K

45
K

55
K

65
K

75
K

85
K

95
K

5K 15
K

25
K

35
K

45
K

55
K

65
K

75
K

85
K

95
K

0.5

0.6

0.7

0.8

0.9

1.0

Maximum number of Flowtree nodes

F
1

●

●

SIDI
SPDP
SISP
SIDP
DISP
DIDP
SI
DI
SP
DP
FULL

(b) F1-score vs. # of Flowtree nodes (all feature sets at IXP).

Figure 4.13: Accuracy of Flowtree for commonly-used queries (all feature sets at
IXP).

to be very flexible to efficiently summarize time periods with many as well as few
flows.

Flowtree creation time: Next, we focus on the worst-case runtime to generate
Flowtrees, which, in part, depends on the deployed hardware3. We focus on one hour
of data, the busy hour, for the largest site at the IXP and 15 minutes of data–again
busy hour and largest site, for the ISP to get an upper bound on the runtime. Note
that the data includes more than 6.5M flows that have to be processed. We compute
Flowtrees for each 11 feature set while varying the maximum number of Flowtree
nodes from 5k to 50k. We repeat the experiments 10 times and measure the runtime,
in terms of wall time, for generating trees as reported by the C++ chrono library4.

Figure 4.12 shows the 10th and 90th percentile of the tree creation times vs. the max-
imum number of Flowtree nodes. All runtimes are well below 15 seconds for 1-hour
resp. 15 minutes input files; thus, even if we have to process flows from 1,000+ sites,
the deployed hardware, with moderate parallelization, is sufficient for generating all
11-feature Flowtrees in real time. In the worst case we needed 20 min to process
traces from all 1,000+ sites over one hour; that is, Flowtree would only not become

3At the IXP we have Intel Xeon Gold 6148 CPUs; at the ISP we only have Xeon-E5-2650 CPUs
4We choose setup to similar to [57, 71] which also use wall time and preload the input data into

memory.

47

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

a bottleneck if the throughput tripled and input from 1,000+ sites were to be pro-
cessed. In that case, aggregating firs over different subsets of the flow space would
be necessary. We notice different behavior for different features: The (destination
IP, port) feature trees are very fast to compute, which can be explained by the fact
that they exhibit the most skewed input distribution. The full (4-feature) trees take
the longest—not surprising given that this feature combination potentially has the
largest number of tree nodes.

We also notice that from one feature set to the next, the runtime sometimes decreases
and sometimes increases as we increase the maximum number of tree nodes. The
reasoning behind this surprising behavior is as follows. When the number of Flowtree
nodes increases, while compressions happen less frequently, they take more time to
run, given that they have to process a larger input. If the data is skewed, the increase
of the compression runtime with the number of nodes is limited while the reduction
in the average delay between two compressions is significant. Reversely, if the data
is not less skewed, the increase in compression runtime outbalances the reduction in
inter-compression delay.

Flowtree accuracy: Next, we look at the accuracy of the query results with focus
on advanced queries, namely the 1-d HHH and top-K queries for Flowtrees with
different featureset. Our metrics are the Average Relative Error, ARE, and the F1

score. The ARE is the average of the ratios between the errors and the ground-
truth values; that is, in our case, 1

n

∑n
i=1

|fi−f̂i|
fi

with n the number of flows, fi the
flow popularity and f̂i the estimated flow popularity. The F1 score is the harmonic
mean of precision and recall; accordingly, it accounts for both false positives and
false negatives and ranges from 0 to 1—1 being the best value (perfect precision and
recall) and 0 the worst. We calculate the ARE and the F1 score for the 1-d HHH and
top-K queries, with thresholds of 0.01% and K=1000 respectively, for each 15-minute
Flowtree and all sites over the IXP’s busy hour, letting the maximum number of
nodes in the Flowtrees vary from 5k to 100k. Note that we only evaluate the queries
if a Flowtree summarizes at least 10k flows within the 15-minute time period since
otherwise, the results would be a fraction of a flow, which does not exist. To generate
the ground truth, we use a Flowtree with an unrestricted number of nodes. Finally,
we only accept exact matches: in case of HHH, if a generalized flow f is in the actual
heavy hitters it has to be returned by the HHH query; if the HHH query returns
instead, a parent or child of f in the tree; this is a miss.

Figure 4.13a plots the median ARE values vs. the maximal number of nodes in the
Flowtree and includes 10th and 90th percentiles as error bars in top-K and HHH
queries. Our experiment shows that even for 10k Flowtrees the median ARE values
are less than 0.0002 for all feature sets. Moreover, the main reason for ARE variations
are flows with relatively small popularity.

The results for the F1 scores—see Figure 4.13b which shows the median together
with the 10th and 90th percentile vs. the number of nodes per tree—confirm the
excellent performance of Flowtree. Even for small trees, the median numbers are well
above 0.9 for most feature sets. Moreover, the number of outliers is small.

48

4.6 Flowyager Prototype Evaluation

Data structure 1k 5k 10k 20k 40k
Flowtree .19 (.31) .77 (.92) .92 (.99) .98 (.99) .99 (.99)
RHHH .42 (.11) .50 (.57) .91 (.92) . 92 (.94) .93 (.95)

Table 4.4: F1 score on top 1k src (dst) IPs for 1k, 5k, 10k, 20k, and 40k node
Flowtree and RHHH trees.

Flowtree vs. RHHH: Next, we compare Flowtree to a state-of-the-art data struc-
ture, the constant time updates in hierarchical heavy hitters (RHHH) [57]. More pre-
cisely, RHHH is a randomized version of the deterministic HHH algorithm (dHHH)
proposed by Mitzenmacher et al. [112]. RHHH has O(1) update complexity, improv-
ing the Ω(H) update complexity of its deterministic counterpart, where H is the
number of hierarchy levels.

While both Flowtree and RHHH take in the maximum node count as input, RHHH
(and dHHH) have an additional input parameter: the HHH-threshold. The HHH-
threshold determines if a frequent item is a heavy hitter, and, thus, if a node should be
maintained in the tree. This complicates the usage of RHHH since neither the number
of flows nor their popularity distribution is known in advance. Setting the threshold
too high creates a very shallow tree with high aggregation, e.g., /16s and /8s, which
does not keep enough detail. Setting the threshold too low may result in a tree with
more nodes than the maximum node count. Indeed, we run into these limitations
when executing the publicly available code [156] on the corresponding input. Hence,
we evaluated the two systems under similar conditions, i.e., with the dataset that was
used to evaluate RHHH [57] (CAIDA). The evaluation dataset comes from Equinix-
Chicago trace of CAIDA [157]—this contains 20 Million packets (no sampling) from
a 1Gbps link in the colocation facility in Chicago. In contrast, note that Flowtree is
self-adjusting.

We used a number of metrics: (1) system runtime, (2) F1, on top 1k sources or
destination of the input trace are present in the trees of 1k, 10k, 20k, and 40k nodes,
(3) accuracy (ARE), i.e., how well the Flowtree or RHHH estimate the counters of
the heavy hitters, either single IPs or aggregations.

The system runtime for creating RHHH trees is, as expected, quite constant: around
26 seconds. For Flowtree the time is higher, around 50 seconds, even as the number
of nodes increases.

With regard to F1 score–identifying the correct set of heavy hitters–we find that
if RHHH is not tuned, its performance is poor: very few of the IP heavy hitters
are present and the trees are very small; the F1 of Flowtree is significantly better.
Table 4.4 reports on the top-1k heavy hitter IPs indeed in the tree for Flowtree vs.
RHHH with different total numbers of nodes(each time the threshold in RHHH is
adjusted to produce 1k heavy hitters, i.e., the same output as Flowtree). For trees
with up to 10k nodes, Flowtree includes a significantly larger number of heavy hitters
than RHHH but beyond 10K nodes the differences get smaller.

49

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

FS RHHH

101 102 103 104 105 101 102 103 104 105

100
101
102
103
104
105

Actual Popularity

E
st

im
at

ed
 P

op
ul

ar
ity

10

20

30

40

Occurrence
Count

Figure 4.14: Comparison of estimated vs actual popularities using Flowtree (left)
and RHHH (right).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0%
25

%
50

%
75

%
10

0%

0 25 50 75 10
0

Space Saving (1 − num tree nodes/num flows)

P
er

ce
nt

ag
e

Dataset

● ISP

IXP

Figure 4.15: ECDF of space-saving for
all Flowtrees (all time in-
tervals/IXP sites)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

IXP ISP
10

0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

0%
25

%
50

%
75

%
10

0%

Number of Flowtree nodes

P
er

ce
nt

ag
e

Feature Set

●

●

FULL

SIDI

SPDP

SISP

SIDP

DISP

DIDP

SI

DI

SP

DP

Figure 4.16: ECDF: # of Flowtree
nodes (IXP and ISP).

Next, we turn our attention to the accuracy of the estimated values for each heavy
hitter. We plot in Fig. 4.14 the estimated value using Flowtree (left) and RHHH
(right) compared to the actual value for the 1k node trees—ARE on the top .1% IPs
of 0.71 for Flowtree vs. 0.92 for RHHH.

The closer a point is to the diagonal the higher its accuracy. At first glance, RHHH
might look better. However, it only contains a small subset of the relevant HHs as
many top-1k entries are aggregated by RHHH. Thus, Flowtree again significantly
outperforms RHHH.

Flowtree space saving: Given that we can compute Flowtrees efficiently and that
they accurately answer 1-d HHH queries, we move on to study their space efficiency.
Given the F1 scores and ARE values, we, for the rest of this chapter, choose 10k
nodes for the 1-feature Flowtrees for src and dst ports and 40k nodes for all other
feature combinations. (While 20k may be sufficient, using 40k does not increase
the storage resp. communication overhead significantly, as we apply a final compress
operation before using any Flowtree.)

To highlight the ability of Flowtree to compress its input, Figure 4.15 plots the
ECDF of Flowtrees space saving (1 − #nodes in tree

#input flows) for all sites and all 15-minute
time intervals. For almost all Flowtrees, the space savings are well above 95%. This
is also underlined by Figure 4.16 which shows the ECDF of the number of actual

50

4.6 Flowyager Prototype Evaluation

IXP ISP MAWI
0

1

2
S

iz
e

−
 N

or
m

al
iz

ed
 b

y
ra

w
 in

pu
t (

gz
ip

)
Flowtrees (gzip binary 11 Feature sets)

Flowtrees (gzip binary 8 Feature sets)

Flowtrees (gzip binary 1 Feature set)

raw input (gzip binary)

raw input (gzip ascii)

input features (ascii)

input features (gzip ascii)

Figure 4.17: Space usage vs. raw
compressed (gzip) in-
put data.

60.93 %
33.25 %

5.82 %

Granularity
15 Min
1 Hour
1 Day

(a) IXP

62.04 %
30.92 %

7.04 %

Granularity

15 Min
1 Hour
1 Day

(b) ISP

Figure 4.18: Pie Chart: MongoDB
footprint.

Flowtrees nodes. Note that a Flowtree will always contain less than 40k/10k nodes
because we always run a final compression. Alternatively, it might simply happen that
the data did not contain enough different feature combinations in the first place.

4.6.2 Flowyager Evaluation

We evaluated Flowyager from space efficiency and query response time perspectives
as follows:

Flowyager space efficiency: Given the above results regarding the capabilities
of Flowtree, it is not surprising that Flowyager achieves excellent compression ra-
tios. For the IXP (ISP), we see that compared to the original compressed IPFIX
data (original compressed ASCII flow summaries), the single full-feature Flowtree in
compressed binary format has a space-saving of 97% resp. 99.5%. With additional
feature sets, e.g., all 1-feature Flowtrees and three 2-feature Flowtrees, we still reach
space saving of 92% resp. 97.5%. If we include all 11 possible feature combinations,
the space-saving is 89% resp. 96%. Even if we normalize not by the raw input data
but only against the necessary features for the Flowtrees, the space savings are still
excellent, e.g., more than 97% for the 1-feature Flowtree at the ISP. For a visual-
ization of the space efficiency relative to the size of the raw compressed (gzip) input
data, see Figure 4.17.

While 15-minute time granularity is excellent for answering detailed queries, many
queries involve coarser time granularities. Thus, it can be useful to add time as an-
other feature and add 1-hour as well as 1-day aggregated Flowtrees by merging (and
then compressing) the smaller-time granularity Flowtrees. Flowyager does so auto-
matically. While this needs some extra memory, it adds less than 40% overhead—see
Figure 4.18—while offering the potential to significantly reduce query response time.
Moreover, should space become an issue, Flowyager may decide to permanently delete
smaller-time aggregates while keeping higher-time aggregation summaries. This is one
of the design features that enable resource management with Flowyager. It is always
possible to still keep coarse grain summaries of previous time periods or site sets even
if disk space is running out.

51

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

Bench-
mark

Goal Query

1 Aggrega-
ted flow
statistics

Computing total traffic with specific fea-
tures from IP/ports/time/location

SELECT pop(PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
WHERE (site_id = ANY and dst_ip =
IP/mask and dst_port = port/portmask)

2 Counting
traffic

Computing Traffic volume between given
IP/Port subnet/addresses, for a specific site
n

SELECT pop(PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
WHERE (site_id = n and src_ip = IP/-
mask)

3 Traffic
flows

Displaying flows belonging to given subnets
/ IP addresses, passing through a specific
site

SELECT *(PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE (site_id
= n and src_ip = IP/mask)

4 Traffic ma-
trix

Finding popular flows from a subnet to sub-
nets for all sites

SELECT above(K,PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
WHERE (site_id = ANY and src_ip =
ANY and dst_ip = ANY)

5 DDoS di-
agnosis

Finding the src IPs from which a dst IP (vic-
tim) has received abnormal traffic.

SELECT top(K,PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
WHERE site_id = ANY and dst_ip =
[victim_ip]

6 Super-
spreader
Detection

Finding hosts that send packets to more
than k unique dst during a time interval (re-
quires multiple queries)

SELECT above(K,PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
where (site_id = ANY and src_ip = ANY)
SELECT * FROM (time YYYY-MM-DD
hh:mm to YYYY-MM-DD hh:mm) where
(site_id = ANY and dst_ip = [pop_ip])

7 Top-k
flows

Detect Top K flows in one or more sites ,
going to / coming from a specific subnet or
IP address

SELECT top(K,PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
WHERE site_id = n and (src_ip = IP/-
mask or dst_ip = IP/mask)

8 Heavy Hit-
ters

Detect all flows with popularity over thresh-
old T, in one or more sites, going to / coming
from a specific subnet or IP address

SELECT hhh(T,PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-MM-
DD hh:mm to YYYY-MM-DD hh:mm)
WHERE (site_id = n and src_ip = IP/-
mask)

9 Heavy
Changers
Detection

Detect Top K heavily changed flows in one
(or more) site(s).

SELECT hc(K,PROTO,COUNT-
MODE[,BIN]) FROM (time YYYY-
MM-DD hh:mm to YYYY-MM-DD
hh:mm)(time YYYY-MM-DD hh:mm
to YYYY-MM-DD hh:mm) WHERE
site_id = n

10 Full/4/5
tuple
queries

Counting / Detecting flows belonging to a
specific protocol/application

SELECT *(PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE site_id
= n

Table 4.5: Benchmark queries for Flowyager evaluation. Note that these queries
correspond to those identified in Table 2.1.

Flowyager query response time Next, we focus on the performance (query re-
sponse time) of the query capabilities and the query engine using a set of benchmark
queries. In particular, we go back to the main tasks of a network manager—recall

52

4.6 Flowyager Prototype Evaluation

●

●

●

cold hot

1 3 4 6 7 8 10 1 3 4 6 7 8 10

0.2

0.3

0.4

1day

T
im

e
(s

ec
)

Benchmark
1
3
4
6
7
8
10

Figure 4.19: IXP: Flowyager times, 1 Day aggregation Flowtrees. (See Table 4.5
for benchmarks).

Table 2.1—and pick a benchmark query for each of the identified tasks—note that
the detection of one super-spreader requires two queries. These chosen queries are
shown in Table 4.5, the table which thus contains queries for every single important
network management task tackled by related work.

To challenge Flowyager, we task it to execute these queries for a full day for all
sites in the IXP dataset. We evaluate answering using FlowQL with Flowtrees 1-
day aggregation. On the IXP machine, we execute each benchmark ten times and
measure, just as before, the wall time as reported by the C++ chrono library.

Figure 4.19 shows the resulting FlowQL query response times for each benchmark
as boxplots. Hereby, we distinguish between cold and hot query response times. In
the hot case, relevant Flowtrees may be retrieved from the in-memory cache. In the
cold case, we restart the in-memory cache process for each benchmark. If we use the
1-day Flowtrees, see Figure 4.19, the answers are readily available, and the response
arrives in the blink of an eye (less than 1 second). By using the in-memory cache,
we speed up query response time by about 10 to 50%. We also check the accuracy of
the results and found that the results are accurate5.

4.6.3 Flowyager Limitations

Flowyager is adaptive and supports HHH and physically distributed execution. We
acknowledge that creating all Flowtrees does add some overhead–one day does take
roughly 4 hours. However, this is a one-time operation, and overhead only matters
if we consider archived data, but the Flowtrees can well be generated as the flow
captures arrive, recall Section 4.6.1. Moreover, it is easy to do memory management
within Flowyager; e.g., rather than purging older data, we can summarize it.

The limitation of Flowyager is that its answers are only estimates. However, these
are accurate both for elephants and mice flows alike. Hereby, we want to point
out that most network-wide systems anyhow rely on highly sampled flow captures.

5We exclude Benchmarks 2, 5, and 9 as these benchmarks concern 60 min time-intervals and, thus,
cannot be answered using data at 1-day granularity.

53

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

0

2.5K

5K

7.5K

10K

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

Hour of the Day

Tr
af

fic
 V

ol
um

e
k

k

k

k

(a)

0

2K

4K

6K

18
:0

0
18

:1
5

18
:3

0
18

:4
5

19
:0

0
19

:1
5

19
:3

0
19

:4
5

20
:0

0
20

:1
5

20
:3

0
20

:4
5

21
:0

0
21

:1
5

21
:3

0
21

:4
5

22
:0

0

Hour of the Day

Tr
af

fic
 V

ol
um

e

k

k

k

(b)

Figure 4.20: ISP: DDoS NTP attack investigation.

As such the fact that we “only” provide estimates does not increase the uncertainties
dramatically. If higher accuracy is necessary, we recommend combining Flowyager for
data exploration with systems such as ClickHouse [101] for focused in-depth analysis.
Moreover, the insights from Flowyager can be used to instantiate online non-sampled
queries using streaming network telemetry systems, such as Sonata [59].

4.7 Investigating DDoS attacks with Flowyager

Network attacks, and in particular, distributed denial-of-service (DDoS) attacks are
an ongoing nuisance for network operators as well as network users. In this regard,
compromised IoT devices are increasingly weaponized to launch large-scale coordi-
nated DDoS attacks. A large body of research papers has focused on techniques for
detecting DDoS attacks, see, e.g., [158–161], including references and citations. In-
deed, the multitude and the impact of DDoS attacks, see, e.g., [162, 163], have given
rise to a variety of different mitigation techniques, see e.g., [164, 165]. Still, detect-
ing DDoS attacks reliably and diagnosing their root causes, is critical for starting

54

4.7 Investigating DDoS attacks with Flowyager

countermeasures or taking future preventive actions. Flowyager is an ideal system
for tackling this challenge.

One of the most common signatures of DDoS attacks is a sudden rise in traffic for
src/dst ports that are used within amplification attacks [162, 166–168]. Among such
ports are 0, 123 (NTP), 11211 (memcached), 53 (DNS), and 1900 (SSDP), as dis-
cussed above. Potential DDoS attacks can be found by using the heavy changer query.
It identifies the time ranges during which they occurred. We execute these queries
for each hour:
SELECT hc(100,any,byte) FROM (time 2019-04-01 00:00 to 2019-04-01 00:59)(time

2019-04-01 01:00 to 2019-04-01 01:59) WHERE site_id=ITR and (dst_port=ANY or src_port=ANY)

Per hour this takes less than 0.3 seconds. Among the heavy changers are high volume
ports related to Web traffic, i.e., port 80, 443, as well as other ports where the volume
can easily vary. But, we also find some unusual ports, i.e., 123 (NTP), which are
known to be involved in DDoS attacks. Figure 4.20 shows a DDoS amplification
attack on one of the sites of the ISP. This is a DDoS attack on NTP (port 123).
Here, a very large number of src IPs scattered across multiple networks are involved
but only a few dsts are targeted; namely, two, whereby one of them receives more
than 95% of the attack packets. It took us less than 5 minutes of human time and
less than 1 minute computation time to find the attack for port 123, the site, the
src of the attacks, and identify the start and the end of the attack. To illustrate the
exploratory power of Flowyager, we identified the hours where the attack took place,
see Figure 4.20a, within a second. Then, we drill down to the 15 minutes granularity
to infer the start and end of the attack, see Figure 4.20b, with a second query that
took two seconds of execution time: SELECT pop(any,byte,bin15) FROM (time 2019-
04-01 01:00 to 2019-04-01 01:59) WHERE site_id=ITR and dst_port=123|16
Note, detecting slowly increasing DDoS attacks needs a different approach. Here, a
diff query to an earlier time period can be used as an indicator.

Towards real-time DDoS Mitigation: Using insights from historical analysis of
DDoS attacks, it is possible to use Flowyager also for near-live analysis if we keep
recent Flowtrees at a shorter time granularity, e.g., 1-minute bins: we can then either
use the above queries to monitor ports highly affected by DDoS attacks or we can
use heavy-changer queries to look for ports with unusual activity. If we see such
unusual activity, we can use the drill-down capabilities of Flowyager to check if, e.g.,
the traffic is targeted at specific IPs, i.e., only involves a small number of src or dst
addresses, or involves spoofed addresses, i.e., a large number of IP addresses. If yes,
Flowyager can be used to trigger an alarm which may then blackhole the attack traffic,
e.g., using a system such as Stellar [164] or traffic scrubbing systems [163]. Recall
that other techniques, e.g., telemetry, need to know a-priori the queries they have to
execute. The power of Flowyager is that is can answer arbitrary queries that are not
known in advance and use the already available network flow summaries supported by
router vendors. Thus, Flowyager offers security capabilities that can help to identify
arbitrary security issues. It can also help in generating the appropriate queries to
execute them in real-time when, e.g., telemetry is used.

55

Chapter 4 Flowyager: Exploring Network-Wide Flow Capture Data

Lessons Learned: For our use cases, neither the initial sampling in the flow cap-
tures nor the Flowyager estimates were detrimental to achieving the goal. However,
we noticed some implementation challenges, e.g., handling flows from routers with
unsynchronized clocks. We decided to use the timestamp as the time the flow ar-
rives at FlowAGG. Note that this may lead to some small amount of misbinning if
the router is distant (in terms of network delay) from the aggregator. However, the
impact is expected to be limited and probably well within the typical uncertainty of
flow captures. Note that our approach even enables us to update Flowtrees of past
time bins, should a significant number of flows arrive delayed.

Another observation is that one can tune Flowyager according to the users’ needs.
Overall, we find that a query can be answered quickly if the aggregation level of
the available (cached) Flowtrees matches the query granularity in terms of site sets
and/or time granularity. The reason is that this avoids merging Flowtrees on the
fly. Thus, if many queries involve the same subset of interfaces, e.g., per router,
or all long-haul interfaces, it may make sense to store additional Flowtrees, if only
temporarily. For example, keeping a Flowtree for all sites adds little overhead but
speeds up queries significantly.

4.8 Chapter Summary

In this chapter, we showed that network flow captures are widely available and are
essential for network providers to monitor the security and health of their networks
and steer their evolution. Especially given the growing number of deployed IoT
devices and associated security risks, the risk of large-scale coordinated attacks by
exploited IoT devices is higher than ever. Thus, ISPs and network operators need to
be able to explore these captures to detect and investigate such attacks quickly.

Yet, due to the ever-increasing size and complexity of flow captures, their analysis
is time-intensive and challenging. In the past, this has substantially hindered ad-
hoc queries across multiple sites, for different time periods, and over many network
features. In this chapter, we design, develop, and evaluate Flowyager, a system
that allows exploration of network-wide data and answering ad-hoc a priori unknown
queries within seconds. It achieves this using already existing network flow captures,
without the need for specialized hardware, and without the need to compile specific
queries into telemetry programs that should be known in advance and are slow to
update.

Flowyager uses succinct summaries, Flowtrees, of raw flow captures and provides an
SQL-like interface, FlowQL, that is easily usable by network engineers. We showcase
the performance and accuracy of Flowyager in two operational settings: a large IXP
and a tier-1 ISP. Our results show that the query response time can be reduced by an
order of magnitude, and, thus, Flowyager enables interactive network-wide queries
and offers unprecedented drill-down capabilities to identify the culprits, pinpoint the
involved sites and determine the beginning and end of a network attack.

56

5
Detection of IoT Devices in the Wild

This chapter presents a methodology for detecting home IoT devices in-the-wild at
an ISP, and an IXP, by relying on passive, sampled network traces and active prob-
ing experiments. We build on the insight that IoT devices typically rely on backend
infrastructure hosted on the internet to offer their services. While contacting such in-
frastructure, they expose information, including their traffic destinations, even when
a device is not in use [133]. One of the challenges of detecting IoT devices at such
scale is the poor availability and low granularity of data sources. The available data
is often in the form of centrally-collected aggregate and sampled data (e.g., Net-
Flow [30], IPFIX traces [31]). Thus, we need a methodology that (a) does not rely
on payload and (b) handles sparsely sampled data.

Another challenge is traffic patterns diversity, across IoT devices and their services.
(Here, we refer to IoT services as the set of protocols and destinations that are
part of the operations of an IoT device.) We note that some devices, e.g., cameras,
will generate significant continuous traffic; others, e.g., plugs, can be expected to
be mainly passive unless used. Moreover, many devices offer the same service, e.g.,
the Alexa voice assistant [169] is available on several brands of smart speakers as
well as on Amazon Fire TV devices. Here, the traffic patterns may depend on the
service rather than the specific IoT device. Some services rely on dedicated backend
infrastructures, while others may use shared ones, e.g., CDNs. Thus, we need a
methodology that identifies which IoT services are detectable from the traffic and
then identifies a unique traffic pattern for each IoT device and associated services.

Our key insight is that we can address these challenges by focusing our analysis only
on the types of destinations contacted by IoT devices. Even with sparsely sampled
data, the set of servers contacted by an IoT device over time can form a reasonably
unique signature that is revealed in as little as a few hours. However, this approach
has limitations; for example, we cannot use it to detect devices or services that use a
shared infrastructure with unrelated services (e.g., CDNs).

To understand the detectability of IoT devices in the above-mentioned environment,
we focus on the possible communication patterns of end-user IoT services and the
types of destinations they contact. Figure 5.1 shows three possible communication
patterns on top of a typical network topology. This includes three households, an
ISP, as well as a dedicated infrastructure, and a CDN that hosts multiple servers.
Device A is deployed by two subscribers and only contacts one server in the dedicated
infrastructure. Device B is deployed by a single subscriber and contacts both a

57

Chapter 5 Detection of IoT Devices in the Wild

ISP
Device A

 IoT Service Flow
Device B

 IoT Service Flow
Device C

 IoT Service Flow

Subscriber
w/ IoT

Server

Dedicated
Infrastructure

CDN

Figure 5.1: Simplified IoT commu-
nication patterns.

ISP
2 23 3

32

2

4 4

4

4

5 5

5

55

5

1 Generate and capture ground truth (GT) IoT traffic
in the labs and household - Section 2

2 Capture GT traffic in ISP Vantage point
Evaluate visibility of GT IoT traffic in the ISP-VP - Section 3

3 Identify IoT domains, service IPs , and port numbers,
generate detection rules - Section 4

4
Detect IoT devices in the wild - Section 65

Cross check detection rules by inferring devices on GT data -
Section 5

Home w/
IoT Devices

1

Figure 5.2: General methodology
overview.

dedicated server as well as a CDN server. Device C is deployed by two subscribers
and contacts only CDN servers. We observe that using NetFlow traces at the ISP
edge, it is possible to identify subscriber lines hosting devices of type A and B. Devices
of type C are harder to detect given the sampling rates and header-only nature of
NetFlow.

In this chapter, we used a unique testbed and dataset to build a methodology for de-
tecting and monitoring IoT devices at scale (see Figure 5.2). We first used controlled
experiments, where we tunneled the traffic of two IoT testbeds with 96 IoT devices to
an ISP. This provided us with ground truth IoT traffic within this ISP (Section 5.1).
We confirmed the visibility of the ground truth IoT traffic using the NetFlow ISP
data (Section 5.2). Next, we identified backend infrastructures for many IoT services
from the observed ISP IoT traffic (Section 5.3). We augmented this base information
with data from DNS queries, web certificates, and banners. Next, we used the traffic
signatures to identify broadband subscriber lines using IoT services at the ISP, as
well as an IXP (Section 5.5). Finally, we discuss our results, their significance, and
limitations in Section 5.6, and conclude with a summary in Section 5.7.

5.1 IoT – Controlled Experiments

We need ground truth traffic from IoT devices, as observed both in a testbed and
in the wild, for developing and testing our methodology. In this section, we describe
our data collection strategy (see point 1 of Figure 5.2).

5.1.1 Network Setting

We utilize two vantage points, namely a large European ISP and a major European
IXP.

58

5.1 IoT – Controlled Experiments

Border Router

BNG Router

Border Router
Home

Vantage Point

Border Router

Testbed 1 w/
 IoT Devices

Testbed 2 w/
 IoT Devices

BNG Router

IoT Traffic
through VPN

Device A
 IoT Service Flow

Device B
 IoT Service Flow

Device C
 IoT Service Flow

Packet Capture Point

Flow Capture Point

BNG Router Border Router

Figure 5.3: ISP setup
& flow collection points.

Device A
 IoT Service Flow

Device B
 IoT Service Flow

Flow Capture Point
IXP Member

Figure 5.4: IXP setup
& flow collection points.

ISP (ISP-VP). The ISP is a large residential ISP that offers Internet services to
over 15 million broadband subscriber lines. The ISP uses NetFlow [30] to monitor
the traffic flows at all border routers in its network, using a consistent sampling rate
across all routers. Figure 5.3 shows where NetFlow data is collected.

IXP (IXP-VP). The IXP facilitates traffic exchange between its members. At
this point, it has more than 800 members, including international, with peak traffic
exceeding 8 Tbps. The IXP uses IPFIX [31] to collect traffic data across its switching
fabric at a consistent sampling rate, which is an order of magnitude lower than the
one used at the ISP. Figure 5.4 illustrates where the IPFIX data is collected.

Ethical considerations ISP/IXP. Neither the ISP nor the IXP flow data contain
any payload data, thus no user information. We distinguish user IPs from server IPs
and anonymize them by hashing all user IPs, following the method described in [170].
The address space of the ISP residential users is known. We call an IP a server IP if
it receives or transmits traffic on well-known ports or if it belongs to ASes of cloud or
CDN providers. The ports include, e.g., web ports (80, 443, 8080), NTP (123), and
DNS (53). Moreover, we do not have any specific user activity and can only access
and report aggregated statistics in accordance with the policies of the ISP and IXP.

Subscriber line (Home-VP) Network setup. In order to ingest ground truth
traffic into the network, we need privileged access to a home subscriber line. For
this, we use the ISP-VP, but rather than deploying all IoT devices directly within
the home, we placed a VPN endpoint with an IP out of the /28 subscriber’s prefix
and used it to ingest IoT traffic tunneled to the server from two IoT testbeds, one
in Europe, and one in the US, see Figure 5.3. The measurement points within the
ISP will also capture this traffic. We simply excluded this traffic from our dataset,
as the VPN tunnel endpoints are known to us, and for each experiment, we use the
default DNS server for the ISP. Importantly, since the /28 prefix is used explicitly
for our experiments, there was no other network activity other than that of the IoT
devices.

59

Chapter 5 Detection of IoT Devices in the Wild

Category Device Name

Surveillance Amcrest Cam, Blink Cam, Blink Hub, Icsee Doorbell, Le-
fun Cam, Luohe Cam, Microseven Cam, Reolink Cam,
Ring Doorbell, Ubell Doorbell, Wansview Cam, Yi Cam,
ZModo Doorbell

Smart Hubs Insteon, Lightify, Philips Hue, Sengled, Smartthings,
SwitchBot, Wink 2, Xiaomi

Home Automation D-Link Mov Sensor, Flux Bulb, Honeywell T-stat,
Magichome Strip, Meross Door Opener, Nest T-stat,
Philips Bulb, Smartlife Bulb, Smartlife Remote, TP-
Link Bulb, TP-Link Plug, WeMo Plug, Xiaomi Strip, Xi-
aomi Plug

Video Apple TV, Fire TV, LG TV, Roku TV, Samsung TV
Audio Allure with Alexa, Echo Dot, Echo Spot, Echo Plus,

Google Home Mini, Google Home
Appliances Anova Sousvide, Appkettle, GE Microwave, Ne-

tatmo Weather, Samsung Dryer (idle), Samsung Fridge
(idle), Smarter Brewer, Smarter Coffee Machine,
Smarter iKettle, Xiaomi Rice Cooker

Table 5.1: IoT devices under test. idle indicates that we capture the traffic just
for idle periods because the experiments could not be automated.

Ethical considerations–Home-VP setting. With the ISP’s cooperation, we could
use a reserved /28 allocated to this specific subscriber line (Home-VP) (with signed
explicit consent) out of a /22 prefix reserved for residential users. Thus, the analysis
in this study only considers traffic explicitly ingested by the ground truth experiments
and does not involve any user-generated traffic.

5.1.2 Ground Truth Traffic Setting

The IoT testbeds used here consist of 96 devices from 40 vendors. We selected
the devices to provide diversity within and between different categories: surveillance,
smart hubs, home automation, video, audio, and appliances. Most of these are among
the most popular devices, according to Amazon, in their respective region. Our
testbed includes multiple instances of the same device (56 different products) so that
we can see the destinations that each product contacts in different locations. For a
list of the IoT devices and each device category, we refer to Table 5.1. We redirect all
IoT traffic to the Home-VP within the ISP, and we capture all the traffic generated
by the IoT devices (see 1 in Figure 5.2).

Most of the selected IoT devices are controlled using either a voice interface provided
by a voice assistant (such as Amazon Alexa) or via a smartphone companion applica-
tion. We use the voice interface to automate active experiments by producing voice

60

5.1 IoT – Controlled Experiments

●●●●●●●●●●●●●●●●●

●

●

●

●
●
●
●●

●

●

●
●

●
●●●●●●

●●●
●●●

●

●●

●

●

●

●
●

●
●●

●
●
●●●●

●
●●

●
●
●
●
●
●

●
●

●

●
●
●
●●

●●●●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●
●●●

●
●●●●●●●●

●
●
●●●●●

●
●●●

●●●●●●
●●

●●●●●
●●

●●●●●
●
●●●

●●●
●
●●

●

●

Active Experiment Idle Experiment

Nov 15
Nov 16

Nov 17
Nov 18

Nov 19
Nov 22

Nov 23
Nov 24

Nov 25
0

250

500

750

1k

1.25k
U

ni
qu

e

S
er

vi
ce

 IP
s

P
er

 H
ou

r

Vantage Point ● Home−VP ISP−VP

(a) # Unique service IPs per hour.

●

●

●

●

●
●
●●

●

●

●

●
●●●●●●●

●●
●
●●●

●

●

●

●

●
●

●●

●

●
●

●●

●
●
●●●●

●
●
●●

●

●
●
●●

●

●●●
●
●

●
●●●●

●

●●●●●
●
●●

●
●

●

●

●
●●●●●

●

●●
●●

●●●

●
●
●
●●●●●●

●

●

●
●
●
●●

●

●●●
●
●
●●●

●●●●
●
●●

●

●●

●●●●●
●
●●●

●●●

●

●
●●●

●●

●

Active Experiment Idle Experiment

Nov 15
Nov 16

Nov 17
Nov 18

Nov 19
Nov 22

Nov 23
Nov 24

Nov 25
0

100

200

300

400

U
ni

qu
e

D

om
ai

ns
 P

er
 H

ou
r

Vantage Point ● Home−VP ISP−VP

(b) # Unique domains per hour.

● ● ● ●●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●●

● ● ● ●● ● ● ●●●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●● ● ● ●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Active Experiment Idle Experiment

Nov 15
Nov 16

Nov 17
Nov 18

Nov 19
Nov 22

Nov 23
Nov 24

Nov 25
1

10

100

1k

10k

C
um

ul
at

iv
e

S

er
vi

ce
 IP

s
P

er
 H

ou
r(

lo
g1

0)

Type of Service IP
 and Vantage Point

● ●

Home−VP: Web Service IPs
Home−VP: NTP Service IPs
Home−VP: Other Service IPs

ISP−VP: Web Service IPs
ISP−VP: NTP Service IPs
ISP−VP: Other Service IPs

(c) Cumulative service IPs per port.

●●●
●

●●●●●

●●●●●●●●●●●●●●●●●●●

●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●

●●

●
●●

Active Experiment Idle Experiment

Nov 16
Nov 17

Nov 18
Nov 23

Nov 24
Nov 25

0

20

40

60

U
ni

qu
e

D

ev
ic

es
 P

er
 H

ou
r

Vantage Point ● Home−VP ISP−VP

(d) # Unique IoT devices per hour.

Figure 5.5: Home-VP vs. ISP-VP.

Active Experiment Idle Experiment

Nov 15
Nov 16

Nov 17
Nov 18

Nov 19
Nov 22

Nov 23
Nov 24

Nov 25
0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n

Observed
Heavy Hitters

Fraction of top 10% service IPs in terms of Bytecount
Fraction of top 20% service IPs in terms of Bytecount
Fraction of top 30% service IPs in terms of Bytecount

Figure 5.6: Fraction of observed IPs ISP-VP vs. Home-VP per hour for popular
servers (heavy hitters).

commands using a Google Voice synthesizer. For IoT devices that support a com-
panion app, we use Android smartphones, and we rely on the Monkey Application
Exerciser for Android Studio [171] for automating simulated interactions between the
user and the IoT device.

5.1.3 Active and Idle IoT Experiments

Our experiments can be classified into idle and active experiments.

Idle experiments. We define as idle the experiments during which the devices are

61

Chapter 5 Detection of IoT Devices in the Wild

just connected to the Internet without being actively used. We generate idle traffic
for three days (November 23rd-25th, 2019) from both testbeds.

Active experiments. We define active experiments as those that involve automated
interactions. We perform two types of automated interactions, each one repeated
multiple times: (i) power interactions, since in a previous study [133] it was reported
that many IoT devices generate significant traffic when they are powered off and on.
We manage the power status of the devices through several TP-Link smart plugs
that we can control programmatically, followed by two minutes of traffic capture;
(ii) functional interactions, by automatically controlling the main functionality of the
devices (i.e. the act of switching on/off the light for a smart bulb) via voice (either
directly or through a smart speaker) or via a companion app running on a separate
network with respect to the IoT device (to force the communication to happen over
the Internet rather than locally). Unfortunately, some interactions for some devices
cannot easily be automated (devices with idle in Table 5.1). For these devices, we
consider only idle experiments. In total, we perform 9,810 active experiments between
November 15th and 18th, 2019.

5.2 IoT Traffic – Visibility

In this section, we aim to understand (i) to which extent the IoT-related traffic of a
single subscriber line reaches a diverse set of servers on the Internet, and (ii) whether
the low sampling rate of NetFlow limits the subscriber/device visibility. For this, we
rely on the ground truth traffic for the Home-VP. More specifically, we monitor the
IoT traffic at both vantage points: the Home-VP, as well as the border routers of the
ISP-VP (see 1 and 2 of Figure 5.2).

We first focus on the number of IP addresses that are contacted in each hour during
the idle and the active experiments by the IoT devices, as stated in Section 5.1.3.
We explicitly excluded DNS traffic since it is not IoT-specific. From Figure 5.5a,
we see that during the active experiments, the IoT devices contact between 500 and
1,300 service IPs per hour when monitored at the Home-VP. Due to sampling, not
all of this traffic is visible at the ISP-VP. We define service IPs as the sets of IPs
associated with the backend infrastructures that support the IoT services. Indeed,
the number of observed service IPs per hour in the ISP-VP decreases to an average of
16%. Overall, during our idle experiments, the total number of contacted service IPs
was lower, but the average percentage of observed service IPs remained at 16.5%.

The spikes in the active experiments are partially due to power and functional in-
teractions. This can be seen in the idle experiments, where the spike indicates the
action of starting the device (only at the beginning). Note that these spikes are also
visible in the sampled ISP NetFlow data.

At first glance, 16% sounds like a very small percentage. However, we note that the
visibility of popular service IPs is significantly high. Figure 5.6 shows the fraction
of service IPs that are visible for the servers contacted the most, according to byte

62

5.2 IoT Traffic – Visibility

count. For the top 10% of the service IPs, more than 75% are visible, rising up to
90% during some experiments. For less popular service IPs, e.g., the top 20% and
top 30%, the visibility is only reduced to 70% and 60% in the active experiment and
a bit lower for the idle experiment.

If we consider the entire period of our experiments, the percentage of visible service
IPs is more than 34% and 28% for idle and active experiments. Overall, more than
95% of service IPs are visible at the daily level for the top 20%. Although we cannot
observe all IoT devices activity at the ISP-VP, a significant subset is visible.

While any specific service IP may not matter that much for an IoT service, its com-
munications with a server domain name that may be hosted on multiple service IPs
is essential. From the Home-VP, we know which service IPs correspond to which
domain. Thus, we can determine which observed service IPs at the ISP-VP belong
to which domain. This information is relevant for our methodology because, in the
ISP NetFlow data, only IPs are visible. Figure 5.5b shows the number of observed
Fully Qualified Domain Names (FQDNs, we will refer to them as domains or domain
names for the rest of the study) at the Home-VP and the ISP-VP. Many domains are
hosted at multiple service IPs; hence we see that the number of observed service IPs
is higher than the number of observed domains.

Figure 5.5d shows the number of observed IoT devices per hour from the ground
truth IoT traffic. We observe a device when at least one packet from that device is
seen within an hour. Note, For active mode, the experiments on devices from Testbed
1 (see figure 5.3), are initiated after Testbed 2. Therefore, all devices are not active
during the same period. The average percentages of devices visible at ISP-VP during
active and idle experiments are 67% and 64%, respectively.

Next, we separate the observable network activity by ports. More specifically, we
consider Web Services (ports 443, 80, 8080), NTP services (port 123), and other
services (the rest of the ports), and we show the cumulative number of service IPs
contacted. The resulting plot, Figure 5.5c, shows that (i) the trend of observable
service IPs at the Home-VP is mirrored at the ISP-VP, even when different services
are considered, and (ii) the number of service IPs converges over time.

We also checked if any of the traffic from the Home-VP is visible at the IXP. However,
neither during the active nor during the idle experiments did we observe traffic at the
IXP. This is expected as the ISP is not a member of the IXP. Rather it peers directly
(via private interconnects) with a large number of content and cloud providers as well
as other networks.

In summary, our analysis of the ground truth IoT traffic shows that, despite the low
sampling of NetFlow, popular domains, service IPs, and ports of a single subscriber
line (the Home-VP) are visible at the ISP.

63

Chapter 5 Detection of IoT Devices in the Wild

5.3 IoT Device detection methodology

In this section, we outline our methodology for detecting IoT devices in-the-wild.
IoT services typically rely on a backend support infrastructure (see Figure 5.1) for
user interactions. From our ground truth experiments, we noticed that this backend
infrastructure is often also used for keep-alives, heartbeats, updates, maintenance,
storage, and synchronization. This observation is consistent with previous works [28,
133].

We focus on identifying which Internet backend infrastructure is supporting each of
the IoT devices that we deployed in our testbeds (see 3 in Figure 5.2). When we
refer to Internet backend infrastructure, we use two different abstractions: (i) sets
of IP address/port combinations as observable from the Internet vantage points, and
(ii) sets of DNS domains. We also focus on domains because they are the primary
indirect way for the devices to access their backend infrastructure. While domain
names are typically part of the permanent programming of the devices, IP addresses
are discovered during DNS resolution and may change over time.

A naive approach for identifying the backend infrastructure would be to use the
ground truth traffic to identify which domains and, as a consequence, which service
IPs are being contacted by each device. However, this is not sufficient for the following
reasons:

Limited relevance of some domains: Not all domains are essential to support the
services or are useful for classification; for example, some domains may be used for
advertisements or generic services, e.g., time.microsoft.com or wikipedia.org, see
Section 5.3.1.
Limited visibility of IP addresses: Since the ground truth data is captured at a
single subscriber line only and DNS to IP mapping is rather dynamic, just looking
at this traffic is not sufficient, see Section 5.3.2.1.
Usage of shared infrastructure: Not all IoT services are supported by a dedicated
backend infrastructure. Some rely on shared ones, such as CDNs. In the former case,
they can still have dedicated IP addresses; in the latter cases, they use shared IP
addresses, see Section 5.3.2.1.
Churn: DNS domain to IP address mappings are dynamic, see Section 5.3.2.1.
Common programming APIs: Multiple IoT services may use the same common
programming API or may be used by different manufacturers; as a result, they often
rely on the same infrastructure. This is the case for relatively generic IoT services
such as Alexa voice service. While this IoT service is available on dedicated devices,
e.g., Amazon Echo, it can also be integrated into third-party hardware, e.g., fridges
and alarm clocks [169]. We cannot easily distinguish these from network traffic ob-
servations.

Below we tackle these challenges one by one. The outcome is an IoT dictionary that
contains mappings for individual IoT services to sets of domains, IP addresses, and
ports. Based on IoT services, we generate rules for IoT device detection. For an
overview of the resulting methodology, see Figure 5.7.

64

5.3 IoT Device detection methodology

Build a Hitlist of IoT-Domains, IPs & Port Numbers + Detection Rules

 IoT Domains DNSDB data Censys Dataset

Section 5.3.1 Section 5.3.2.1 Section 5.3.2.2

Generic
Domain?

No Dedicated,
Shared, or
No Record

Match
criteria?

No
Rec.

Dedicated

Yes Remove
shared dom.

Enough Primary
domains?

Section 5.3.2.3 Section 5.3.3
Detection Level

Generate
 Detection

 Rules

Daily Hitlist &
Detection Rules

Yes

Daily Hitlist &
Detection Rules

Figure 5.7: IoT Traffic detection methodology overview.

5.3.1 Classifying IoT Domains

The amount and frequency of network traffic that an IoT device exchanges with its
backend infrastructure varies from device to device; it depends on the complexity
of its services, implementation specifics, and device usage. We highlighted this in
Figure 5.8, where we show the average number of packets per device and per domain
(using a log y-scale) for 13 different devices (a subset of devices) in their idle mode.
The first observation is that most devices are supported by their own set of domains,
and for many IoT services, this is a small set containing less than 10 domains. We
refer to these as small domain sets as they correspond to laconic devices. Other
devices gossip and have sizable domain sets. Figure 5.8 shows the domains of two
example gossip devices (Apple TV in gray and Echo Dot in orange) and several laconic
devices (rest of the colors).

Having a sizable domain set often indicates the usage of a larger infrastructure, which
may not be dedicated to a specific IoT service. We find that most of these domains are
mapped via CNAMEs to other domains. For the two gossiping examples considered
in Figure 5.8, the domains of Echo Dot are mostly mapped to its own infrastructure.
However, the ones of Apple TV are mainly mapped to a CDN– in this case, Akamai—
that offers various services.

Based on these observations from our ground truth data, we classify the domains as
follows:

IoT-Specific domains. Grouped into (i) Primary domains: registered to an IoT
device manufacturer or an IoT service operator; and (ii) Support domains: that
are not necessarily registered to IoT device manufacturers or service operators, but
offer complementary services for IoT devices, i.e. samsung-*.whisk.com for Samsung
Fridges, here whisk.com is a service that provides food recipes and images of food.
Generic domains. Domains registered to generic service providers that are heavily
used by non-IoT devices as well, e.g., netflix.com, wikipedia.org, and public NTP
servers.

We classify each domain name from our idle and active experiments using pattern
matching, manual inspection, and by visiting their websites and those of the device
manufacturers. Since the Generic domains cover non-IoT traffic, we do not further

65

Chapter 5 Detection of IoT Devices in the Wild

1

10

100

1k

Avg # Packet/H
(log10)

am
az

on
 d

om
ai

n2
3

am
az

on
 d

om
ai

n1
8

am
az

on
 d

om
ai

n1
4

am
az

on
 d

om
ai

n1
7

am
az

on
 d

om
ai

n1
1

am
az

on
 d

om
ai

n2
0

am
az

on
 d

om
ai

n3

am
az

on
 d

om
ain

5

am
az

on
 do

main
9

amazo
n domain13

amazon domain21

amazon domain7

amazon domain10

amazon domain22

amazon domain15

amazon domain19

amazon domain2
amazon domain8amazon domain16

amazon domain1
amazon domain12

amazon domain4

amazon domain6

apple dom
ain7

apple dom
ain6

apple dom
ain3

apple dom
ain4

apple dom
ain8

apple dom
ain10

ap
pl

e
do

m
ai

n9

ap
pl

e
do

m
ai

n1
1

ap
pl

e
do

m
ai

n1

ap
pl

e
do

m
ai

n2

ap
pl

e
do

m
ai

n5

bli
nk

 do
main

1blin
k d

omain2

meross domain1netatmo domain1
philips domain4

philips domain1philips domain2
philips domain3

platform2 domain1

platform1 domain2

platform1 domain1

smartthings domain1

smartthings domain2

smartthings domain3

sousvide domain1

tplink domain1

xiaom
i dom

ain1
xiaom

i dom
ain2

yi cam
era dom

ain3
yi cam

era dom
ain1

yi cam
era dom

ain2

Gossiping
Devices

Gossiping
Devices

Laconic
Devices

Device

Apple TV

Blink Hub

Echo Dot

Meross
Door Opener
Netatmo
Weather
Station
Philips Hub

Smarter Brewer

Smartlife Bulb

Smartthings Hub

Sous vide

TP−Link Bulb

Xiaomi Hub

Yi Camera

Figure 5.8: Home-VP: Circular bar plot of average # of packets/hour per domain (log y-
scale). The domains belong to 13 IoT devices and are separated into three groups:
one for laconic and two for gossiping devices (Echo Dot and Apple TV).

consider them. Rather, we focus on the IoT-Specific domains. As a result, we classify
415 out of the 524 domains as Primary and 19 as Support domains.

Next, we explore the volume of traffic the IoT devices exchange with all domains.
Figure 5.9 shows the ECDF of the average number of packets per hour per domain
for all IoT-Specific domains for both the idle and the active experiments. First, we
note that almost all devices and domains , except for one device in its idle mode,
are exchanging at least 100 packets per hour, and this may not suffice for detecting
them in any given hour in the wild due to sampling. However, during the active
experiments, we see that some domains are only used when the device is active or
other domains receive significantly more traffic, up to and exceeding 10K packets,
which may suffice for detection. These latter domains may be ideal candidates for
detecting such devices in the wild.

5.3.2 Identifying Dedicated Infrastructures

Once we have a list of IoT-Specific domains (FQDNs) with their associated service
IP addresses and port mappings from the ground truth experiments, we need to

66

5.3 IoT Device detection methodology

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1 10 100 1k 10k

Avg # of packets/h per device and domain(log10)

E
C

D
F

Experiment ●Active Idle

Figure 5.9: Home-VP: ECDF of average # of packets/hour for all IoT-Specific domains,
per device (idle and active experiments).

understand whether they have a shared or dedicated backend infrastructure. The
reason is that if we want to identify IoT services and consequently IoT devices in
the wild by using network traces such as NetFlow, we can only observe standard
network-level features such as src/dst IP and port numbers without packet payload.
Therefore, if a service IP belongs to a shared infrastructure such as a CDN or a
generic web hosting service, it can serve many domains, and it is impossible for us
to exactly know which domain was actually contacted. To this end, the purpose
of this section is two-fold. First, to expand the candidate service IPs beyond those
directly observed in the ground truth experiments (to mitigate that, we are focusing
on a single subscriber line). Second, to classify domains into those that use backend
services hosted on dedicated infrastructure service IPs vs. those that rely on shared
infrastructure service IPs. We do this by relying on DNSDB [172], Censys [173], and
applying additional filters.

5.3.2.1 From IoT-Specific Domains to Service IPs: DNSDB

We use IoT-Specific domains to identify the backend infrastructure that is hosting
them. To this end, we leverage the technique in [174] and use these domain names to
identify all associated service IPs on which these domains are hosted during the time
period of our experiments. We use both the ground truth experiments and external
DNS databases, including DNSDB [175]. We found that the specific IP addresses to
specific domain mappings can change often. However, DNSDB provides information
for all domains served by an IP address in a given time period and vice versa; hence
it mitigates the issues caused by this churn. DNSDB also provides all records for a
given domain, including CNAMEs that may have been returned in the DNS response.
Thus, we use DNSDB to check if a service IP address is exclusively used for a specific
IoT service or if it hosts additional domains. We say a service IP is exclusively
used if it only serves domains from a single “second-level” domain (SLD) and its

67

Chapter 5 Detection of IoT Devices in the Wild

CNAMEs. However, we note that the CNAMEs may not involve the same second-level
domain. Let us consider an example: the domain devA.com is mapped via a chain of
CNAMEs such as devA-VM.ec2compute.amazonaws.com to IP a.b.c.d. This IP only
reverse maps to devA-VM.ec2compute.amazonaws.com and its associated CNAME
devA.com. Since this is the only CNAME associated with the IP, we may consider
this IP a direct mapping for the domain. Yet, at the same time, we find support that
public IP addresses assigned to a cloud resource such as a virtual machine in AWS
EC2, occupied by a tenant, are not shared with other tenants unless the current
resource is released. This is a popular service offered by multiple platforms [176–
178]. Let us consider a second example: domain devB.com. It may use the Akamai
CDN. Thus, the domain devB.com is a CNAME for devB.com.akadns.net. This
domain then maps to IP a.b.c.d. However, in this case, many other domains, e.g.,
anothersite.com.akadns.net, also map to this IP. Thus, we may conclude that this
domain is hosted on a shared infrastructure.

Once we understand if an IP is exclusively used for a specific IoT service, we can
also classify the domains as either using a dedicated or shared infrastructure. For the
former, all service IPs have to be dedicated to this domain for all days; otherwise, we
presume that the domain relies on a shared infrastructure.

Once we apply this methodology to all 434 domain names, we find that 217 are hosted
on dedicated service IPs, while 202 rely on shared backend infrastructure. For 15 of
the domains, we did not have sufficient information in DNSDB. We handle them in
the next step.

5.3.2.2 From IoT-Specific Domains to Service IPs: Censys

Among the reasons that DNSDB may not suffice for mapping some domains to service
IPs is that (a) frequent remapping of domains to IPs or (b) missing data since the
requests for the domains may not have been recorded by DNSDB, which intercepts
requests for a subset of the DNS hierarchy. To overcome this limitation, we rely on
the certificate and banner datasets from Censys [173], to infer the ownership of the
domains and the corresponding IPs, as long as these are using HTTPS. For example,
we did not find any record for the domain c.devE.com in the DNSDB dataset. We
then check if device E uses HTTPS to communicate with this domain. This allows us
to query for all service IPs that potentially offer the same web certificate as the hosts
in this domain. For a certificate to be associated with a domain, we require that
the domain name and the Name field entry in the certificate match at least the SLD
or higher, i.e., the Name field of the certificates matches the pattern c.devE.com
or *.devE.com and that there is no other Subject Alternative Name (SAN) in the
certificate. Next, we query the Censys dataset for all IPs with the same certificate
and HTTPS banner checksum for the domain from our ground truth dataset within
the same period. This allows us to identify data for 8 out of 15 domains belonging
to 5 devices.

68

5.3 IoT Device detection methodology

5.3.2.3 Removal of Shared IoT Backend Infrastructures

In the last step of our methodology, we filter out devices that use shared backend
infrastructures. We find that Google Home, Google Home Mini, Apple TV, and
Lefun camera all have a shared backend infrastructure. For LG TV, we are left with
only one out of 4 domains; for Wemo Plug and Wink-hub, we could not identify
sufficient information. Because of this, we have excluded these devices from further
consideration.

The result forms our daily list of dedicated IoT services, along with their associated
domains, service IPs, and port combinations.

5.3.3 IoT Services to Device Detection Rules

Once we have identified the set of IoT services that can be monitored, we generate
the rules for detecting IoT devices. Depending on the set of IoT services contacted
by the devices, we can generate device detection rules at three granularity levels: (i)
Platform-level, (ii) Manufacturer-level, and (iii) Product-level, from the most coarse-
grained to the most fine-grained, respectively. In this section, first, we show how we
determine the detection level for each device. Then, we explain how we generate the
detection rules for each IoT device for the detection level that can be supported.

5.3.3.1 Determining IoT Detection Level

Platform-level: Some manufacturers use off-the-shelf firmware or outsource their
backend infrastructure to IoT platform solution companies such as Tuya [179], elec-
tricimp [180], AWS IoT Platform [181]. These IoT platforms can have several cus-
tomers/manufacturers that rely on their infrastructure. Therefore, we may be unable
to distinguish between different manufacturers from their network traffic.
Manufacturer-level: The majority of our studied IoT services rely on dedicated
backend infrastructures that the manufacturers themselves operate. We also ob-
serve that many manufacturers rely on similar APIs and backend infrastructures to
support their different products and services. This makes distinguishing individual
IoT products from their network traffic more challenging.
Product-level: This is the most fine-grained detection level, where we can distinguish
between different products of a manufacturer, e.g., Samsung TV, or Amazon Echo vs.
Amazon Fire TV. For detection at the product level, we underline the importance of
side information about the purpose associated with a domain. With this information,
we can improve our classification accuracy. For example, for Alexa Enabled devices,
the domain avs-alexa.*.amazon.com is critical, as it is the base URL for the Alexa
Voice Service API [169] (shown in Figure 5.8 as amazon domain23). Other examples
are the Samsung devices that use the domain samsungotn.net to check for firmware
updates [182].

69

Chapter 5 Detection of IoT Devices in the Wild

Additionally, some advanced services of the devices often require additional back-
end support from manufacturers. These may then contact additional domains. By
considering more specific features (domains), the capabilities to distinguish products
increases. We leverage these specialized features e.g., to distinguish Amazon Fire TV,
which contacts significantly more domains than other Amazon products, e.g., Echo
Dot.

5.3.3.2 Generation of Detection Rules

For any of our three levels of detection, we require that a subscriber contacts at
least one IP/port combination associated with a Primary domain of the IoT service
to claim detectability of IoT activity at the subscriber. However, if there are many
domains, requiring only one such activity may not have enough evidence. For ex-
ample, by monitoring a single domain, we can detect all Alexa Enabled devices, but
this service can also be integrated into third-party hardware. Therefore, to detect
products manufactured by Amazon, e.g., Amazon Echo, it is essential to monitor
additional domains that are contacted by the Amazon Echo devices. For this, we
introduce the detection threshold D. If an IoT service has N IoT-Specific domains,
we require to observe traffic involving k IP/port combinations that are associated
with max(1, bD×Nc) of the N domains. To determine an appropriate value for this
threshold, we rely on our ground truth dataset, see Section 5.4.

We start with 96 devices in our testbeds. We have multiple copies of the same device
deployed on different continents. This reduces the set of devices to 56 unique prod-
ucts. Of these, many are from the same manufacturer, e.g., a Xiaomi rice cooker, a
Xiaomi plug, and a Xiaomi light bulb. Since these devices are often supported by
the same backend infrastructure of the manufacturer, the list of domains has signifi-
cant overlap and often fully overlaps. In our methodology, we can detect 3 different
IoT platforms, the coarsest level, as 4 of our products rely on them. Moreover, we
generated rules for detecting 29 IoT devices at the manufacturer level. We had a di-
verse range of products from Amazon and Samsung in our testbed that allowed us an
in-depth analysis and cross-examination of domains contacted by different products.
Therefore, for devices using Alexa voice service (i.e. Alexa Enabled) and for Samsung
IoT devices, we detect the former at the platform level and the latter at the manufac-
turer level. For Alexa Enabled and Samsung IoT devices, we compared the domains
across different devices and obtained enough side information about the purpose of
their domains that allowed us to further divide each of them into two subclasses at
more fine-grained levels. For this, we defined a hierarchy under Alexa Enabled de-
vices, namely Amazon products and Fire TV. Amazon products are detected at the
manufacturer level and include products such as the Amazon Echo family and are the
superclass of Fire TV. We identified 33 additional domains, besides the Alexa voice
service domain, that were contacted by Amazon products. Moreover, Fire TV con-
tacts up to 67 domains (34 more than Amazon products). This allows us to establish
its subclass under Amazon products at the product level. Using side information [182]
and comparing the set of domains across different Samsung products, we monitor 14

70

5.4 Methodology: Crosscheck

Active Experiment Idle Experiment

1 D
om

ain
2 D

om
ains

3 D
.

4 D
om

ains
5+

 D
om

ains

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Alexa Enabled(Pl.)
Anova Sousvide(Pr.)

iKettle(Pl.)
Insteon Hub(Pr.)

Magichome Stripe(Pr.)
Meross Dooropener(Man.)

Microseven Cam.(Pr.)
Netatmo Weather St.(Man.)

Smarter Coffee(Pl.)

AppKettle(Pr.)
Blink Hub & Cam.(Man.)

Flux Bulb(Pl.)
GE Microwave(Man.)

Icsee Doorbell(Pr.)
Lightify Hub(Pl.)
Luohe Cam.(Pr.)

Reolink Cam.(Pr.)
Sengled Dev.(Man.)

Smartthings Dev.(Man.)
Wansview Cam.(Man.)

Honeywell T−stat(Man.)
Xiaomi Dev.(Man.)

Nest Device(Man.)
Ring Doorbell(Man.)

Smartlife(Pl.)
Ubell Doorbell(Man.)

Yi Camera(Man.)

Amazon Product(Man.)
Amcrest Cam.(Man.)

Dlink Motion Sens.(Man.)
Fire TV(Pr.)

Philips Dev.(Man.)
Roku TV(Pr.)

Samsung IoT(Man.)
Samsung TV(Pr.)

TP−link Dev.(Man.)
ZModo Doorbell(Man.)

Threshold

Io
T

 D
ev

ic
e

w
/ (

D
et

ec
tio

n
Le

ve
l)

0 10 20 30 40 50

Duration
(Hours)

Not
Detected

Figure 5.10: Home-VP: Time to detect IoT (per threshold).

domains in total, but only one domain is important to detect Samsung IoT devices
with Samsung firmware (these include a broad range of products, such as fridges,
washing machines, and TVs). Samsung TVs contact 16 additional domains not used
by any other Samsung devices in our testbed.

Using the above methodology, except for the devices listed in section 5.3.2.3, we
generated detection rules at different levels for our testbed devices. We generated
rules for detecting 20 manufacturers and 11 products that amount to the 77% of
manufacturers in our testbeds. We generate rules for 4 unique IoT platforms by
monitoring 1 to 4 domains (4 devices contacted 2 platforms, and we report them
separately). Finally, for 11 products, we consider between 1 to 67 domains; for a
detailed number of domains per IoT device, see Figure 5.10.

5.4 Methodology: Crosscheck

We use our ground truth dataset to check how long it takes for our methodology
(applied to the sampled flow data from the ISP) to detect the presence of the IoT
devices for the idle and the active experiments (see 4 of Figure 5.2). For this, we
report the time that it takes to detect an IoT device that is hosted in our ground truth

71

Chapter 5 Detection of IoT Devices in the Wild

subscriber line when it is in active mode (Figure 5.10 left) and idle mode (Figure 5.10
right). We only include the ones that are detectable with our methodology, i.e. those
that do not rely exclusively on shared infrastructures. We also annotate the device
name with its detection levels: Platform (Pl.), Manufacturer (Man.), and Product
level (Pr.).

On average, by requiring the evidence of at least 40% of domains, we are able to
detect 72/93/96% of IoT devices that are detectable at the manufacturer or product
level within 1/24/72 hours in the active mode. Even in idle mode, the percentage
is 40/73/76% with 1/24/72 hours. For the devices detectable only at the product
level (Pr.), with the same required evidence, we detected 63/81/90% of them within
the 1/24/72 hours, respectively, in active mode. Note, we are using the sampled ISP
data. Indeed, popular products such as Amazon products (i.e. Echo Dot, Echo Spot)
can be almost instantly detected. This is a significant finding and underlines that it
is possible to use sampled flow data within an ISP to accurately detect the presence
of a specific IoT product within a subscriber line, despite differences in activity and
IP churn due to operational requirements.

A closer look reveals that, in general, it takes longer to detect an idle IoT device in
comparison to when it is active. This is not surprising, as most IoT devices show
more network activity in active mode. However, this does not mean that the increase
will occur across all of the services contacted by a device, since there are exceptions
that take longer to detect, even in active mode, e.g., SmartLife, and Nest.

Figure 5.10 also contains information regarding the number of monitored domains per
IoT device with their detection level. For 9 IoT devices, a single domain is considered.
For the others, we consider many more (up to 67). A threshold determines the fraction
of domains for which we require evidence of network traffic to claim detection. To
understand the impact of such a threshold on detection time, we variate its value from
0.1 to 1 and show the corresponding detection times. Note, for IoT devices where we
consider only one domain, the variation of the threshold does not change the detection
time, as we always require evidence of at least one domain. Overall, we note that a
larger threshold can increase the detection time, and some IoT devices may no longer
be detectable. However, it may also increase the false positive rate. We crosscheck
possible false positives by running another experiment where we only enable a small
subset of IoT devices. We then apply our detection methodology to these traces and
do not identify any devices that are not explicitly part of the experiment. We also
try to avoid false positives by ensuring that the domain sets per device differ.

Regarding detectability, we noticed that 6 IoT devices could not be detected even after
the entire duration of our idle experiments. A closer investigation showed that for 5 of
these, the frequency of traffic is so small that their likelihood of detection is very low.
Indeed, for this specific time period, they were invisible in the NetFlow data. This
highlights that in order to be able to confidently detect a device, the device has to
either exchange enough packets with the targeted domains or the sampling rate shall
be increased. For Samsung TV, we require to observe enough domains to confirm
the presence of a Samsung IoT device before moving forward with detection. Thus,
if we do not see enough Samsung IoT domains, then we do not claim the detection

72

5.5 Results: IoT in the Wild

●

●

●

●

●

●
●●●●

●

●
●
●●
●
●●
●●
●
●

●

●

●

●

●●
●

●

●

●●●●
●●●

●●●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●●●●●

●
●●●●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●●
●●
●
●
●●●

●

●

●

●

●

●
●

●

●

●●●●●
●

●●
●●
●
●
●●●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●●
●●
●●

●

●●

●

●

●

●

●

●
●

●

●
●●●●

●

●●
●●
●
●
●●●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●
●●
●
●
●●●

●
●

●

●

●

●

●●
●

●

●

●●●●
●●●

●

●●
●●●

●
●

●

●

●

●

●●

●

●

●

●
●●
●●●●

●
●●
●●●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●
●●
●
●
●●●

●

●

●

●

●

●

●
●

●

●●●●●
●

●●
●
●
●
●
●●●

●

●

●

●

●

●
●

●

●

●●●●●
●

●●
●●
●
●
●●●

●

●

●

●

●

●

●

●

●

●●●●●
●

●●
●●
●
●
●

●●

●

●

●

●10k

100k

1m

Nov−15
Nov−16

Nov−17
Nov−18

Nov−19
Nov−20

Nov−21
Nov−22

Nov−23
Nov−24

Nov−25
Nov−26

Nov−27
Nov−28

U

ni
qu

e
S

ub
sc

rib
er

s/
H

ou
rlo

g1
0

Device Type
● Samsung IoT

Alexa Enabled
Other 32 IoT Device types

(a) Per Hour.

●
● ● ● ● ● ● ●

● ●
● ● ●

●

50k

500k

1m

1.5m

2m

2.5m

Nov−15
Nov−16

Nov−17
Nov−18

Nov−19
Nov−20

Nov−21
Nov−22

Nov−23
Nov−24

Nov−25
Nov−26

Nov−27
Nov−28

U

ni
qu

e
S

ub
sc

rib
er

s
P

er
 2

4H

Device Type ● Samsung IoT
Alexa Enabled

Other 32 IoT Device types

(b) Per Day.

Figure 5.11: ISP: Per Hour, Subscriber lines with IoT activity (Alexa
Enabled, Samsung IoT, and others).

● ● ● ● ● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●50k

500k

1m

1.5m

2m

2.5m

Nov−15
Nov−16

Nov−17
Nov−18

Nov−19
Nov−20

Nov−21
Nov−22

Nov−23
Nov−24

Nov−25
Nov−26

Nov−27
Nov−28

U

ni
qu

e
S

ub
sc

rib
er

s
P

er
 2

4H

Device Type
●
●

Alexa Enabled
Amazon Product
Amazon Firetv

Samsung IoT
Samsung TV

Figure 5.12: ISP: Drill down for Amazon and Samsung IoT devices–per Day.

of Samsung TVs. Nevertheless, the results look very promising for us to attempt to
detect deployed IoT devices in the wild.

5.5 Results: IoT in the Wild

In this section, we apply our methodology for detecting IoT activity in the ISP and
IXP data (see 5 in Figure 5.2). For this, we focus on the two weeks, in which, we
collected the data from the ground truth experiments to obtain up-to-date mappings
of domains to IPs.

5.5.1 Ethical Considerations and Privacy Implications

Applying our methodology to traffic data from ISPs and IXPs may raise ethical
concerns as it may be considered as analyzing customer activities. However, this
is not the goal of this study. The goal here is to showcase that it is possible to
detect and map the penetration of IoT device usage. As such, this study is not
about subscribers’ device activities but about detection capabilities and aggregated

73

Chapter 5 Detection of IoT Devices in the Wild

●
●

●
●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

U
nique S

ubscribers
/24 S

usbscribers

Nov−15
Nov−16

Nov−17
Nov−18

Nov−19
Nov−20

Nov−21
Nov−22

Nov−23
Nov−24

Nov−25
Nov−26

Nov−27
Nov−28

0

2m

4m

6m

40k

60k

80k

C
um

ul
at

iv
e

C
ou

nt
 p

er
 2

4
H

Device Type
●
●

Alexa Enabled
Amazon Product
Amazon Firetv

Samsung IoT
Samsung TV

Figure 5.13: ISP: Cumulative # of subscriber lines resp. /24s with daily IoT activity across
two weeks.

usage. Thus, we report on percentages of subscriber lines where we can observe IoT-
related activity. Indeed, we cannot trace IoT activity back to individuals as the raw
data was anonymized per recommendations by [170] and never left our collaborators’
premises. Moreover, we do not analyze any data that is not related to the detection
of IoT presence, e.g., DNS queries [39], or flows that are not related to IoT backend
infrastructures, to eliminate any user Web visit profiling.

5.5.2 Vantage Point: ISP

IoT-related activity in-the-wild. Figure 5.11 shows the number of ISP subscriber
lines for which we detect IoT-related activity. The ISP does not operate a carrier-
grade NAT. Even if multiple IoT devices are hosted at an ISP subscriber, we count
the hosting subscriber only once. Thus, the number of subscribers that host a given
IoT device is a lower bound for the number of the given IoT device on the premises of
ISP subscribers. Figure 5.11a and Figure 5.11b focus on hourly and daily summaries.
Since the top IoT devices detected are Alexa Enabled and Samsung IoT, we show
them separately. We see IoT-related activity for roughly 20% of the subscriber lines.
Our results show a significant penetration of Alexa Enabled devices of roughly 14%.
This is slightly more than estimates of national surveys in the country where the ISP
operates, stating that the market penetration of Alexa Enabled devices, as of June
2019, is around 12% [183–185]. Yet, contrary to our study, these reports cannot
capture which devices are in active use on any particular day, e.g., Nov. 2019. Note,
in Figures 5.11, 5.12, 5.14 and 5.15 we apply our methodology on each time bin
independently.

74

5.5 Results: IoT in the Wild

Top 10
Top 100

Top 200
Top 500

Top 2k
10k

N
o M

arket
O

ther

Nov−15
Nov−16

Nov−17
Nov−18

Nov−19
Nov−20

Nov−21
Nov−22

Nov−23
Nov−24

Nov−25
Nov−26

Nov−27
Nov−28

Meross Dooropener(Man.)
Philips Dev.(Man.)

Wansview Cam.(Man.)

Netatmo Weather St.(Man.)
Smartthings Dev.(Man.)

Yi Camera(Man.)

iKettle(Pl.)
Reolink Cam.(Pr.)

Anova Sousvide(Pr.)
Honeywell T−stat(Man.)

Amcrest Cam.(Man.)
AppKettle(Pr.)

Dlink Motion Sens.(Man.)
Lightify Hub(Pl.)

Nest Device(Man.)
ZModo Doorbell(Man.)

Smarter Coffee(Pl.)

GE Microwave(Man.)
Insteon Hub(Pr.)

Microseven Cam.(Pr.)

Blink Hub & Cam.(Man.)
Flux Bulb(Pl.)

Icsee Doorbell(Pr.)
Luohe Cam.(Pr.)

Magichome Stripe(Pr.)
Ring Doorbell(Man.)

Roku TV(Pr.)
Sengled Dev.(Man.)

Smartlife(Pl.)
TP−link Dev.(Man.)

Ubell Doorbell(Man.)
Xiaomi Dev.(Man.)

Io
T

 D
ev

ic
e

w
/ (

D
et

ec
tio

n
Le

ve
l)

1 10 1k 10
0k

Unique Subscriber Lines
 per Day(log10)

Figure 5.14: ISP: Drill down of IoT activity for 32 different IoT device types with their
popularity in the ISP’s country.

Daily patterns of IoT-related activity. By looking at the hourly plots in Fig-
ure 5.11a, we see some significant daily patterns for Alexa Enabled and Samsung IoT
devices. We do not see diurnal patterns for the other 32 IoT device types. Such diur-
nal patterns are correlated with human activities. Typically, during the Day, network
activity increases as the users interact with the IoT devices, while it decreases during
the night when the devices are idle. As detection likelihood is correlated with network
activity, the device’s detectability also correlates with this diurnal pattern. We note
that the patterns for Alexa Enabled do not differ from those for Samsung. The reason
is that many of the Alexa Enabled and Samsung IoT (Samsung TVs) classes may be
used more for entertainment, which is why their activity is higher in the evenings.
Samsung IoT devices have a small spike in the mornings before gradually reaching
their peak around 18:00 (ISP timezone).

For the drill down for Samsung IoT devices, see Figure 5.12. Even with a diurnal
variation for Alexa Enabled, there is a significant baseline during the night. This is
expected as IoT devices often have traffic, even when idle, and are thus detectable.

75

Chapter 5 Detection of IoT Devices in the Wild

● ● ● ● ● ● ● ●
● ●

● ● ●
●

50k

150k

250k

Nov−15
Nov−16

Nov−17
Nov−18

Nov−19
Nov−20

Nov−21
Nov−22

Nov−23
Nov−24

Nov−25
Nov−26

Nov−27
Nov−28

U

ni
qu

e
IP

s
P

er
 2

4H

Device Type ● Samsung IoT
Alexa Enabled

Other 32 IoT Device types

Figure 5.15: IXP: Number of Samsung
IoT, Alexa Enabled, and
Other 32 IoT device types IPs
observed/day.

●

●●
●

●
●

●

●

●

●

Top Eyeball AS

0

0.25

0.5

0.75

1

0.001% 0.01% 0.1% 1% 10%
Per AS Percentage of Unique IPs(log10)

E
C

D
F

Device Type
● Samsung IoT

Alexa Enabled
Other 32 IoT Categories

Figure 5.16: IXP: ECDF of Per-ASN
Percentage (# Unique IPs)
- Day 15-11-2020.

Over the course of a day, the diurnal variation is rather low compared with the
typical network activity driven by human activity. This explains the low variance of
the observed number of subscriber lines for Alexa Enabled devices.

Aggregation per day. We observed in Section 5.4 that, while it is often possible to
detect Alexa Enabled devices within an hour, the same is not always true for Samsung
IoT devices. Therefore, Figure 5.11b reports the same data but this time using an
aggregation period of a day.1 We see that the total number of observed subscriber
lines does not change drastically from Day to Day. However, we also note that the
number of subscriber lines with Alexa Enabled devices roughly doubled, while those
with Samsung increased by a factor of 6. The reason is that detecting Samsung IoT
devices is more challenging because they are contacting their Primary domain less
frequently than Alexa Enabled devices. Thus, their detection is heavily helped by
the increase in the observation time period. For the other IoT devices, we see these
effects, whereby the increase correlates to the expected detection time. Note, both
Samsung IoT and Non-IoT devices contact certain Samsung domains. In our analysis,
we only consider domains that are exclusively contacted by Samsung IoT devices. By
adding those domains, the number of detected Samsung devices will be increased at
least by a factor of two, but this also adds false positives to our results.

Detecting specific devices. So far, we have focused on the superclass of Alexa
Enabled and Samsung IoT devices. However, by adding more specialized features,
our methodology allows us to differentiate them further. For example, some subsets
of domains are only contacted by specific products. Thus, in Figure 5.12 we show
which fraction of the Alexa Enabled IoT devices are confirmed Amazon products and
which fraction of these are Fire TVs using a conservative detection threshold of 0.4.
For Samsung IoT devices, we show how many of them are Samsung TVs. Again, the
number of subscriber lines with such IoT devices is quite constant across days. As
expected, the specialized devices only account for a fraction of the devices of both
manufacturers.

1Most subscriber lines are not subject to new address assignments within a day. Most addresses
remain stable as the ISP offers VoIP services.

76

5.5 Results: IoT in the Wild

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●
●●

●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●
●●●●●●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

Active Experiment Idle Experiment

Nov 15
Nov 16

Nov 17
Nov 18

Nov 19
Nov 22

Nov 23
Nov 24

Nov 25
1

10

100

1k

10k
P

ac
ke

t C
ou

nt
 P

er
 H

ou
r(

lo
g1

0)

Vantage Point ● Home VP ISP VP

Figure 5.17: Home-VP/GT Household: Sin-
gle Alexa Enabled device.

● ● ● ● ● ● ●

1k

10k

100k

1m

Nov−22
Nov−23

Nov−24
Nov−25

Nov−26
Nov−27

Nov−28

U

ni
qu

e
S

ub
sc

rib
er

s
(lo

g1
0)

Granularity &
Device State

● Daily: Active and Idle
Hourly: Active and Idle
Hourly: Active

Figure 5.18: ISP: # Subscribers with ac-
tive Alexa Enabled/hour.

Subscriber lines churn. While the ISP’s overall churn of subscriber line identifiers
is pretty low (as was also confirmed by the ISP operator), some changes are possible
and may bias our results. Possible reasons for such changes are: unplugging/reboot-
ing of the home router, regional outages, or daily re-assignment of IPs for privacy
reasons. Yet, as most IoT devices are detectable within a day (recall Section 5.4),
the churn should not bias our results. Still, to check for such artifacts, we move to
larger time windows: see the upper panel of Figure 5.13, which plots the cumulative
number of subscriber lines with detected Alexa Enabled and Samsung IoT devices,
respectively, for up to two weeks. Here, we see that the fractions increase. However,
we may have substantial double counting due to identifier rotation. To underline
this conclusion, we consider penetration at the /24 prefix aggregation level; see the
lower panel in Figure 5.13. The penetration lines stabilize smoothly, but at different
levels and speeds. The latter is related to the popularity of an IoT device. If it is
already popular, the likelihood of moving from a known to an unknown subscriber
line identifier is lower with respect to less popular IoT devices.

Detecting other IoT devices in-the-wild. Figure 5.14 reports the detected
number of IoT devices that are neither Alexa Enabled nor Samsung IoT. We report
them using a heatmap, where each column corresponds to a day and each row to
an IoT device annotated with its detection level. The color of each entry shows
the number of subscribers lines during that Day. Our first observation is that the
number of subscriber lines for each device class is very stable across the duration of
our study. Next, we point out that our experiments include popular devices from both
the European and the US markets. For reference, we report the relative popularity
of each IoT device in the Amazon ranking for that device in the country where
the ISP operates. If a ranking of a device is not available, we categorize them as
“other.” Popular devices are more prominent than unpopular ones or unavailable in
the country’s market. For example, on the one hand, there are Philips devices that
are popular and in heavy use, with more than 100k daily subscription lines. On the
other hand„ the Microseven camera is not in the country’s market. Yet, we can still
observe some deployments, and these results highlight that our methodology is able
to detect both popular and unpopular IoT devices when the domains and associated
service IPs that IoT devices visit can be extracted.

77

Chapter 5 Detection of IoT Devices in the Wild

5.5.3 Vantage Point: IXP

Next, we apply our detection methodology at the IXP vantage point. Here, we have
to tackle a few additional challenges: First, the sampling rate at the IXP is an order
of magnitude lower than at the ISP. Second, the vantage point is in the middle of
the network, which means that we have to deal with routing asymmetry and partial
visibility of the routes. Third, while the ISP does aggressive spoofing prevention,
e.g., with reverse path filtering, this is not possible at the IXP. Spoofing prevention
is the responsibility of individual IXP members. Thus, we require TCP traffic to see
at least one packet without flags, indicating that a TCP connection was successfully
established. While this may reduce visibility, it prevents us from overestimating the
presence of IoT traffic.

While the IXP offers network connectivity for every ASes, only a few member ASes
are large eyeballs [186]. It is not surprising that we did not observe any activity of
the ground truth experiment, recall Section 5.2. Still, we can detect significant IoT
activity. Figure 5.15 shows the number of IPs for which we detected IoT activity
per Day for our two-week study period (November 15th-28th, 2019). We are able
to detect roughly 90k Samsung devices, 200k Alexa Enabled devices, and more than
100k other IoT devices. This underlines that our methodology, based on domains
and generalized observations from a single subscriber line, is successful. Most IXP
members are non-eyeball networks. As such, we expect that the detected IoT activity
is concentrated on these members. Figure 5.16 shows an ECDF of the distribution of
IoT activity per AS for one Day (November 15th, 2019) and three IoT device types,
namely, Samsung IoT, Alexa Enabled, and the other IoT devices. The distributions
are all skewed—a small number of member ASes are responsible for a large fraction
of the IoT activity. Manual checks showed that these are all eyeball ASes. Yet, we
also see a fairly long tail. This underlines that some IoT devices may not only be
used at home (and, thus, send their traffic via a non-eyeball AS).

5.6 Discussion and Related Work

We previously covered the related work in IoT device detection in Section 3.3. In
summary, multiple solutions use passively collected datasets to detect IoT devices.
However, only a few studies apply their solutions at scale and report their findings.
Authors in [38] proposed a method to identify IoT devices by observing passive DNS
traffic and unique IP addresses that the device connects to. Unfortunately, many IoT
devices rely on shared infrastructures, and often different IoT devices from the same
vendor connect to the same servers; therefore, detection at the scale of ISP/IXP,
based on the IP addresses and port numbers without considering the important role
of shared infrastructures, cannot be very reliable. Following our studies, Authors
in [34] used Machine Learning (ML) techniques to identify IoT devices in IPFIX data
from a residential ISP to improve the detection accuracy. However, the sampling rate
—if any— of their IPFIX data was unclear.

78

5.6 Discussion and Related Work

5.6.1 Device Usage Detection

A natural question is whether sampled flow data allows one to distinguish if an IoT
device is in active use. Our results indicate that the answer is positive. First, our
ground truth experiments show that for some devices, the domain sets used during
the idle experiments differ from those during active experiments. Hence we can use
these domains to determine an IoT device’s mode (active/idle). Second, the amount
of traffic also varies depending on the mode. To highlight this, Figure 5.17 shows the
number of observed packets at the Home-VP for a single Alexa Enabled device, as
well as the ISP-VP for both modes. Activities cause spikes above 1K at the home
vantage points and above 10 at the ISP-VP. These ranges are never reached during
the idle experiments.

When using the first insight for, e.g., devices from TP-link (TP-link Dev.), we are
able to capture active use for only 3.5% of the devices. The reason is that these are
plugs that have a total traffic volume so low that it limits the detectability due to
the low sampling rate at the ISP. When using the second insight for Alexa Enabled
devices, we find that we can detect significant activity. Figure 5.18 shows both the
subscriber lines with Alexa-enabled devices per hour per day as well as the subscriber
lines with active Alexa-enabled devices. Based on the observations mentioned above,
we used the threshold of 10 for packet counts per hour to filter out subscribers that
actively used Alexa-enabled devices in a given hour. Based on this threshold, we see
that the number of actively used devices reaches 27,000 during the day and weekends
(November 23rd-24th, 2019), following the diurnal pattern of human activity.

5.6.2 Potential Security Benefits

The ability to detect IoT services can be used constructively or even as a service by
ISPs. For example, if there are known security problems with an IoT device, the IS-
P/IXP can block access to certain domains/IP ranges or redirect their traffic to benign
servers. The methodology can also be used for troubleshooting, incident investiga-
tion, and even incident resolution. For example, an ISP can use our methodology for
redirecting the IoT devices traffic to a new backend infrastructure that offers privacy
notices or security patches for devices no longer supported by their manufacturers.

Moreover, if an IoT device misbehaves, e.g., if it is involved in network attacks or part
of a botnet [187], our methodology can help the ISP/IXP in identifying what devices
are common among the subscriber lines with suspicious traffic. Once identified, their
owner can be notified in a similar manner, as suggested by [41], and it may be
possible to block the attack or the botnet control traffic [188].

5.6.3 Limitations

Our methodology has some limitations.

79

Chapter 5 Detection of IoT Devices in the Wild

Sample devices. We need to have sample devices in order to observe which domains
are being contacted.

Superclass detection. We mostly check for false negatives and limitedly for false
positives as we only have traffic samples from a subset of IoT devices, but not for all
possible IoT devices. If an IoT device relies on a shared backend infrastructure or
common IoT APIs, we only detect the superclass, e.g., at the manufacturer level.

Network activity. We rely on the network activity of IoT devices. As such, if the
traffic volume is very low, detectability decreases, and detection time increases.

Shared infrastructures. We cannot detect IoT services that rely on shared in-
frastructures. If the IoT devices change their backend infrastructure, e.g., after an
update, we may have to update our detection rules too.

5.6.4 Lessons Learned

Our analysis could be simplified if an ISP/IXP had access to all DNS queries and
responses as they do in [38] and [39]. Even having a partial list, e.g., from the local
DNS resolver of the ISP, could improve our methodology. Yet, this raises many
privacy challenges. An increasing number of end-users rely on technologies like DNS
over TLS [189], or public DNS resolvers, e.g., Google DNS, OpenDNS, or Cloudflare
DNS, rather than the local ISP DNS server [190]. Yet, this also points to another
potential privacy issue—the global data collection and analysis engines at these DNS
operators, which can identify IoT devices at scale from the recorded DNS logs using
our insights. Capturing DNS data from the network itself would require deep packet
inspection and, thus, specialized packet capture, which is beyond the scope of this
study.

The subscriber or device detection speed varies, depending not only on the device
and its traffic intensity but also on the traffic capture sampling rates. The lower this
rate, the more time it may take to detect a specific IoT device. Moreover, identifying
the relevant domains for each IoT device does require sanitization, which may involve
manual work, e.g., studying manuals, device documentation, vendor websites, or even
programming APIs. Given that we are unable to identify IoT services if they are
using shared infrastructures (e.g., CDNs), this also points out a good way to hide
IoT services.

5.7 Chapter Summary

Home IoT devices are already popular, and their usage is expected to grow further.
Thus, we need to track their deployment without deep packet inspection or active
measurements, both intrusive and unscalable methods for large deployments. From
this chapter, our insight is that many IoT devices contact a small number of domains,
and, thus, it is possible to detect such devices at scale from sampled network flow
measurements in very large networks, even when they are in idle mode. We showed

80

5.7 Chapter Summary

that our method could detect millions of such devices in a large ISP and in an IXP
that connects hundreds of networks.

Our technique was able to detect 4 IoT platforms, 20 manufacturers, and 11 products–
both popular and less popular ones–at the vendor level and in many cases even at
product granularity. In addition, we showed that 20% of 15 million subscriber lines
of the ISP used at least one of the 56. While this detection may help understand the
penetration of IoT devices at home, it raises concerns about the general detectability
of such devices and the corresponding human activity.

81

6
IoT Devices: A Case Study on Leaking

Users’ Privacy

In the previous chapter, we developed a methodology to detect IoT devices in an
ISP. One security and privacy benefit of detecting IoT devices was that ISPs could
investigate which devices are common among subscribers with suspicious traffic. This
motivated us to use our methodology in a specific case study. In this chapter, we
study how deployed devices at homes can affect users’ privacy. We collaborated with
the large European ISP and focused on IPv6 subscribers. We identified a privacy
leakage caused by devices using legacy IPv6 addressing mechanisms and measured
how many subscribers were potentially affected by this leakage. While conducting
this study, we also put our IoT detection technique into use.

The adoption of IPv6 on the Internet is continuously increasing [191]. One of the
drivers is the unprecedented demand for smart devices at home, ranging from voice
assistants to smart TVs and surveillance cameras, that all have to be assigned ad-
dresses to access the Internet and the cloud [192]. While the use of Network Address
Translation (NAT) and concerns about IPv6 addressing privacy have delayed its adop-
tion, operators, vendors, and the research community have long ago provided privacy
solutions to mitigate these risks. ISPs have adopted prefix rotation [193] and net-
work equipment manufacturers and software developers have enabled IPv6 privacy
extensions [194, 195].

A recent work [196] shows that if the home network gateway router, also referred to
as customer premises equipment (CPE), is using a legacy IPv6 addressing standard
employing EUI-64 (Extended Unique Identifier), it is possible to track devices that use
IPv6 at home using active measurements. Unfortunately, in this chapter, we report
that even if the CPE and the ISP apply the best common practices, i.e. IPv6 privacy
extensions and prefix rotation, it is still possible to track devices that use IPv6 at
home. In detail, we show that the existence of only a single device that uses EUI-64 at
home can spoil the privacy of potentially all IPv6-enabled devices and eventually end-
users’ privacy across these devices. Third-party providers, such as hypergiants [197],
network traffic aggregators (Internet exchange point, upstream providers), or service
providers (e.g., NTP, DNS providers), receiving connections from devices at the same
home can potentially defeat the privacy of current IPv6 solutions even if only one of
these devices uses the legacy EUI-64 technique. Unfortunately, the average end-user
is not in a position to know which of their devices use EUI-64.

83

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

6.1 Background

To solve the address shortage in IPv4, among other things, the networking community
introduced the IPv6 protocol more than two decades ago [198, 199]. Nevertheless,
IPv6 is only recently being deployed on a larger scale [200] with about 36% of all re-
quests to Google going over IPv6 as of March 2022 [201]. In addition to the IPv6 ad-
dress space being larger, the addressing itself is also different compared to IPv4 [202].
While in IPv4, most end-user clients get their address via DHCP [203], in IPv6
clients get addresses either via DHCPv6 [193] or stateless address auto-configuration
(SLAAC) [204]. Instead of directly assigning a full address as in DHCP or DHCPv6,
with SLAAC, a router sends a prefix to its clients (i.e. the network part), and the
clients, then by themselves, choose an IPv6 address within that prefix (i.e. the host
part). This host part is called interface identifier or IID. Initially, the IID part used
an encoding of the interface’s MAC address, called EUI-64 [205]. The unique and
consistent nature of MAC addresses lead to devices being trackable over time and
across different networks [206]. Consequently, IPv6 privacy extensions were proposed,
which randomize the IID part instead of using a device’s MAC address [194]. In ad-
dition to user devices being trackable by EUI-64 addresses, ISP subscribers can also
be tracked by their prefix. In order to defeat prefix tracking, ISPs can change the
prefix of each customer after a certain time (prefix rotation). Although there has
been several works on IPv6 measurements [206–229], many of them focused on ac-
tive measurements or structural properties of the IPv6 space. Rye et al. recently
published the work closest to ours citerye2021follow, in which they show that prefix
rotation can be defeated by tracerouting customer premise equipment (CPE), which
responds with EUI-64 addresses. In our work, we show the privacy implications of
EUI-64 usage among devices directly within the end-user network.

6.2 Methodology

In this section, we describe our methodology and show how a single device using EUI-
64, i.e. not using privacy extensions, can be used to track devices at the subscriber
level. In Figure 6.1, we show how an end-user prefix can be tracked despite the
ISP performing frequent prefix rotation. In the example scenario, there are two
devices in the end-user prefix, a laptop, and a smart TV. Both are using IPv6, the
former with privacy extensions, the latter with EUI-64. The CPE device also has
IPv6 connectivity on the upstream facing interface. If the CPE device’s WAN-facing
address is not within the end-user prefix, it can not be used for tracking with our
methodology.

Since the smart TV is not using privacy extensions, it allows CDNs and other large
players on the Internet to track not only the smart TV itself but all devices within
that end-user prefix. In fact, we can use the smart TV’s IID part of the IPv6 address
as its unique tracking ID since it is derived from a MAC address. Furthermore,
we assign this same tracking ID to all addresses within the end-user prefix. This

84

6.2 Methodology

Internet
Service
Provider

Laptop:
IPv6 Host w/

Privacy Extension

Smart TV:
IPv6 Host w/

EUI-64

CDN,
Popular Application,

 or Service

Periphery
Prefix End-User Prefix

CPE

Time
1
1
1

 2001:db80:1111:b000:8e8f:90ff:fe12:3456
8e8f:90ff:fe12:3456
aff0:abff:fe34:5679

IPv6 Address Tracking IDHost
SmartTV 8e8f:90ff:fe12:3456
Laptop 2001:db80:1111:b000:ddde:abcd:1111:ff11

CPE 2001:db80:2222:b25d:aff0:abff:fe34:5679

2
2
2

8e8f:90ff:fe12:3456
CPE

Laptop
 2001:db80:2222:b266:aff0:abff:fe34:5679 aff0:abff:fe34:5679

 2001:db80:3333:fff1:1111:1123:ee11:2222
 2001:db80:3333:fff1:8e8f:90ff:fe12:3456SmartTV 8e8f:90ff:fe12:3456

…

Figure 6.1: Privacy leakage across prefixes.

way, we can jointly track all devices of a subscriber by relying on a single EUI-64-
enabled device. After the initial blue and red flows were observed, the ISP rotates
the customer’s prefix (time 2), and all customer devices are now using a new IPv6
address. Importantly, as the smart TV is still using the same IID even in this new
prefix, any content provider can again associate all devices with the same tracking
ID as before. With this technique, a single EUI-64 device in an end-user subnet can
spoil the privacy gains of prefix rotation of all other devices, even if they use privacy
extensions.

For our method to be effective, the devices in the same end-user prefix must contact
a vantage point. In our case, we are in a privileged position and see all connections
and thus, can track all the devices. However, in the wild, these devices would require
to contact the same application, e.g., hypergiants, content delivery networks, search
engines, upstream providers, or other popular services such as DNS or NTP. The
devices can then simply be tracked by assigning tracking IDs to the red and blue
flows as shown in Figure 6.1.

Recall that the IID part of a EUI-64 IPv6 address is generated by inserting the
`ff:fe' hex string between the third and fourth bytes of a MAC address and setting
the Universal/Local bit. We can extract the MAC address from the EUI-64 part of an
IPv6 address and uncover the device manufacturer. To achieve this, we extract the
Organization Unique Identifier (OUI) part of the MAC address, i.e. the first three
bytes. For the mapping, we use the official IEEE OUI database [230]. This database

85

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

contains information about the name and address of the manufacturer that registered
the OUI.

6.3 Datasets

ISP Profile: We analyze data from a large European Internet Service Provider (ISP)
that offers Internet connectivity to more than 15 million broadband subscriber lines
in Europe.

IPv6 Assignment at the ISP: The ISP fully supports IPv6 by utilizing dual-stack
addressing. Each CPE device gets delegated a /56 IPv6 prefix, out of which it will
pick one /64 prefix, which is then used to assign addresses to clients via SLAAC.

By default, the ISP rotates the /56 prefixes delegated to customers every 24 hours.
Generally, the IPv6 prefix used for the upstream-facing CPE interface to the ISP
(“periphery prefix” in Figure 6.1) may or may not share the same prefix as the
end-user network. Thus, in the latter case, a /56 prefix that does not contain an
upstream-facing CPE interface represents an end-user network. We will show in our
analysis in Section 6.4.2 that the CPE interface and end-user networks of this ISP
do not share the same /56 prefixes.

ISP Data: The data is sampled network flow data collected at the ISP using Net-
Flow [50] to assess the state and operation of its network routinely, a typical operation
of ISPs. For our analysis, we apply our method to the NetFlow data at the premises
of the ISP, and we do not transfer or have direct access to the NetFlow data. The
data was collected in July 14, 2021, and four months later, on November 17, 2021.

6.4 Privacy Violations at the Edge

To assess the prevalence of privacy violations due to devices without privacy ex-
tensions, we apply our methodology on NetFlow data of the ISP (see the previous
section). Since the ISP rotates the customer prefixes once a day, we analyze one day
of data, namely, Wednesday, July 14, 2021, to show the feasibility of tracking devices
at home. We also examine the data collected on Wednesday, November 17, 2021,
which confirms our initial observations. Unless otherwise mentioned, our results refer
to the first dataset.

6.4.1 Quantifying EUI-64 Prevalence

In Figure 6.2 (left), we report the number of IPv6 addresses visible in the ISP during
one day. Recall that the ISP serves around 15 million subscriber lines. The number of
non-EUI-64 addresses—in our case, those are IPv6 addresses with privacy extensions
enabled (see Section 6.4.6 for a detailed analysis of non-EUI-64 addresses)—is more
than 100 million. This is to be expected as these devices frequently use new IPv6

86

6.4 Privacy Violations at the Edge

13.6M 16.2M

2.72M
Prefixes /64

185K
11.1M2.49M

Prefixes /56

16.9M 103M

Unique IPv6

EUI-64
Non-EUI-64
Both

Figure 6.2: Venn diagram for EUI-64 and non-EUI-64 IPv6 addresses and the over-
lap between different prefix sizes.

1 5 10 15 20 25 30 35 40 45 50
Top 50 OUIs

10K

100K

1M
CPE DevicesCPE DevicesCPE DevicesCPE DevicesCPE DevicesCPE DevicesCPE Devices

IID
/64 Prefix
/56 Prefix

Figure 6.3: OUI popularity. Note that the y-axis is log-scaled.

addresses, and more than one of these devices may be served by a subscriber line.
On the other hand, the number of IPv6 addresses for devices that do not use privacy
extensions, i.e., EUI-64, is smaller, around 17 million. However, we have strong and
consistent identifiers for IPv6 addresses used by these devices, i.e., their IIDs, that we
use to track devices even when the ISP performs prefix rotation. In total, we found
14.4 million devices that use EUI-64.

Next, we map all IPv6 addresses to their /64 prefix. We see that the numbers are now
quite similar, 13.6M for EUI-64 and 16.2M for prefixes with non-EUI-64 addresses,
with an overlap of 2.7M prefixes.

As mentioned in Section 6.3, the ISP assigns /56 addresses to each subscriber line.
In Figure 6.2 (right), we illustrate the number of prefixes that contain devices that
use EUI-64, non-EUI-64 devices that use privacy extensions, and the prefixes that
contain both types of addresses(i.e., dual-type prefixes). In total, we observed at
least one EUI-64 device in around 2.68 million /56 prefixes out of 11.3 million /56
prefixes. Thus, the number of affected /56 prefixes accounts for about 22.2%. Note
that the vast majority (more than 93%) of the host prefixes with EUI-64 devices also
host non-EUI-64 devices as well. This shows that the presence of privacy-violating
EUI-64 addresses impacts a substantial portion of ISP subscribers. Even within a
day, it is still possible for prefix rotation to happen for some subscriber lines. We can
detect these rotations for EUI-64 using prefixes by tracking the IIDs across multiple
/56 prefixes. We observed that only less than 13% of the EUI-64 using /56 prefixes

87

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

IoT

Computers

Mobile

CPE

Parts Manufacturer

Network Equipment

050
Percentage %

0

10

20

30

40

Pe
rc

en
ta

ge
 %

Figure 6.4: EUI-64 addresses mapped to different device categories. The percentage
corresponds to the number of /56 prefixes.

had prefix rotation within a day. Hence, if the same IID is observed across multiple
/56 prefixes, we count the prefixes only once. For non-EUI-64 prefixes, we cannot
track them across prefixes after prefix rotation, which is precisely the purpose of using
IPv6 privacy extensions.

6.4.2 Popularity of EUI-64 Manufacturers

Based on the IPv6 address for devices that use EUI-64 addresses, we analyze the
device manufacturer using the OUI (see Section 6.2). In total, we find devices with
1216 unique OUIs from 1113 distinct manufacturers. In Figure 6.3, we show man-
ufacturers sorted by popularity (i.e. number of unique IIDs). We focus on the top
50 manufacturers as these are responsible for more than 99.1% of all IIDs. A closer
investigation shows that 6 out of the top 10 are CPE manufacturers. The rest in
the top 10 are IoT, smart TV, mobile devices, home appliances, and data storage
manufacturers.

Interestingly, the number of covered /56 prefixes or even /64 ones is almost identical
to the number of IIDs in most cases. This means that it is expected to be one device
from each manufacturer in each /56 or /64 in our dataset. A striking difference is
the case of CPEs, where the number of /56 prefixes is substantially lower than the
/64 prefixes and the corresponding IIDs. We attribute this to two reasons. First, the

88

6.4 Privacy Violations at the Edge

WAN (upstream-facing) interfaces of the CPEs in the ISP typically do not share the
same /56 prefix as the devices at home, i.e., the periphery prefix is different from the
end-user prefix shown in Figure 6.1. We confirm this with multiple users of the ISP.
Second, the IPv6 address of the WAN interface of CPEs are concentrated within a
relatively small number of prefixes that it seems the ISP uses for exactly this purpose.
Thus, in our methodology, the IPv6 address of the CPE is not sufficient to track the
devices at home. On the other hand, it is possible to use this information to defeat
the privacy of devices at home with active measurements [196].

Based on these insights, we re-estimate the number of affected prefixes by differenti-
ating between periphery subnets used by CPEs and end-user subnets used by devices
at home. We find that around 2.23M prefixes out of a total of 2.6M EUI-64 prefixes
are end-user prefixes. Therefore, about 19% of all 11.3M /56 prefixes are at risk of
privacy leakage.

6.4.3 EUI-64 Manufacturer Categorization

To understand what type of devices contribute the most to the leakage of users’ pri-
vacy due to EUI-64, we characterize the business model and products of the associated
manufacturers. We associate our OUIs to their manufacturers using The IEEE OUI
database [230], which contains details such as the name and address of the company
that registers an OUI. Depending on the manufacturer’s range and type of products,
it is possible to even determine a device’s type. For example, if we observe an OUI
registered by a company producing only wind turbines, the device generating the
traffic is likely a wind turbine. To this end, we manually visit the website of the top
100 manufacturers found by our method. We categorize their products into one or
multiple categories. We consider the following business types and any combinations:
IoT, computers, mobile devices, CPEs, part manufacturers, and network equipment
manufacturers (see Table 6.1 for a detailed description of each category). Some com-
panies produce generic products, e.g., network interface cards (NICs) installed on
many devices. In such cases, we mark their OUIs as Parts Manufacturers. Moreover,
if a company produces more than one product category, we assign its OUIs to all
those categories. Finally, we assign a weight to each manufacturer with the associ-
ated coverage of /56 prefixes. Then, we aggregate the weights for the manufacturers
of the same type.

As shown in Figure 6.4, around 39% of the prefixes that host EUI-64 devices con-
tain products from manufacturers that only produce IoT devices. The second most
popular category, which accounts for 32%, are devices by manufacturers active in
different product lines that include IoT devices, computers, and mobile devices. All
other categories account for 8% or less. Thus, the large majority of subscribers with
EUI-64 devices are IoTs or likely IoTs. To our surprise, a large number of subscribers
host computers, mobile phones, and other equipment that also uses EUI-64. Although
large vendors, e.g., Apple, by default enable privacy extensions in their products [231],
other popular vendors do not. This could be related to some operating systems not
enabling privacy extensions by default.

89

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

Category Description

IoT Manufacturers of internet-connected devices such as sensors,
smart TVs, home appliances, security cameras, alarms, smart
speakers, etc.

Computers Laptops, personal computers, and servers
Mobile Mobile phones and tables
CPE Devices supporting broadband technologies such DSL, cable mo-

dem, and 5G/4G hotspots.
Parts Manufacturer Network interface cards, CPUs, memory modules, motherboards,

WiFi modules, and chipsets that can be embedded into other
devices.

Network Equipment Routers, switches, access points, and firewalls.
Gaming Console Internet-connected devices primarily used for gaming.
Unknown Manufacturers that we were not able to find their website or were

not providing any information about the type of their products.
Virtual Machine Vendors that develop virtual machine and hypervisor software.

Table 6.1: Description of device categories.

Entertainment

NAS

Raspberry Pi

Smart Home

Wide-range

Parts Manufacturer

Home Appliance

Surveillance

Point of Sale

050
Percentage %

0

20

40

60

80

Pe
rc

en
ta

ge
 %

Figure 6.5: Composition of IoT-only manufacturers. The percentage corresponds to
the number of /56 prefixes.

90

6.4 Privacy Violations at the Edge

Manufacturer Type Description

Entertainment Manufacturer of smart TVs, over-the-top streaming devices
(OTTs), smart speakers, and network-connected media players.

Network Attached Storage Internet-connected devices used for storing data.
Smart Home devices such as smart plugs, light bulbs, door openers, alarms,

and thermostats.
Varied Manufacturers with a large portfolio of IoT devices that not only

includes all our categories but spans beyond them. For example,
robots, industrial devices, highly-specialized medical equipment,
etc.

Parts Manufacturer Chipsets, and modules tailored to be used specifically in IoT de-
vices, e.g., 3G/4G and Zigbee modules. Note, we tag a manufac-
turer in this category only if it explicitly states that it produces
IoT-specific modules and chipsets.

Home Appliance Washing machine, refrigerators, air conditioners, air purifiers, etc.
Surveillance Security cameras and related surveillance equipment.
Point of Sale Devices mostly used at retail stores for accepting payments.

Table 6.2: Description of IoT manufacturer categories.

6.4.4 EUI-64 Use Among IoT Devices

Next, we focus on the IoT devices that contribute the most to the leakage of users’
privacy. We take a conservative approach by only considering manufacturers which
exclusively produce IoT devices. We manually investigate their product line and
further categorize their products as follows: entertainment (that includes a smart TV,
voice assistants, streaming devices, media players), network attached storage (NAS),
Raspberry Pi, smart home equipment, IoT parts manufacturer, home appliances,
surveillance devices, point of sale devices, and varied products (that include multiple
categories). See Table 6.2 for a detailed description of these categories. As Figure 6.5
shows, the most popular category is entertainment IoT devices, which cover more
than 85% of all /56 prefixes with only IoT devices. In this category, we identify more
than 19 popular manufacturers. If this relatively small number of manufacturers had
adopted best common practices to enhance IPv6 privacy, EUI-64 privacy leaks could
have been substantially reduced.

However, even at the level of a manufacturer, it is possible that different products or
product versions have different behavior when it comes to privacy leakage. To assess
how common this is, we consider our dataset’s top contributor of EUI-64 IoT devices
(“manufacturer 1”). Using the methodology that we introduced and validated in our
previous chapter (See Chapter 5), we annotate the products of this IoT manufacturer
based on the contacted destination addresses. We utilize the destination information
to annotate the most popular IoT product of this manufacturer (“product A”), and
we also infer if a specific device uses EUI-64 or not, based on the IPv6 address.
In Figure 6.6, we show the cumulative unique number of IPv6 addresses for all the
products with EUI-64 of the manufacturer and the number of devices with product
A with and without EUI-64 with hourly updates. A first observation is that, as

91

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

10K

100K

1M

Ru
nu

p
of

 u
ni

qu
e

IP
v6

 a
dd

re
ss

es

IoT-Proto. Hosts (All)
IoT-Proto. Hosts (EUI-64)
IoT-Proto. Hosts (Non-EUI-64)
Manufacturer 1 - All Products (EUI-64)
Manufacturer 1 - Product A (EUI-64)
Manufacturer 1 - Product A (Non-EUI-64)

Figure 6.6: Prevalence of EUI-64 in IoT devices and a case study for a popular IoT
product. Note that the y-axis is log-scaled.

expected, within 24 hours, the number of IPv6 addresses that host the EUI-64 devices,
as well as the IIDs of this manufacturer, converge to around 1.2 million and 650k IPv6
addresses for the total and product A, respectively. The number of IPv6 addresses
and IIDs that do use and do not use EUI-64 is similar for product A. Even though
some of the devices belonging to product A have adopted IPv6 privacy extension,
either by updates or because of newer models, the majority of these devices still have
the potential to leak user privacy.

Unfortunately, it is not easy to generate signatures for all IoTs based on the visited
destinations because the IoT devices have to be purchased, and communication data
has to be collected in a lab over longer periods of time [232]. On the other hand, IoT-
specific protocols such as MQTT [233] are popular among many IoT manufacturers.
Indeed, we notice that port TCP/8883, i.e., the IANA-assigned port for MQTT, is
among the top 10 ports by our top manufacturers (see Figure 6.7 for a detailed view of
ports used by different manufacturers). Hence, we use this activity as a proxy to infer
what is the percentage of IoT devices that use EUI-64 vs. any other MQTT activity
that does not use EUI-64. In addition, we confirm that more than 95% of these
devices contact servers exclusively used for IoT cloud services [14, 15]. Therefore,
these devices are highly likely to be IoTs. Our analysis in Figure 6.6 shows that more
than 83% of the devices that communicate using the common IoT protocol MQTT
are also using EUI-64. This is another indicator of the rampant privacy-violating
practice of using EUI-64 addresses among IoT devices.

92

6.4 Privacy Violations at the Edge

I I* I* I* I* I* I I I I I I* I* I* I* I I I I I I I* I* I I I*

1 5 10 15 20 25 30 35 40 45 50
Top 50 OUIs(Bottom x-axis) I: IoT, I*: IoT and other products (Top x-axis)

TCP/443 (Web)
TCP/80 (Web)

UDP/443 (Web)
ICMPv6

UDP/123 (NTP)
UDP/53 (DNS)

TCP/5228 (GooglePlay1)
TCP/8883 (MQTT)

TCP/53 (DNS)
TCP/5222 (XMPP)
TCP/993 (IMAPS)

TCP/81
GRE

TCP/8080
UDP/5060

UDP/6881 (SIP)
UDP/51413

TCP/5938
UDP/50000

TCP/995 (POP3S)

1 10 100 1K 10K 100K
Unique /56 prefixes

Figure 6.7: Heatmap showing used application ports for the top 50 OUIs. ¹The
Google Play port is not officially registered with IANA.

6.4.5 Traffic Profile by Manufacturer

Figure 6.7 shows the popularity among the top 20 protocols utilized by the top
50 manufacturer devices that use EUI-64. These devices utilize protocols that are
also popular for other devices, like laptops, smartphones, etc., that may use privacy
extensions. Thus, it is possible that devices using EUI-64 and ones that do not use
EUI-64 contact the same CDNs (Web on ports 80 and 443), applications (Google
play updates on port 5228 [234], MQTT on port 8883), or other services (NTP on
port 123, DNS on port 53).

6.4.6 Analysis of Non-EUI-64 IPv6 Addresses

Non-EUI-64 addresses can be privacy extension addresses, addresses assigned via
DHCPv6, or also statically assigned addresses. In order to understand how many
of the non-EUI-64 addresses are indeed privacy extensions addresses, we analyze the
interface identifier (IID) of all non-EUI-64 addresses. We use the Hamming weight,
i.e. the number of bits set to ‘1’, to analyze the random nature of IIDs. In completely
random 64-bit IIDs, i.e. the presence of privacy extensions, we would expect exactly
half of the bits to be set to ‘1’. Moreover, the central limit theorem states that the
sum of those independent IID Hamming weight distributions tends toward a normal
distribution. In Figure 6.8 we show the Hamming weight distribution of these IIDs,
and the normal distribution shifted one bit to the left due to the universal/local bit.
As can be seen, the non-EUI-64 Hamming weight distribution perfectly matches the
normal distribution. Consequently, non-EUI-64 addresses in our dataset are, in fact,
privacy extension addresses.

93

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

0 10 20 30 40 50 60
Hamming Weight

0

2

4

6

8

10

Fr
eq

ue
nc

y(
%

)

(31.5, 15.75)
Non-EUI-64

Figure 6.8: Hamming weight distribution of non-EUI-64 IIDs.

6.4.7 Collateral Privacy Leakage

In this section, we turn our attention to the popularity of EUI-64 devices in end-user
prefixes. As shown in Figure 6.9, we typically only find one or two EUI-64 devices
per end-user prefix. Indeed, more than 90% of end-user prefixes that host both EUI-
64 and non-EUI-64 devices, i.e., are dual-type prefixes, have two or fewer EUI-64
devices. Only about 1% of dual-type prefixes host more than five EUI-64 devices.
Recall, from Figure 6.2, more than 93% of all end-user prefixes with EUI-64 devices
also host non-EUI-64 devices.

Also, in Figure 6.9, we see that number of non-EUI-64 addresses in dual-type prefixes
is larger than the number of EUI-64 addresses. However, a single EUI-64 device is
sufficient to leak user privacy to a third party if both this device and a non-EUI-
64 device contact the same destination. To understand how probable this collateral
privacy leakage is, first, we analyze the popular applications that are contacted by
EUI-64 devices. Our analysis shows that these devices contact popular applications,
e.g., Web (port 443, 80), DNS (port 53), NTP (port 123). For details about the
popularity of ports for the top EUI-64 manufacturers, we refer to Figure 6.7. This is
alarming, as other devices that use IPv6 privacy extensions also contact these ports.
To estimate the collateral damage, we count the number of dual-type prefixes where
EUI-64 and non-EUI-64 devices contact the same third-party provider. Figure 6.10
shows the number of end-user dual-type prefixes which can be tracked over time
by common hypergiants [235]. We find that in total, two million end-user prefixes
(around 17% of the total end-user prefixes) are affected by this collateral privacy leak-
age, with the top hypergiants, i.e., HG1, HG2, and HG3, being able to longitudinally
de-anonymize prefix rotation efforts by the ISP. Alarmingly, users do not even need
to log in or visit the websites of these hypergiants to be tracked. Tracking can simply
happen by accessing one of their services, e.g., loading ads or static files. Some of

94

6.5 Discussion

Figure 6.9: IPs in prefixes with both EUI-64 and non-EUI-64 IPs, i.e. dual-type
prefixes. The number of non-EUI-64, EUI-64, and both types of IPs in
dual-type prefixes. The X-axis is log-scaled.

these hypergiants run popular public DNS services and online advertising platforms,
making them attractive as a destination. A recent study also shows that services
such as NTP can collect a vast number of IPv6 addresses [229], thus, breaking IPv6
privacy when sufficient conditions are in place, as we describe in our methodology (cf.
Section 6.2). We note that this form of tracking can not only be facilitated by hyper-
giants but also at major aggregation points in the network, such as peering locations,
Internet exchange points, transit providers, and large data centers.

6.5 Discussion

Vendor Self-regulation: Hardware vendors should adequately test their products
and make every effort to protect the privacy of their consumers, as currently, there
is a gap in legislation regarding IPv6 privacy. This includes all parties involved,
from chip manufacturers to product integrators, software companies, and ISPs. For
software companies, e.g., operating system distributors, it is important to enable
IPv6 privacy extensions by default. Unfortunately, many Linux distributions do not
activate privacy extensions by default at the time of writing. Products using Linux
derivatives in their software likely unknowingly risk their users’ privacy. This could
be related to the fact that the original privacy extensions specification [194] contained
a recommendation to deactivate them by default. The current standard [195] does
not contain this recommendation anymore. We, therefore, recommend that all IPv6-
capable software stacks enable IPv6 privacy extensions by default. We are in contact
with hardware vendors to make them aware of this issue.

95

Chapter 6 IoT Devices: A Case Study on Leaking Users’ Privacy

All HG1 HG2 HG3 HG4 HG5 HG6 HG7 HG8 HG9 HG10
Top hypergiants

1

10

100

1K

10K

100K

1M

Le
ak

ed
 /5

6
Pr

ef
ix

es

Figure 6.10: Per hypergiant number of /56 prefixes vulnerable to privacy. Each of
these prefixes contains at least one EUI-64 address and one non-EUI-
64 address.

Privacy Badges: The average user is not a privacy expert when purchasing or
operating smart home appliances or other Internet-connected devices. Although the
end-user may be aware of privacy risks when using such devices, we can not expect
end-users to perform experiments to validate which devices use privacy extensions
and which do not. The consumer unions and regulators, e.g., the FCC and FTC in
the US and the European Commission in the EU, could require vendors to certify
their products for IPv6 privacy compliance. These badges could affirm a product’s
compliance with the relevant future legislation, similar to other certifications, e.g.,
health, safety, and environmental protection standards [236].

The Role of the ISP: ISPs should continuously improve the privacy that they pro-
vide to their customers and could also inform them about potentially privacy-risky
products in the market and their home network upon customer request. Another
possibility would be to introduce a NAT in ISP IPv6 client networks. This would,
however, break the end-to-end principle—a primary design goal of IPv6 [237]. There-
fore, we refrain from recommending NAT as a practical workaround. Finally, ISPs
should also check CPEs for privacy risks before shipping them massively to their
customers.

6.6 Chapter Summary

In this chapter, we investigated how millions of deployed devices can affect the privacy
of a large number of users at an ISP. We conducted a case study on IPv6 subscribers
and showed a new way to defeat IPv6 privacy even when the ISP does prefix ro-

96

6.6 Chapter Summary

tation and all devices except one at subscriber’s private network use IPv6 privacy
extensions.

We showed that even if all devices in an end-user prefix use privacy extensions, one
single device with EUI-64 is enough to be used as an anchor to track them. Our
analysis revealed that up to 19% of our subscribers could face this privacy leakage.
Third parties such as hypergiants, network traffic aggregators (Internet exchange
point, upstream providers), or service providers (e.g., NTP, DNS providers) receiving
connections from devices at the same home can potentially track up to 17% of our
subscribers. We showed that IoT devices are the largest contributors to this privacy
leakage and, to a lesser extent, personal computers and mobile devices. We pro-
posed that vendors self-regulate and enable privacy extensions and that regulatory
intervention is necessary to protect users’ privacy.

97

7
IoT Backend Servers: A Deep Dive into

Backend Providers

In previous chapters, we focused on the IoT devices component of the IoT ecosystem.
In this chapter, we focus on the IoT backend servers. Specifically, we characterize the
infrastructure and traffic patterns of top IoT backend providers. These companies sell
IoT backend server infrastructure and related services to the users. We characterize
their deployment strategies, security incidents and traffic patterns observed in our
ISP.

Although IoT devices offer increasingly complex and reach applications, many can
not independently execute all parts of these applications. Many IoT devices lack
the required compute, memory, and energy resources for computationally demanding
applications or additional data; thus, it is common to offload part of the application
to a backend in the “cloud”. For example, applications that rely on machine learning
are often easier to operate in the cloud, which is computationally more powerful and
has readily available machine learning libraries [238, 239], rather than on the IoT
device itself. A low-cost IoT camera typically streams its video to the cloud, where
the main computation takes place, e.g., to identify suspicious activity and trigger an
alarm in real-time. Moreover, many companies that use IoT devices commercially,
e.g., within a production line or for logistics, collect all data in the cloud for ana-
lytics and operational decisions [240]. Thus, these clouds act as the backend of IoT
applications.

IoT devices also lack the storage required, e.g., for content-centric applications. Thus,
such IoT devices need IoT backend servers to download or upload content required
by the application. For example, content recommendations require the user’s profile
and merge it against the available content [241], which may not be possible on the
IoT device itself. Moreover, IoT device security and functionality often depend on
an IoT backend. One prominent example is software updates—many IoT devices
periodically check if software updates are available. Other IoT vendors or application
providers push notifications to the IoTs when such updates are available.

As the number of deployed IoTs and their functionality increases rapidly, the demands
for the IoT backend–in terms of capabilities and traffic–also increase. During the last
years, we have observed a shift toward building special-purpose clouds to support
IoT applications and cope with the increasing demand. Recently, the big technology
giants, such as Amazon [181], Google [242], and Microsoft [16] started to offer IoT

99

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

IoT Backend
 Provider

Internet-facing Server
(HTTP/MQTT…) IoT Devices

Internal
processing/storage

IoT Traffic
via Internet

Internal
IoT Traffic

Figure 7.1: IoT backend provider architecture.

backend solutions as-a-service. Such companies are IoT backend providers and en-
able third-party IoT application providers to scale up and deliver their solutions to
potentially billions of IoTs deployed around the globe.

Despite the critical role that these IoT backend providers play in the operation and
security of IoT applications [11, 40, 137, 243], little is known about their locations,
strategies, and volume share. Indeed, much of the work in the IoT area has focused on
the inference of IoT clients [27, 39, 232] or general-purpose cloud providers or content
delivery networks [197, 244, 245] that may also support IoT services. In this chapter,
we turn our attention to the IoT backend providers. We develop new methods to
identify their footprints and gain insights into their modus operandi.

Scope of the study: Our study was curiosity-driven, and we tried to understand
the evolving IoT backend ecosystem to inform future studies by computer scientists,
economists, and policymakers. As we are not aware of the companies’ business strate-
gies, we do not take a position regarding their deployment decisions and operation.
Rather, we characterize the current state of the IoT ecosystem. This study was not
a head-to-head comparison of different and possibly competing IoT companies.

7.1 Scenario and Related Work

In this section, we first describe the setting of our measurement study and introduce
terminology. Then, we summarize related work.

100

7.2 Methodology

7.1.1 IoT Backend Providers

Today, many of the IoT vendors [246–249], technology giants [242, 250–254], and
cloud providers [16, 181] offer sophisticated IoT platform solutions. These solutions
allow developers to deploy new services, support existing applications, collect data,
or remotely manage and configure IoT devices. Typically, these IoT platforms have
three major components: (i) software/hardware on the IoT device, (ii) Internet-
facing gateway servers, and (iii) the internal storage/processing systems, e.g., for
machine learning. Figure 7.1 depict the main components of a generic IoT platform.
In this chapter, we identify and characterize the public part of IoT platforms, i.e.,
the Internet-facing gateways, that we refer to as IoT backend, see Figure 7.1. IoT
backends facilitate data exchange between IoT devices and internal systems. We refer
to companies that operate such infrastructures as IoT backend providers.

Note that IoT platforms are sophisticated entities. Thus, the focus of our study is
their publicly announced IPs—the gateways between the IoT devices and the internal
systems of the IoT platforms. Thus, the following aspects are out of scope: (i) the
software/hardware installed on the IoT devices, (ii) internal processing/storage sys-
tems of IoT platforms, in particular, since these are typically not publicly accessible,
and (iii) private interconnections between cloud providers and IoT platforms [255].

7.1.2 Related Work

In Chapter 3, we provided an overview of studies on IoT backend servers. We high-
lighted the need for further studies investigating the IoT backend servers. To this
end, we are aware of a small number of studies that focus on IoT backend providers,
whereby their main focus is also on security. Alrawi et al. [40] perform a security
evaluation of home-based IoT deployments and highlight the need to understand IoT
platforms, i.e., IoT backend providers. He et al. [137] develop fingerprinting tech-
niques to classify traffic exchanged with the cloud as IoT-related or non-IoT-related
traffic. A study by Zhou et al. [243] investigates five popular IoT platforms that enable
smart home IoT applications. The study shows that these platforms are vulnerable
to a number of remote attacks, including device substitution, device hijacking, device
denial of service, illegal device occupation, and firmware theft. Jia et al. [11] report
on the vulnerabilities of defense mechanisms used by popular IoT platforms for IoT-
specific protocols, e.g., MQTT. We note that none of the prior works characterizes
IoT backend provider footprints or their traffic flows.

7.2 Methodology

In this section, we discuss how we use a diverse set of sources, including documenta-
tion by IoT providers, active and passive DNS measurements, and IPv4/IPv6 scans
to identify the set of backend IPs of each IoT backend provider, see Figure 7.2.

101

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

Identification of IoT-Domains and IPs 7.2

 IoT Platform
Documentations Censys (IPv4)

Building Patterns 7.2.2

Domain
Regexes &
Patterns

Custom
Scan (IPv6)

Passive DNS:
DNSDB

Active DNS
Resolution

List of IoT
IPv4 and IPv6

Addresses

TLS Certificates 7.2.3

Passive and Active DNS 7.2.3

Validation 7.2.4

DNSDB &
 Manual Inspection

[.*]
1.x.x.x/32
2::x.x.x/96

Outcome

Figure 7.2: Our methodology to infer IoT backends’ footprint.

7.2.1 Selection of IoT Backend Providers and Study Periods

To compile a list of IoT backend providers, we consider the popular ones that were
mentioned in previous studies [11]. We also expand this list by considering IoT
backends operated by other major manufacturers, e.g., Cisco, Huawei, and Siemens,
and cloud providers, e.g., Oracle, Tencent, and SAP. The complete list of the IoT
backend providers in our study is presented in Table 7.2. By some accounts, for
example, the IoT platform market research report by IoT analytics [256], these IoT
backend providers are in the top 17 in terms of estimated revenue and are responsible
for more than 90% of the total revenue.1 We focus on the week starting from February
28 at midnight and ending on March 7, 2022. We also collect preliminary results (only
IPv4) for December 3 to 10, 2021. Since the results are consistent, we focus on the
week starting in February for all but Section 7.5.1.

7.2.2 Identification of IoT Domain Patterns

For each IoT backend provider, we start by identifying the domain names and the
IP prefixes that are used for IoT backends. This information is often contained
in the publicly available documentation since IoT vendors and device programmers
need it. When a backend provider explicitly discloses their IPs, we use them for
validation (see Section 7.2.4). Typically, IoT backends domains follow a well-defined
form <subdomain>.<region>.<secondlevel-domain>, where:

• <subdomain> is either a domain of specific IoT services or a unique identifier
(e.g., a hash or the name of an IoT platform customer). Some companies such as
Alibaba, Tencent, and Bosch, also list the network protocol, e.g., MQTT, CoAP,
etc. [246, 257, 258].

1Note that these reports are not peer-reviewed and we use their reported IoT backend revenue only
for a rough estimation of their market share. We use neither the ranking nor or the revenue of
these companies in our methodology.

102

7.2 Methodology

• <region> indicates the full name or code of a city, a country, a region, or a
continent;

• <second-level-domain> is either the second-level domain name of a parent com-
pany of the IoT backend provider or a special domain name allocated for the IoT
backend.

However, some providers, e.g., Google, use the same fully qualified domain names
(FQDNs) for all of their customers. In such cases, we use these FQDNs. In Table 7.2
we report the 16 IoT platforms for which we were able to generate regular expressions
for their IoT backend domain names using the official documentation.

We leverage the structure of the IoT backend domain names to generate the regular
expressions. If the <subdomain> part of the IoT domain is a unique value, e.g., a
hash or a random string, we replace it with a regex wildcard. Similarly, we replace
the <region> part of the IoT domains with appropriate regex terms that match the
naming scheme of the different regions of the provider. Note that we also obtain the
naming schemes for the regions of the providers from their documentation. Finally,
we concatenate the regex terms with the <second-level-domain> to create the regular
expressions. See Table 7.1 for examples.

7.2.3 Identification of Server IPs

Next, we use the above regular expressions to identify the IPs of possible IoT backend
servers. Hereby, we rely on two complementary techniques. First, we take advantage
of the information available in TLS certificates. Second, we use passive DNS data,
namely, DNSDB [172, 175]. Finally, we complement the data with an additional
active DNS dataset.

TLS Certificates.

Censys [21] continuously scan the IPv4 address space. In addition to scanning for
open ports across a wide range of port numbers, it performs protocol-specific hand-
shakes to collect banners and provides metadata, e.g., geolocation; these results are
published daily. Motivated by the previous results [197], we use daily snapshots
matching our study period to identify certificates with domains that match our regu-
lar expressions. The corresponding IPs are IoT backend provider IPs. Note, we only
use certificates [259, 260] that is valid during the study period.

During our study period, Censys scans only include IPv4 addresses. To identify IPv6
addresses, we run active measurements using various IPv6 hitlists [208]. Our hitlists
include IPv6 addresses that showed activity for popular IoT ports, i.e., 443 (HTTPS),
8883 (MQTT), 1883 (MQTT), and 5671 (AMQP). We add support for these IoT
protocols to ZGrab2 [261] and we use it to collect TLS certificates from these IPv6
addresses. We perform this data collection from a server located in Europe. For a
discussion on ethical considerations, we refer to Section 3.6.1.

DNS. We complement the above data with DNS data because scanning services
typically only download the default certificates. In some cases, scanning services may

103

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

Provider
Name

Data
Source

Api Type Regular Expression/Query

Huawei DNSDB Flexible
Search

.\.(iot-(coaps|mqtts|https|amqps|api|da)\.).+\.myhuaweicloud\.com\.$/A

Amazon DNSDB Flexible
Search

(.+)(\.iot\.)([[:alnum:]]+(-
[[:alnum:]]+)+)?(\.amazonaws\.com\.$)/A

Oracle DNSDB Flexible
Search

(.+\.|∧)(iot\.)([[:alnum:]]+(-
[[:alnum:]]+)∗\.)?(oraclecloud\.com\.$)/A

Baidu DNSDB Flexible
Search

.\.(iot\.)([[:alnum:]]+(-
[[:alnum:]]+)∗\.)?(baidubce\.com\.$)/A

Siemens DNSDB Flexible
Search

.(\.eu1\.mindsphere\.io\.$)/A

Sierra
Wireless

DNSDB Flexible
Search

(.+\.|∧)(na\.airvantage\.net\.$)/A

Bosch DNSDB Flexible
Search

(.+\.|∧)(bosch-iot-hub.com\.$)/A

IBM DNSDB Flexible
Search

(.+\.|∧)(internetofthings\.ibmcloud.com\.$)/A

Mi-
crosoft

DNSDB Flexible
Search

(.+\.|∧)(azure-devices\.net\.$)/A

Tencent DNSDB Flexible
Search

(.+\.|∧)(tencentdevices\.com\.$)/A

Tencent DNSDB Basic Search rrset/name/∗.tencentdevices.com./A
Google DNSDB Basic Search rrset/name/mqtt.googleapis.com/A
Cisco DNSDB Basic Search rrset/name/∗.ciscokinetic.io./A
Amazon Censys String Search ∗.iot.us-east-2.amazonaws.com
Amazon Censys String Search ∗.iot.us-east-1.amazonaws.com
Amazon Censys String Search ∗.iot.us-west-1.amazonaws.com
Amazon Censys String Search ∗.iot.us-west-2.amazonaws.com
Huawei Censys String Search ∗.iot-mqtts.cn-north-4.myhuaweicloud.com
Alibaba Censys String Search ∗.iot-amqp.cn-shanghai.aliyuncs.com
Alibaba Censys String Search ∗.iot-as-http.cn-shanghai.aliyuncs.com
SAP Censys String Search ∗.iot.sap

Table 7.1: An excerpt, less than %5, of regular expressions and queries for a subset of IoT
Backend providers.

not even be able to download the certificates, i.e., if the IoT backend provider (e.g.,
Google) requires to supply the domain name via Server Name Indication (SNI) header.
In addition, other IoT backend providers such as Amazon, require the installation of
a client certificate, in particular, for IoT protocols. In the absence of this certificate,
the TLS handshake will fail.

DNS is another source of data for mapping domain names to IPs. DNSDB is a
passive DNS database that contains historical DNS queries and replies for both IPv4
and IPv6 from multiple resolvers around the globe. We choose DNSDB as it supports
regular expressions and time-range queries. For each IoT platform, we use DNSDB to
collect all IPv4/IPv6 addresses in the response for queries where (i) the domain name
matches the regular expressions for the IoT platform, and (ii) the query was issued

104

7.2 Methodology

within our study period. In addition, during our study period, we also performed
daily active DNS resolutions for all domains identified via DNSDB. To perform these
resolutions, we used three locations: two in Europe and one in the United States, see
Section 3.6.2 for ethical considerations. Compared to a single location, using three
vantage points increases our IP address coverage by ≈ 17%.

7.2.4 Validation of Server IPs

At this point, we have identified IPs related to IoT backend services. However, we
do not know if they are used exclusively for IoT services or if they also host other
services, e.g., Web services. In addition, we validate the accuracy and coverage of
discovered IP addresses against ground truth for three IoT backend providers.

Shared vs. dedicated IPs: To identify IP addresses in our candidate sets that
also provide services unrelated to IoT, we use a methodology similar to the one by
Saidi et al. [232] and Iordanou et al. [174]. For each candidate IP, we use DNSDB
to identify all the domain names that resolve to that particular IP. Next, we count
the number of domains that do not match the IoT domain pattern yet, map to the
IP. If this count exceeds a threshold, we assume it is not exclusively used to offer
IoT backend services. Through this process, we detect IoT backend providers using
CDNs or hosting non-IoT services. While choosing the threshold, for example, we
discover that Google uses two sets of IPs: one exclusively for IoT MQTT traffic and
another for HTTPS traffic that is also used for other Google services. In our IoT
traffic flow analysis (Section 7.4) we focus only on those parts of the infrastructure
that are exclusively used for IoT.

Validation against ground truth: While not all IoT backend providers publicly
share their used IP ranges, three do this at least partially. Our methodology identi-
fied all the publicly listed IP addresses for Cisco and Siemens. Microsoft lists network
prefixes for its IoT backend service, which correspond to more than 12,000 IP ad-
dresses. Using our methodology, we identify 484 of these IPs. All of them are within
the listed prefixes. We conduct a study using traffic data from a large European ISP,
see Section 7.4, and check the traffic to the listed prefixes. We only identify 52 active
IPs. Out of these, our methodology misses only 4 IPs, leading to an underestimation
of the IoT traffic volume of less than 1%.

7.2.5 Contribution of Each Dataset

Using as baseline the data collected on the Feb. 28, 2022, in Figure 7.3 we show the
contribution of each data source grouped per IoT provider. The plot includes both
IPv4 and IPv6 backends—the bar for IPv6 is shaded. We distinguish IPs extracted
from “TLS Certificates” (discovered via Censys), our IPv6 scans, “Passive DNS”
(discovered via DNSDB), “Active DNS” (identified via our active resolutions), and
“Multiple Sources” (addresses discovered by at least two methods).

105

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

Amazon
Alibaba

Baidu
Bosch

Cisco
FujitsuGoogle

Huawei IBM
Microsoft

Oracle PTC SAP

Sierra Wireless
Siemens

Tencent

IoT Backend Provider

0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

 o
f I

Pv
4/

IP
v6

8.6
2K

13
4

60 16
2

20 5 21
9

26 25
0

48
4

50
2

91
7

3.0
3K

12 11
2

534.6
8K

2 1 90 13 46 2

Data Source
Censys/Active Meas. Passive DNS DNS Res. Multiple Sources IPv6

Figure 7.3: Fraction and # of IPs per provider per source (left bar IPv4, right bar IPv6).

First, we notice that some of the IoT backend providers only support IPv4 addresses.
Second, there is no consistency regarding a preferred data source. For example, when
using only Censys data, we detect all IPs of the IoT backends for Microsoft, SAP,
and Tencent. However, we identify less than 2% of the Google IPs. The reason for
this is that Google is using TLS SNI. Thus, a majority of Google’s IoT platform IPs
are discovered using passive DNS. The contribution of passive DNS is also significant
(more than 5%) for Siemens, Alibaba, and Sierra Wireless (IPv6). Our active DNS
resolution is able to discover close to 20% of Alibaba (IPv4), Amazon AWS, Huawei,
Bosch, Cisco, IBM, PTC, Siemens, and Sierra Wireless, as well the few Alibaba IPv6
server addresses. For the rest of this chapter, except otherwise noted, we use the
combined results of all techniques.

7.2.6 Limitations

The first limitation of our methodology relates to the stability of the IoT domain
patterns. IoT backend providers constantly update their service infrastructure, so
the patterns need to be regularly updated. Moreover, not all providers publicly
release their documentation. When the documentation is not available; we do not
try to identify those IPs due to ethical concerns.

The second limitation is that some providers might not use TLS for their services [262].
This might heavily impact the usefulness of TLS scans, such as the Censys dataset.
This limitation motivated us to augment the scan data with DNS data. Still, even
DNSDB has its own limitations, e.g., it does not have full coverage of all DNS re-
quests. Third, we leverage passive traffic data from an ISP in Europe to analyze IoT
traffic in the wild. Naturally, the vantage point’s location might influence the overall
IoT traffic that we see.

106

7.3 IoT Backend Characterization

Amazon
Alibaba

Baidu
Bosch

Cisco
FujitsuGoogle

Huawei IBM
Microsoft

Oracle PTC SAP

Sierra Wireless
Siemens

Tencent

IoT Backend Provider

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f I
Ps

Ma
r 1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

D-
1

Ma
r 3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

D-
3

Ma
r 6

W W W W W W W W W W W W W W W

Feb-28(Reference) only Current snapshot only Reference and current snapshot

Figure 7.4: IoT backend: Stability of server IP set.

Finally, our ability to discover IPv6 addresses is directly influenced by the coverage
of the chosen IPv6 hitlists.

7.3 IoT Backend Characterization

In this section, we provide insights regarding the deployment strategies of IoT backend
providers for their Internet-facing gateways that enable the communication between
the IoT devices and the backends’ internal systems.

7.3.1 Stability of IoT Backends

Before we dive into the characterization of the IoT backend deployments, we evaluate
how stable the set of discovered IoT backend server IPs—the gateways—is across time.
This gives us information on how frequently we have to repeat our measurements.
Using our weekly dataset, we, in Figure 7.4, we highlight changes in the daily IoT
backend server addresses per IoT backend. Our reference date is the first day, Feb.
28, 2022. The first bar for each backend compares it to the next day, namely, March
1. We distinguish between IPs that are in both sets (green bar), that are newly
discovered (red), and those that are only in the first set (blue). The other two bars
are for March 3 and March 6.

We find hardly any change between the first two days. For most IoT backends, there
is hardly any change within the week. This indicates that a weekly measurement
suffices. However, there are some exceptions, i.e., Amazon AWS, Bosch, SAP, and
Siemens. This is because these at least partially rely on shared public cloud in-
frastructure„ as we show later. Their IP set is more volatile, e.g., due to service
scaling or service migration. However, this is not necessarily the case as some cloud

107

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

Backend Provider
Name [Source]

#
AS

IPv4
/24 (IPv6
/56)

#
Lo-
ca-
tions

#
Coun-
tries

Protocols (Ports) Stra-
tegy

Alibaba IoT [253,
257, 264]

2 73 (2) 27 13 MQTT(1883), HTTPS(443),
CoAP(5682)

DI

Amazon IoT [47,
181, 265]

4 9,000 (20) 18 15
+Any-

cast

MQTT(8883, 443), HTTPS(443,
8443)

DI

Baidu IoT [254,
266, 267]

2 26 (1) 2 1 MQTT(1883, 1884, 443), HTTP(80,
443), CoAP(5682, 5683)

DI

Bosch IoT
Hub[246]

1 290 (0) 1 1 MQTT(8883), HTTPS(443),
AMQP(5671), CoAP(5684)

PR

Cisco Kinetic[268,
269]

2 14 (0) 4 2 MQTT(8883, 443), TCP(9123, 9124) PR

Fujitsu IoT [247] 1 2 (0) 2 1 MQTT(8883), HTTPS(443) DI
Google IoT
core[242, 270]

1 114 (11) 77 14 MQTT(8883,443), HTTPS(443) DI

Huawei IoT[249] 1 26 (0) 2 1 MQTT(8883, 443), HTTPS(8943),
CoAP(NA)

DI

IBM IoT [250,
271]

2 116 (0) 12 8 MQTT(8883, 1883),
HTTP(S)(80,443)

DI

Microsoft Azure
IoT Hub[16, 272]

1 282 (0) 39 16 MQTT(8883), HTTPS(443),
AQMP(5671),

DI

Oracle IoT[251,
273]

3 67 (0) 10 8 MQTT(8883), HTTPS(443) DI+PR

PTC Thing-
Worx[274]

3 881 (0) 10 8 Protocol Agnostic PR

SAP IoT[252, 275] 6 2.929 (0) 7 5 MQTT(8883), HTTPS(443) PR
Siemens Mind-
sphere [248, 276]

4 126 (1) 3 3
+Any-

cast

MQTT(8883), HTTPS(443), OPC-
UA

PR

Sierra Wireless
[277–279]

4 7 (2) 4 4 MQTT(8883,1883),
HTTP(S)(80,443), CoAP(5682,5686)

PR

Tencent IoT [258,
280]

5 47 (2) 5 4 MQTT(8883,1883),
HTTP(S)(80,443), CoAP(5684)

DI

Table 7.2: Selected IoT backends (alphabetical order) and their base characteristics for the
study period, Feb. 28–Mar. 7, 2022. Dedicated Infrastructure (DI), Public Cloud
Resources, or CDN (PR). We have released the set of domain patterns under
the following link [281]

providers [263] offer static IPs. As such, the IoT backend IP usage also depends on
the IoT company strategy. We use all IPs discovered during the weekly study period
for the remainder of this section.

108

7.3 IoT Backend Characterization

7.3.2 Footprint

For the following reasons, it may be important for an IoT backend provider to have
a presence in multiple physical locations: First, having a footprint in multiple data
centers minimizes the impact of outages, physical disasters, or attacks on a subset of
them. Second, datacenters from different regions are useful for coping with regional
demands and can improve application performance. Third, it is increasingly impor-
tant that data centers for IoT backends are available in different regions to comply
with regulations regarding transferring, processing, and storing data. For example, in
the EU, the General Data Protection Regulation (GDPR) poses constraints regarding
data leaving EU borders.

We use a number of heuristics to infer the footprint of each IoT backend. Many
of the IoT backends, e.g., Google [282] and Baidu [267], encode the location in the
domain name. Typically they use city level, e.g., two or three letters, or airport codes.
Others, e.g., Amazon [47], Alibaba [283], and Huawei [284], use region codes in the
domain name that can be mapped to cities using their documentation. Using such
hints, we are able to determine the footprint of all IoT backends, except Oracle and a
small subset of IPs. For these, we use multiple sources, including the location of the
prefix announcements from Hurricane Electric, Censys geolocation information, and
pings from traceroute looking glasses to locate each IoT backend server IP. Typically,
all alternatives point to the same location. In less than 7% of cases, these sources
report different locations, in which case we use the majority vote.

The results, see Table 7.2, show that most IoT backend providers use multiple loca-
tions in at least two countries. However, there are exceptions: Baidu’s and Huawei’s
backends are located only in China. This is surprising given that Baidu and Huawei
operate data centers worldwide. Still, our extensive analysis allows no other conclu-
sion.

Bosch offers a diverse range of IoT-related products, including machine learning,
data analysis, and device management. These components rely on multiple public
cloud providers in multiple locations around the globe. Each component has to be
purchased individually. The Bosch IoT Hub component is the only one that offers
a frontend for IoT devices. Therefore, we restrict our study to the locations and
affiliated servers of the Bosch IoT hub. It has a single location.

IoT backend providers use different deployment strategies ranging from using Dedi-
cated Infrastructure (DI) to Public Cloud Resources (PR).We say that an IoT backend
uses DI if all its identified IP addresses are announced by an autonomous system that
is managed by the backend. If the IP addresses are announced by a cloud provider or
CDN, we refer to it as PR. Of our 16 IoT backend providers, nine rely on dedicated
infrastructure while six rely on public cloud providers, i.e., PTC relies on the AWS
and Microsoft clouds, Siemens relies on AWS, Microsoft IoT services, as well as Al-
ibaba. Such diversity enables providers to improve their footprint and offer services
in many regions around the globe. The last IoT backend provider–Oracle–expands

109

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

his own dedicated infrastructure by leasing resources from Akamai (we label this as
DI+PR).

7.3.3 Network Diversity

First of all, we notice that the use of IPv6 is relatively low, and we can only discover
IPv6 IoT backend server addresses for only seven of the 16 IoT backend providers.
Hereby, Alibaba offers IPv6 only in China, and Microsoft explicitly states in its
documentation that it does not yet support IPv6. Overall, the number of discovered
addresses is significantly smaller for IPv6 than IPv4, see Table 7.2.

Network diversity, i.e., reachability of IoT backends via multiple ASes and/or prefix
diversity, is important to circumvent congestion, blocking, and network misconfigura-
tion to enable fast reroute and improve performance. We use the Routeviews Prefix
to AS mapping dataset from CAIDA [285] to map IP addresses to prefixes and AS
numbers. Our analysis shows that all IoT backend providers in our study use multi-
ple, in some cases, tens of prefix advertisements, typically from more than one AS.
Thus, we can expect that short-term routing or availability disruption leads to minor
service degradations. Indeed, given the many available IPs and prefixes, it should
be possible to use DNS to redirect IoT requests to available and well-performing IoT
backend servers. We revisit this hypothesis when studying a large-scale outage of one
of the largest cloud providers in Section 7.5.

Six IoT backend providers, namely Bosch, PTC, Siemens, SAP, Sierra Wireless, and
Cisco, rely on one or more public cloud providers. This enables them to cope with
the short-term unavailability of outages. Also, as mentioned earlier, Oracle uses its
own dedicated infrastructure as well as that of a CDN. At least two of the IoT back-
end providers, Amazon IoT and Siemens, also use anycast or, more specifically, the
Amazon Global Accelerator service [286]. Anycast services aim to map IoT requests
to servers close to the client and cope with disruptions. This highlights that IoT
backend providers care about reliability and diversity.

7.3.4 Protocol Support

In Table 7.2, we also report–per IoT backend provider–the supported protocols as
listed in their documentation. They all claim to support MQTT, an often used pro-
tocol for IoT messaging. The protocol is lightweight, follows the publish-subscribe
paradigm, and is designed for machine-to-machine communication. However, the IoT
backend providers use different MQTT ports. Some use the default unencrypted
MQTT port 1883. The majority uses the encrypted MQTT port 8883. Other
providers also use non-standard ports, i.e., non-IANA assigned to a protocol. For
example, for MQTT Baidu listens to port 1884. At least three IoT backends, i.e.,
Amazon, Baidu, and Google abused the secure Web port 443 for MQTT.

In addition, they often offer support for other IoT-specific protocols, including CoAP
and AMQP. The ports vary, e.g., include 5682 and 5684 for CoAP. Baidu supports

110

7.4 IoT Traffic Flows

CoAP requests on multiple ports, i.e., 5682 and 5683. AMQP is the least popular
protocol among our IoT backend providers and is offered on port 5671. We also
observe some application-specific protocols, e.g., Siemens offers OPC-UA, while PTC
offers a protocol agnostic communication platform. The majority of the IoT backend
providers also support Web protocols, namely HTTP on port 80 and/or HTTPS on
port 443.

We conclude that non-expectedIoT backend providers quite often use non expected
ports. Thus, purely probing the expected ports can be misleading. This is in line
with recent results that observed unexpected applications running on servers [20]. The
motivation for offering different ports even for the same IoT protocol, e.g., MQTT,
may be to circumvent port blocking. This is likely the reason why MQTT service is
offered at port 443 by some of the providers [270].

7.4 IoT Traffic Flows

So far, we have used our methodology to understand the footprint of the IoT backends.
Next, we use traffic information from a large European Internet Service Provider (ISP)
to study IoT traffic patterns.

7.4.1 Vantage Point

Our vantage point is a major European ISP offering residential Internet IPv4 and
IPv6 connectivity to more than fifteen million broadband subscriber lines. The ISP
uses NetFlow [50] to monitor the traffic flows at all border routers of its network,
using a consistent sampling rate across all routers. This data is needed to support
daily operations as well as network planning. For the ISP analysis, we anonymize all
IoT company names.

Study Periods. For our IoT traffic flow analysis, we match the study periods for
which we identify the footprint of the IoT platform providers, i.e., February 28 to
March 7, 2022. In addition, we do a focused study during an outage, see Section 7.5,
for December 3–10, 2021.

7.4.2 IoT Backend Platforms: Visibility

Our characterization of IoT backend providers has shown that they often rely on a
global footprint to offer their services globally. Our first analysis, thus, focuses on
the visibility of the IoT backend servers from our vantage point, i.e. the European
residential ISP.

Our first validation check is whether any servers are within the address space of the
residential ISP. This applies to none, which is expected as we study the traffic of
subscriber lines. Our next check is for IoT backend infrastructure visibility from our

111

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

10 100 1K
Scanner Threshold (log10)

25

26

27

28

29

30

Se
rv

er
 C

ov
er

ag
e

%

10

100

1K

10K
30K

Nu
m

 S
ca

nn
er

s (
lo

g1
0)

Figure 7.5: Scanner threshold vs. % IPv4 IoT backends (blue line, left y-axis) and
scanning subscriber lines (red line, right y-axis (log)).

vantage point, i.e., which fraction of the identified backend server IPs are contacted
by subscriber lines of the ISP. Hereby, we do not expect that all servers are contacted
as traffic localization, and other operational criteria within the IoT backends should
map the ISP subscriber lines to a subset of their servers.

Exclusion of Scanners–Global Visibility. However, before proceeding, we have
to exclude potential scanners within the ISP since their scan traffic may bias our
estimation of the visible part of the IoT backend infrastructure. Scanners typically
scan all or a substantial fraction of all IPv4 IPs, resp. IPv6 IPs of the IPv6 hitlist.
Therefore, a subscriber line with a scanner is expected to send traffic to all IoT
backend servers. Therefore, we exclude scanners from our analysis which is possible
as the ISP uses spoofing prevention according to BCP38 [138].

To identify scanners, we follow the method proposed by Richter et al. [287]. For
each day during our study period, we compute the fraction of IoT backend server
IPs that a subscriber line is contacting. A subscriber line is said to host a scanner
if it contacts more than a threshold of many of the server IPs. Figure 7.5 shows
the results both for server coverage as well as ISP subscriber lines with scanners for
February 28, 2022. More precisely, we show how this fraction changes as we increase
the strictness of our criteria for identifying scanners—the scanner threshold (x-axis).
Hereby, our minimum scanner threshold is 10 IoT backend server IPs—a very strict
selection criteria. We see that as we increase the scanner threshold, the number of
scanners (red line and right y-axis) decreases substantially. Yet, the percentage of
IoT backend servers that are visible does not increase drastically (blue line and left
y-axis).

We consider some baseline numbers: with a scanner threshold of 10, roughly 27% of
all identified IoT backend servers are visible while removing about 30k subscription
lines. Using a threshold of 100 leads to the removal of less than 800 subscriber lines
per day while resulting in visibility of IoT backend servers of approximately 28%.

112

7.4 IoT Traffic Flows

T1 T2 T3 T4 D1 D2 D3 D4 D5 D6 O1 O2 O3 O4 O5 O6
IoT Backend Provider

0%

20%

40%

60%

80%

100%

(%
) o

f S
er

ve
r I

Ps

Server IP Protocol
IPv4 IPv6

Figure 7.6: ISP vantage point: % of Server IPs per IoT backend platform (Scanner
threshold 100).

As households often deploy multiple IoT devices contacting 10 backend IoT IPs is
still reasonable, as underlined by the large number of subscriber lines. However, 100
server IPs are unlikely. As such, for the rest of the chapter, we use a scanner threshold
of 100, which results in a daily visibility of roughly 28% of the identified IoT backend
server IPs for IPv4 and 51% for IPv6 during our study period. Using this data, we
identify more than 2.32 million IPv4 and 202K IPv6 ISP subscriber lines with IoT
activity per day.

Visibility per IoT Backend Provider. Next, we investigate if the visibility of
IoT backend server IPs is uniform across IoT platform providers. In Figure 7.6 we
plot the percentage of visible servers for each platform for IPv4 as well as IPv6.
As expected, the visibility varies substantially across the IoT backend providers. For
most, it is relatively small, between 5% to 20%. As remote IoT backend servers should
not be contacted by subscription lines from a European residential ISP, this is to be
expected. Recall our insights from Section 7.4.7 about the locations of the discovered
IoT server IPs. Surprisingly, for two IoT backend providers, namely T1 and D3, we
observe around half of the discovered IoT backend server IPs. Moreover, for one IoT
backend provider, namely T2, almost all IoT backend server IPs are visible. This
provider is also among the top 4 popular providers. On the other hand, for two other
platform providers, namely O5 and O3, we hardly find any activity. Since they are
not focusing on the European residential market, we exclude them from our analysis
in this section.

7.4.3 ISP Subscriber Line Activity by IoT Backend Platform

We find that a substantial fraction of ISP subscriber lines contact IoT backend plat-
forms. This underlines that the residential ISP is a suitable vantage point.

ISP Subscriber Lines–Visibility by Data Source. While we know that our
different data sources increase the discovery of IoT platform server IPs, we do not yet
know how important this is for discovering IoT traffic. Thus, we check the necessity

113

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

T1 T2 T3 T4 D1 D2 D3 D4 D5 D6 O1 O2 O3 O4 O5 O6
IoT Backend Provider

0%

20%

40%

60%

80%

100%

De
cr

ea
se

 in
 v

isi
bl

e
Io

T
Su

bs
cr

ib
er

 li
ne

s %

Subscriber type
IPv4 IPv6

Figure 7.7: ISP vantage point–per IoT platform: % decrease in ISP IoT subscriber
lines by considering only TLS certificates.

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

5K

10K

50K

100K

500K

Su
bs

cr
ib

er
 li

ne
s (

Lo
g

10
)

Top 4 companies
T1 T2 T3 T4

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

100

1K

10K

100K

1M

Companies on Public Cloud(s)
D1 D2 D3 D4 D5

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

100

1K

10K

100K

1M

Other companies
O1 O2

Figure 7.8: ISP vantage point–per IoT platform: # of active subscriber lines.

of using different data sources, namely TLS certificates vs. passive and active DNS
data. For this, we plot, in Figure 7.7, the decrease in discovered subscriber lines with
IoT traffic when we rely only on TLS certificate information gathered by active IP
scans (the Censys data set). For some IoT platform providers, e.g., T4, D6, T2, and
D3, almost none of the subscription lines would have been detectable. Note that two
of these are providers that rely on SNI.

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

1M

5M

10M

20M

50M

100M

No
rm

al
ize

d
Tr

af
fic

 V
ol

um
e

(L
og

 1
0)

Top 4 companies
T1 T2 T3 T4

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

1K

10K

100K

1M

10M

100M

Companies on Public Cloud(s)
D1 D2 D3 D4 D5

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

1K

10K

100K

1M

10M

100M

Other companies
O1 O2

Figure 7.9: ISP vantage point–per IoT platform: Normalized total downstream traf-
fic volume.

114

7.4 IoT Traffic Flows

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

0

0.5

1

1.5

2

2.5

3
Tx

/R
x

By
te

s (
Ra

tio
)

Top 4 companies
T1 T2 T3 T4

0

1

2

3

Companies on Public Cloud(s)
D1 D2 D3 D4 D5

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

0

1

2

3

02-28 03-01 03-02 03-03 03-04 03-05 03-06 03-07
Datetime

0

0.5

1

1.5

2

2.5

3

Other companies
O1 O2

Figure 7.10: ISP vantage point–per IoT platform: Ratio of Downstream to Upstream
traffic.

ISP Subscriber Lines–Activity across Time. Next, we explore how ISP sub-
scriber line activity changes during our study, see Figure 7.8. It plots the hourly
number of subscriber lines for each IoT backend provider across the week. To plot
the subscriber line activity, we consider three subgroups of IoT backend providers,
namely, the top-4 per revenue, the ones that depend on cloud providers, and the
remaining ones. We only include those with at least 15 subscriber lines per hour.

Figure 7.8 (left) shows the activity of the top-4 IoT backend providers. We use a
light shading for the night–8 pm to 8 am local time–to help in identifying the time
of day effects. First, the level of subscriber line activity differs significantly—in fact,
by orders of magnitude. Some have a clear diurnal pattern, e.g., T3, while others,
e.g., T2, are more or less constant. We also observe that the peak time differs among
these IoT backend providers. The peak time for T1 and T4 is during prime time, i.e.,
between 6-10 pm, while for T3, it is constant during the day, i.e., between 8 am and
8 pm. We attribute this to the type of services that IoT devices offer and how often
they communicate with their IoT backend providers. For example, some IoT devices
are likely to be used at home for entertainment during prime time, while others offer
services that are used at any point in time.

Next, we move to those IoT backend providers that rely on the public clouds, see
Figure 7.8 (center). Again, we see a large difference in their usage across the board.
Moreover, their activity does not correlate to one of the platform providers (plot
not shown). Similar observations hold for the remaining IoT backend providers, see
Figure 7.8 (right).

7.4.4 IoT Backend Traffic

Next, we look at traffic levels. Here, we observe similar patterns as in the IoT sub-
scriber lines analysis, which is expected as many of the IoT applications are triggered
by subscriber lines activity.

IoT Backend Traffic–Downstream Volume. We find that the relative traffic vol-
ume level changes substantially, see Figure 7.9. It shows the normalized downstream
traffic volume for the same groups of IoT backend providers as before, namely, top 4,

115

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

T1 T2 T3 T4 D1 D2 D3 D4 D5 O1 O2
IoT Backend Provider

TCP/8883 (MQTTS)
TCP/443 (Web)

TCP/5671 (AMQP)
TCP/1883 (MQTT)

TCP/8443
UDP/5684 (CoAP)

TCP/80 (Web)
UDP/5686
UDP/3073

TCP/61616
UDP/30023
UDP/12289
UDP/19457

TCP/1884
Other

Po
rt

(P
ro

to
co

l)

0% 1% 2% 3% 4% 5% 10% 30% 50% 60% 70% 80% 90% 100%
% Normalized Traffic Volume of Provider

Figure 7.11: ISP vantage point–per IoT platform: % traffic volume per port.

public-cloud-dependent, and others. We notice that the traffic volume per subscriber
line differs substantially. On the one hand, even though the number of observed
subscriber lines differs by an order of magnitude for T1 and T3, their total traffic
levels are relatively close. On the other hand, even though T2 and T3 serve a similar
number of subscriber lines, their traffic volume differs by more than a magnitude.
This is because the traffic demands of IoT devices depend on the applications. Thus,
we conclude that the number of subscriber lines served by IoT backend providers is
not a good indicator for the downstream traffic volume level of the provider. This
holds for all IoT backend providers that we study.

IoT Backend Provider Traffic–Traffic Ratio. We also notice that IoT applica-
tions’ downstream and upstream traffic demands differ. Some IoT applications are
heavy-upstream, e.g., video surveillance, while others are heavy-downstream, e.g.,
online media streaming. This is reflected in the IoT backend traffic. In Figure 7.10,
we plot the ratio of downstream vs. upstream traffic for the IoT backend providers
of our study. Values above 1 indicate that the IoT backend provider sends more
traffic to the IoT devices than it receives. Our analysis highlights that IoT backend
providers differ. In all three groups, namely, top-4, public cloud dependent, and the
rest, we can find heavy downstream as well as heavy upstream ones. Indeed, there
is no particular pattern to it. The ratios range from less than 0.33 to more than 3,
which shows that the asymmetry in the downstream vs. upstream ratio is significant.
Moreover, we do not notice correlations between the ratios, the number of observed
subscriber lines, or the downstream traffic level.

7.4.5 IoT backend provider–Port Usage

Next, we explore which network ports the IoT devices are using. Are they relying
on general-purpose application layer network protocols such as HTTP or HTTPS,

116

7.4 IoT Traffic Flows

or are they using IoT-specific application protocols? Accordingly, Figure 7.11 shows
the application layer protocol mix as identified by IANA assigned port numbers for
each IoT backend provider, i.e., the percentage of traffic for each application protocol.
Again, there is no single pattern that describes all IoT backend providers.

Many utilize the popular Web secure ports, e.g., 443, typically over TCP. Its usage
varies from 5% up to 90%. IoT-specific protocols, e.g., MQTT, are also popular.
However, which MQTT port is used differs across IoT backend providers. IANA
assigns port 1883 for the non-secure version and port 8883 for MQTT over TLS.
However, recall, some IoT backend providers, as per their documentations, also offer
MQTT service over non-standard ports like 1884 or even 443. The reasons for serv-
ing MQTT over non-standard ports include reduction of attack surface by reducing
discovery probability via scans and circumvention of firewalls that block standard
MQTT.

We find that secure MQTT over its standard port is quite popular and used by more
than 50% of all studied IoT backend providers. Other popular IoT protocols include
CoAP and AMQP. Similar to MQTT, some providers offer CoAP over non-standard
ports, e.g., the neighboring ports 5686 and 5682. For UDP/5686, we do observe the
activity. For one provider, namely D4, we see that it exchanges substantial traffic
volume over port TCP/61616. This port number is the default port number of the
popular messaging software, Apache ActiveMQ [288], which processes messages sent
via IoT-specific protocols such as MQTT and AMQP. We further observe a number
of UDP ports above 10000 in use by various IoT backend providers.

Overall, this diverse port usage confirms previous insights [20] that port scanning and
protocol handshake do not suffice to uncover the IoT backend server infrastructure.
In addition, to capture IoT-related protocols, it is not sufficient to aggregate traffic
of IoT-specific protocols, as this misses a substantial part of the IoT traffic, e.g., the
one served using HTTP(s) ports.

7.4.6 Traffic Characteristics

We also investigate the characteristics of the traffic exchanged between subscriber
lines and IoT backend providers. This is an important test to validate that this
traffic is not generic Web traffic or video streaming of popular applications that can
be misinferred as IoT-related traffic.

In Figure 7.12a, we plot the empirical cumulative distribution function (ECDF) of the
estimated traffic exchanged in a day between a subscriber line and all the IoT backend
providers we consider in our study. We estimate the exchanged traffic considering
the sampling rate. We plot both the download and upload traffic exchanged, as some
applications may be download-dominant or upload-dominant. Our analysis shows
that for the vast majority (more than 99%) of the subscriber lines, both the upload
and download traffic exchanged with all the IoT providers is less than 10 MB per
day. This value is substantially lower than the reported traffic consumed by smart
TVs or residential users, which is no less than 1 GB per day [28, 289, 290]. Thus,

117

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

100KB 1MB 10MB100MB 1GB 10GB 100GB
Bytes, (log)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Upstream
Downstream

(a) Estimated traffic ex-
changed in a day between
a subscriber line and
all IoT backends in our
study.

100KB 1MB 10MB 100MB 1GB 10GB 100GB
Bytes, direction = downstream, (log)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

T1
T2
T3
T4
D1
D2
D3
D4
D5
O1
O2

(b) Estimated traffic ex-
changed in a day between
a subscriber line and each
IoT backend in our study.
In this plot, we consider
the download traffic per
subscriber line.

100KB 1MB 10MB 100MB 1GB 10GB 100GB
Bytes, direction = downstream, (log)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF TCP/8883(MQTTS)

TCP/443(HTTPS)
TCP/5671(AMQP)
TCP/1883(MQTT)
TCP/8443
UDP/5684(CoAPs)
TCP/80(HTTP)
Other

(c) Estimated traffic ex-
changed in a day between
a subscriber line and all
IoT backend providers
for popular ports. In
this plot, we consider
the download traffic per
subscriber line.

Figure 7.12: ISP vantage point: Traffic characteristics for traffic exchanged in a day between
a subscriber line and IoT backend providers or popular ports in our study.

we conclude that the traffic exchanged between subscriber lines and IoT providers is
unlikely to be general Web or popular application video traffic.

Then, we investigate if any of the IoT providers we consider in our study deviates
from the above mentioned behavior and offers general Web or popular video streaming
applications in the identified prefixes. In Figure 7.12b, we plot the empirical CDF for
the estimated traffic exchanged in a day between a subscriber line and each of the IoT
backends we consider in our study for the download traffic volume. Although there
are differences across IoT providers, the general observation is that the vast majority
of the exchanged traffic is relatively low, i.e., less than 10 MB per day. Thus, the IoT
backend servers for each of the IoT backend providers we consider in our study are
unlikely to be used for general Web or popular video traffic. Similar observations are
made when we analyze the upstream traffic.

Finally, we investigate if the traffic exchanged using specific ports indicates the ex-
change of heavy traffic. In Figure 7.12c we plot the traffic exchanged between sub-
scriber lines and IoT backend providers for the most popular ports in our study.
We consider the downstream direction and the top-7 ports that contribute to more
than 95% of the exchanged traffic and the aggregation of the rest of the ports. Our
analysis shows that there is only one port, namely, port 5671 (this port is registered
with IANA for the secure version of the AMQP protocol), where around 18% of the
subscriber lines exchange between 100 MB and 1 GB per day. The high traffic volume
exchanged is observed only in one of the IoT providers, and it is a very small frac-
tion of the overall traffic we observe in our measurements. Similar observations are
made when we analyze the upstream traffic. We conclude that the vast majority of
the traffic exchanged at different ports between the subscriber lines and IoT backend
providers do not resemble the general Web or popular video traffic.

118

7.4 IoT Traffic Flows

S
ervers in U

S
Servers in E

urope

AsiaO
th

er

U
S

&
E

U

ISP S
ub

sc
rib

er
 li

ne
s

−>
 U

S
 S

er
ve

rs
IS

P
 S

ub
sc

rib
er

 li
ne

s
−>

 E
ur

op
e S

erve
rs

A
sia

O
ther

A
sia

O
ther

%
 o

f I
oT

 IS
P

 S
ub

sc
rib

er
 li

ne
s

P
er C

ontinent %
 IoT

 S
E

R
V

E
R

S

40
%

0%

10
%

20
%

30
%

50
%

60
%

70
%

80
%

90%
97 100%

60%
50%

40%
30

20%

10%
0%

65
70

80%

90%

100%

Figure 7.13: % of ISP Clients communicating with % of Servers in each continent.

0 20 40 60 80 100
% of Traffic

Europe America As
ia

Figure 7.14: % of ISP Traffic communicating with % of Servers in each continent.

7.4.7 Crossing Region Borders

Since the recent EU General Data Protection Regulation (GDPR) poses restrictions
on the transfer of data outside the EU, and since the transfer of data to remote
servers may impact the performance of delay-sensitive applications we next study how
many of the European ISP’s subscriber lines with IoTs contact IoT servers outside
of Europe. Hereby, we take advantage of the location information collected for each
IoT backend server IP.

In Figure 7.13 we visualize the percentage of IoT-hosting subscriber lines, see left-side
of plot, that exchange traffic with IoT backend servers in different regions, namely,
Europe, the US, Asia, and others. Our analysis shows that slightly less than half,
i.e., around 47% of the IoT-hosting subscriber lines communicate exclusively with IoT
backend servers located in Europe. Around 40% of the IoT-hosting subscriber lines
contact IoT backend servers in the US. Around 10% of the IoT-hosting subscriber
lines contact a mix of locations from the EU and US. Around 3% of the IoT-hosting
subscriber lines are contacting only IoT backend servers in Asia or other regions.

On the right-hand side of the plot, we visualize the percentage of IoT servers hosted
per continent. We see that the IoT backend servers in Europe are a minority of

119

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

12-03 12-04 12-05 12-06 12-07 12-08 12-09 12-10
Datetime

10M

6M
7M
8M
9M

20M

30M

40M

50M

60M

No
rm

al
ize

d
Tr

af
fic

 V
ol

um
e

(L
og

 1
0)

Company
T1: All T1: US-East T1: EU

Figure 7.15: ISP vantage point–IoT backend provider T1: Normalized downstream
traffic volume for all US-East, and EU service regions. The AWS
outage is highlighted using a red background. The red line shows the
normalized minimum traffic volume for the US-East of the previous
week.

contacted servers, only around 30%. Indeed, the majority of the IoT backend servers,
i.e., around 65%, are located in the US. Around 5% of the IoT backend servers are
located in Asia and a tiny fraction elsewhere. We conclude that around half of the
IoT-hosting subscriber lines in the European ISP contact IoT backend servers located
in Europe, although they account for less than one-third of the IoT backend servers
identified in our study.

Regarding exchanged traffic volume between subscription lines and IoT backend
servers, we notice that most of the traffic stays in Europe. In Figure 7.14, we plot the
percentage of traffic exchanged between subscription lines and IoT backend servers
annotated by location. The largest traffic fraction, more than 62%, is exchanged
between subscriber lines in Europe with servers in Europe. However, around 35%—a
substantial fraction—is exchanged with servers in the US (where the majority of the
IoT backend servers are located). As such, IoT traffic is less localized than one may
have expected, given the regulations of GDPR.

7.5 IoT Backend Disruptions

Here, we consider actual as well as potential disruptions.

120

7.5 IoT Backend Disruptions

12-03 12-04 12-05 12-06 12-07 12-08 12-09 12-10
Datetime

200K

300K
Su

bs
cr

ib
er

 li
ne

s (
Lo

g
10

)

Company
T1: All T1: US-East T1: EU

15 16 17 18 19 20 21 22 23
Hour

140K

150K

160K

170K

180K

Su
bs

cr
ib

er
 li

ne
s

Figure 7.16: ISP vantage point–IoT backend provider T1: # of subscriber lines for
all, US-East, and EU service regions. The AWS outage is highlighted
using a red background. The red line shows the minimum # of sub-
scriber lines for US-East of the previous week.

7.5.1 AWS Outage

During the time when we collected preliminary results (Dec. 3–10, 2021), a ma-
jor outage happened within the infrastructure of one of the major cloud providers.
More precisely, on December 7, 2021, Amazon Web Services, a cloud provider that is
heavily used by the IoT backend providers that we study, experienced a large-scale
outage [291–294] of its US-East-1 service region (located in Northern Virginia). This
outage affected many popular websites and Internet services. Thus, we examine the
effect of this outage on the traffic flows of the IoT backend providers.

Impact on T1 ISP traffic flows. First, we analyze the outage’s effect on the
traffic from the T1 IoT platform to the ISP’s subscribers. Figure 7.15 shows T1’s
normalized downstream traffic volume towards the ISP as well as the normalized
volume for two different AWS service regions, namely US east and EU–aggregating
the traffic of all US east resp. EU availability zones. During the outage (highlighted
via the red background) there is a substantial traffic drop–more than 14.5% for the
US east coast region. Indeed, the total traffic volume is substantially lower than the
minimum observed traffic volume of the previous week (red line). This highlights
that cloud outages such as the one by AWS do not only affect Web services [292–
294] but also IoT services [295, 296]. When looking at the total traffic as well as
the traffic from the EU sites, we notice only slight dips. One reason is that the EU
region services more than three times as much traffic as the US east coast region.

121

Chapter 7 IoT Backend Servers: A Deep Dive into Backend Providers

Still, the fact that there is a drop even in traffic in the EU region indicates some
interdependencies between the regions.

Impact on T1 subscriber lines. Next, we check how these traffic volumes relate
to the number of ISP subscriber lines that contact IoT servers in these AWS regions,
see Figure 7.16. Again the red background highlights the outage, and the horizontal
line corresponds to the minimum number of subscriber lines of the previous week. We
see no impact for the EU region but a slight decrease for the US East coast region.
One may ask why this decrease is so small. The reason is that we still observe the
attempts of the IoT devices to contact the servers in their assigned AWS regions.
Thus, the downstream traffic is lower, but the number of subscriber lines does not
change drastically. Still, it decreases, which indicates that some of them stopped
trying, we did not observe them due to their decreased traffic volume, or they are
remapped to other regions.

Impact on D1–D6. Next, we explore whether the outage affected the IoT backend
providers relying on AWS or the T1 IoT platform. We find hardly any effect as the
subscriber lines of these platforms are mainly mapped to the EU AWS regions.

7.5.2 Potential Disruptions

Possible disruptions that we study for the week starting in Feb. 2022 are connectivity
problems due to routing and or IP filtering based on blocklists.

Connectivity problems. Such problems include routing problems such as BGP
leaks, BGP hijacks, and AS outages. We rely on Cisco’s BGPStream service, which
provides historical information about BGP hijacks, leaks, and outages [297]. It iden-
tified 10 BGP leaks, 40 possible BGP hijacks, and 166 AS outages. None of these
affected any identified IoT backend server IPs or the ASes they are hosted in.

IP Filtering. Next, we check how likely it is that a backend becomes unreachable as
a consequence of appearing in a blocklist. Here, we take advantage of the FireHOL
project[298] which generates a list of suspicious addresses, by combining information
from popular blocklists. In Feb. 2022, the FireHOL blocklist contained over 610M
IPv4 addresses extracted from 67 blocklists2. Using daily blocklists matching our
study period, we check if the server IPs are included in any of the blocklist. We
identified 16 such IPs. The non-exclusive reason for their inclusion in the blocklist
are: four are associated with open-proxies and anonymizing services, one is linked
to malware, and five are associated with network attacks/spam. Moreover, nine
originate from a personal blocklist3. These IPs belong to 6 of our IoT backend
providers, namely, Baidu (5 IPs), Microsoft (4 IPs), SAP (4 IPs), Google (3 IPs),
Amazon (2 IPs), and Alibaba (1 IP).

2We excluded one of the blocklist as it is known that it is not carefully maintained, see
https://github.com/pushinginertia/ip-blacklist/issues/9, and is, thus, likely to produce false pos-
itives.

3https://graphiclineweb.wordpress.com/tech-notes/ip-blacklist/

122

7.6 Chapter Summary

7.6 Chapter Summary

In this chapter, we developed and applied a methodology to characterize the deploy-
ment and traffic patterns of a substantial part of the IoT backend server infrastruc-
ture: IoT backend providers. Our techniques relied on a fusion of information from
public documentation, passive DNS, and active measurements. Some sources are pub-
licly available, and others are collected through active or passive measurements. The
IoT backend provider market is consolidated, with 90% of the revenue going to the
top 20 companies [299]. Our study focused on 16 IoT backend providers, including
the top 10.

We showed that detecting the IoT backend provider’s Internet-facing infrastructure
is challenging; a pure IP-port scanning on the Internet misses a significant share
of the IoT backend providers’ addresses. Moreover, multiple backend providers use
non-standard ports to serve IoT-related protocols.

Our study unveiled a multitude of deployment strategies among backend providers.
Most have footprints in many geographical regions, and some utilize anycast. How-
ever, some offered their services in one location, and some only offered parts of their
services to other regions. Our insights aid prospective customers in selecting appro-
priate IoT backend providers, as they can compare different deployment strategies
and their performance implications.

We also studied the traffic patterns of the backend providers in our ISP vantage point.
Our study showed that more than 40% of the IoT subscribers exchanged traffic with
servers on different continents. Regarding traffic volume, around 30% of IoT traffic
goes to servers outside of Europe, which raises questions about regulatory compliance,
reliability, and performance. Moreover, we found that both the IoT population and
activity per application differ vastly. Some IoT applications’ traffic peak during the
day while others peak in the evening hours.

Our study showed the dependency among the providers: with six of them relying
on another. Some providers have a footprint in locations where others don’t. Thus,
although competing, some providers rely on others to expand their footprints. Such
arrangements may have some reliability consequences. An outage in a provider may
have a knock-on effect on the services of the relying providers. We conducted a case
study on how an outage in a large public cloud provider can affect the services of
other IoT backend providers. In our case, the outage happened in a region that did
not affect our providers except one.

In Chapter 5, we developed signatures by observing traffic from IoT devices in a
testbed. In this chapter, our lightweight methodology can complement the previ-
ous ones for purposes such as estimating the popularity of IoTs and identifying the
IoT application activity in passive data. Our methodology is lightweight as it does
not need to derive per IoT device/manufacturer signatures using, e.g., instrumented
testbeds.

123

8
Conclusion and Outlook

IoT devices are becoming increasingly popular and provide a wide range of services
to home and industry users. The IoT server backend infrastructures on the Internet
are essential to many of the functionalities of IoT devices, and these devices and their
server backend infrastructure collectively form the IoT ecosystem.

The IoT ecosystem is rapidly growing and evolving with an ever-increasing number
of IoT devices and services. At the same time, it has been a victim and a source
of significant security and privacy incidents. Characterizing this ecosystem at scale
allows researchers, network operators, and other stakeholders to understand it better,
keep track of its evolution, and develop solutions to handle its threats.

8.1 Summary

In this thesis, our overarching goal was to develop and apply the methodologies for
characterizing the IoT ecosystem at scale. To achieve this goal, we considered (i)
methodologies for detecting IoT devices in the wild using sparsely sampled flow data,
(ii) the effect of the deployment of home IoT devices on users’ privacy, and (iii)
detecting and characterizing the IoT backend server infrastructure.

We collaborated with a large European Tier-1 ISP and a major European IXP to
conduct our studies. For operational purposes, these providers routinely collect large
volumes of network flow capture data such as NetFlow and IPFIX.

The large volume of network flow captures from ISP and IXP motivated us to study
how to improve query response time while exploring large volumes of network flow
captures. Thus, in Chapter 4 of this dissertation, we investigated this problem. We
highlighted that network flow captures such as NetFlow and IPFIX are widely avail-
able, and they are essential for operators to monitor the health of their networks
and steer their evolution. However, their analysis is time-intensive and challenging
due to their ever-increasing size and complexity. In the past, this has substantially
hindered ad-hoc queries across multiple sites, for different time periods, and over
many network features. We designed, developed, and evaluated Flowyager, a system
that allows exploration of network-wide data and answering ad-hoc apriori unknown
queries interactively. It achieved this using existing network flow captures, without
the need for specialized hardware and without compiling specific queries into teleme-
try programs that should be known in advance and are slow to update.

125

Chapter 8 Conclusion and Outlook

Next, in Chapter 5, we investigated how to detect home IoT devices without deep
packet inspection or active measurements, both intrusive and unscalable methods for
large deployments. We developed and evaluated a scalable methodology to detect
IoT devices at subscriber lines with limited, sparsely sampled flow data from a major
Tier-1 ISP and a large IXP, even if devices are not actively used. By classifying
domains, and IP addresses of the backend infrastructure, we derived distinct signa-
tures for recognizing IoT devices. With our signatures, we were able to recognize the
presence of devices from 31 out of 40 manufacturers in our testbed. Our evaluation of
methodology showed that 20% of 15 million subscriber lines used at least one of the
56. We highlighted that our technique scales and can identify millions of IoT devices
within minutes. To this end, we discussed the potential security benefits of detecting
IoT devices, why some IoT devices are faster to detect, how to hide an IoT service,
as well as how the detectability can be used to improve IoT services and network
troubleshooting. For security benefits, IoT detection can help the ISP/IXP identify
what devices are common among the subscriber lines with suspicious traffic. Once
identified, they can notify the device’s owner or take further mitigating steps.

Then, In Chapter 6, we conducted a case study on how millions of deployed devices at
homes can potentially endanger users’ privacy. We showed a new way to defeat IPv6
privacy even when the ISP does prefix rotation, and all but one device at home use
privacy extensions. We found that a single device that uses EUI-64 can be leveraged
as a tracking identifier for devices with the same end-user prefix. This allows for
longitudinal tracking, i.e., tracking across prefix rotations over multiple days. Our
analysis showed that up to 19% of end-user prefixes in a large ISP could face IPv6
privacy leakage, and up to 17% of them could be monitored by third parties, primarily
hypergiants. Our investigation unveiled that IoT devices and popular manufacturers
contributed the most to this IPv6 privacy leakage. We proposed that vendors enable
privacy extensions by default and that regulatory intervention is necessary to protect
users’ privacy.

In the last part of this dissertation, Chapter 7, we studied the IoT backend provider
infrastructure. As the IoT device population and application complexity increase, a
collection of IoT backend providers has been established to cope with the IoT appli-
cation demands. These IoT backend providers are either IoT vendors or large cloud
providers offering services tailored to IoT developer needs. Our study focused on 16
IoT backend providers, including the top 10. We developed a methodology to detect
the Internet-facing section of their infrastructure. We argued that discovery of the
Internet-facing part of the IoT backends is a challenging task as pure IP-port scanning
misses a significant share of the addresses for many IoT backend providers. Indeed,
we found that the port usage differs substantially across IoT providers. It is not
unusual for IoT protocols, e.g., MQTT, to use non-standard ports or to reuse Web
ports. The latter makes the identification of IoT backend infrastructure as well as
IoT traffic challenging. However, fusing data from publicly available documentation,
certificate data from active scanning, with passive and active DNS data allowed us
to unveil a detailed map of IoT backend servers. Our study showed that IoT backend
providers’ deployment strategies differ substantially. While the footprints of most of
them covered many geographical regions, some were present in only one location. Yet,

126

8.2 Reflections

others were utilizing anycast. Since this impacts service performance, it should also
impact IoT backend provider selection. Moreover, regulatory compliance related to
IoT data transfer, storage location, and processing also plays an increasingly impor-
tant role when selecting an appropriate IoT backend. We analyzed the traffic patterns
of the IoT backend providers at a major European ISP. Surprisingly, we found that
around a third of the IoT traffic in our study was exchanged with servers in different
continents, although it could have been served from within the region of the IoTs.
This raises questions regarding the configuration of applications and best practices
when developing IoT applications. It also raises questions regarding reliability. We
found that a significant outage of a cloud provider impacted some IoT services. We
also observed that six of the providers relied on another IoT backend provider to
expand their footprint or outsource IoT backend functionalities. Thus, outages that
occur unexpectedly can have cascading effects. For the one outage that we studied
in detail, this did not happen as these providers used the regional service, which was
not affected by the outage. Still, it is a wake-up call to add flexibility and re-routing
opportunities to handle IoT backend disruptions, e.g., outages, attacks, misconfigura-
tions, and blocklists. Our methodology also offers a scalable and lightweight approach
for estimating the popularity of IoTs and sheds light on IoT application activity. This
is possible without the need to derive per IoT device/manufacturer signatures using,
e.g., instrumented testbeds. Our traffic analysis highlighted that the IoT population
and activity per application differed vastly. While some applications behaved more
like the typical user-generated traffic, i.e., diurnal patterns, peak evening hours, and
were downstream-heavy, this was not the case for all IoT applications. In fact, some
popular IoT applications’ traffic peaked during the day.

8.2 Reflections

Internet Service Providers and large network operators have a responsibility to ensure
the security of their networks. They are in a privileged position that enables to
detect and mitigate large scale attacks that affect their subscribers or originate from
them. Although, it is in their interest to secure and keep track of their ecosystem,
it is also important that they use their position responsibly and avoid indiscriminate
application of our methodologies and techniques on subscriber lines without tangible
benefits to them. As such, it is crucial to apply such methods transparently while
considering the interests of the subscriber lines.

Applying the methodologies and findings of these security measures has implications
for subscribers, particularly from a privacy perspective. As a result, it is essential
to consider the interests of subscriber lines when implementing these measures. A
possible solution for both the provider and the subscriber is to bundle these security
measures into IoT-security services. Providers can offer these services on an opt-in
basis, either for free or even commercially. However, the implementation of such
approaches would require extensive studies, and the details and business cases are
beyond the scope of this thesis.

127

Chapter 8 Conclusion and Outlook

8.3 Future Work

The IoT ecosystem is growing and evolving; new security and privacy threats are
emerging, which may endanger the health and operation of the IoT ecosystem and
the Internet. Thus, we should keep monitoring its state and development and con-
tinuously challenge our assumptions. In future work, we intend to further scale our
studies by cooperating with more vantage points and investigating the implications
of the IPv6 transition on the IoT ecosystem.

More vantage points: We plan to collaborate with more ISPs and extend the
number of our vantage points. IoT users worldwide may not use the same brand
of devices; IoT companies may offer a region-specific version of their services to the
users. In addition, the IoT penetration rate varies from region to region; hence,
having more vantage points allows us to study and compare the characteristics of the
IoT ecosystems in different regions.

IoTs in dual-stack networks: ISPs worldwide, though at different paces, are tran-
sitioning to IPv6, and some are already offering Internet connectivity in a dual-stack
manner. We plan to investigate the behavior of IoT devices in dual-stack networks,
e.g., measuring to what extent IoT devices and their backends support IPv6 and
the security and performance implications of using both IPv4 and IPv6 on the IoT
ecosystem.

IoT endpoint discovery in IPv6 Internet: IPv6’s address space is vast; thus,
Bruteforce active measurements that scan the whole IPv6 address space are infeasible.
It is becoming more challenging to find IoT endpoints (devices or servers) on the IPv6
Internet through active measurements. At the same time, accessing passive data from
large vantage points is not always possible for researchers. Thus, we need novel active
measurement techniques to identify and track the transition of the IoT ecosystem to
the IPv6 internet.

128

Bibliography

[1] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Haddadi,
Daniel J Dubois, David Choffnes, Georgios Smaragdakis, and Anja Feldmann.
“A haystack full of needles: Scalable detection of iot devices in the wild”.
In: Proceedings of the ACM Internet Measurement Conference. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 87–100. isbn:
9781450381383. doi: 10.1145/3419394.3423650. url: https://doi.org/
10.1145/3419394.3423650 (cit. on pp. ix, 3, 6).

[2] Said Jawad Saidi, Srdjan Matic, Oliver Gasser, Georgios Smaragdakis, and
Anja Feldmann. “Deep Dive into the IoT Backend Ecosystem”. In: Proceedings
of the 22nd ACM Internet Measurement Conference. IMC ’22. Nice, France:
Association for Computing Machinery, 2022, pp. 488–503. isbn: 9781450392594.
doi: 10.1145/3517745.3561431. url: https://doi.org/10.1145/3517745.
3561431 (cit. on pp. ix, 7).

[3] Said Jawad Saidi, Aniss Maghsoudlou, Damien Foucard, Georgios Smarag-
dakis, Ingmar Poese, and Anja Feldmann. “Exploring Network-Wide Flow
Data with Flowyager”. In: IEEE Transactions on Network and Service Man-
agement 17.4 (2020), pp. 1988–2006. doi: 10.1109/TNSM.2020.3034278 (cit.
on pp. ix, 7).

[4] Said Jawad Saidi, Oliver Gasser, and Georgios Smaragdakis. “One Bad Ap-
ple Can Spoil Your IPv6 Privacy”. In: ACM Special Interest Group on Data
Communications(SIGCOMM) Computer Communication Review 52.2 (June
2022), pp. 10–19. issn: 0146-4833. doi: 10.1145/3544912.3544915. url:
https://doi.org/10.1145/3544912.3544915 (cit. on pp. ix, 7).

[5] Said Jawad Saidi, Damien Foucard, Georgios Smaragdakis, and Anja Feld-
mann. “Flowtree: Enabling Distributed Flow Summarization at Scale”. In:
Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos.
SIGCOMM ’18. Budapest, Hungary: Association for Computing Machinery,
2018, pp. 30–32. isbn: 9781450359153. doi: 10.1145/3234200.3234225. url:
https://doi.org/10.1145/3234200.3234225 (cit. on p. ix).

[6] Apoorv Shukla, Said Jawad Saidi, Stefan Schmid, Marco Canini, Thomas Zin-
ner, and Anja Feldmann. “Towards Consistent SDNs: A Case for Network
State Fuzzing”. In: IEEE Transactions on Network and Service Management
17.2 (2019), pp. 668–681. doi: 10.1109/TNSM.2019.2955790 (cit. on p. x).

[7] IoT Analytics. IoT 2019 in Review: The 10 Most Relevant IoT Developments
of the Year. https://iot-analytics.com/iot-2019-in-review/. 2020
(cit. on p. 1).

[8] Alex Schiffer.How a fish tank helped hack a casino. https://www.washingtonpost.
com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-
a-casino/. 2017 (cit. on p. 1).

129

https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1109/TNSM.2020.3034278
https://doi.org/10.1145/3544912.3544915
https://doi.org/10.1145/3544912.3544915
https://doi.org/10.1145/3234200.3234225
https://doi.org/10.1145/3234200.3234225
https://doi.org/10.1109/TNSM.2019.2955790
https://iot-analytics.com/iot-2019-in-review/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/

Bibliography

[9] M. Antonakakis et al. “Understanding the Mirai Botnet”. In: USENIX Security
Symposium. 2017 (cit. on pp. 1, 27).

[10] Dan Goodin. Rash of in-the-wild attacks permanently destroys poorly secured
IoT devices. https://arstechnica.com/information-technology/2017/
04/rash-of-in-the-wild-attacks-permanently-destroys-poorly-
secured-iot-devices/. 2017 (cit. on p. 1).

[11] Y. Jia et al. “Burglars’ IoT Paradise: Understanding and Mitigating Security
Risks of General Messaging Protocols on IoT Clouds”. In: S&P. 2020, pp. 465–
481 (cit. on pp. 1, 3, 27, 100–102).

[12] Gartner Says Worldwide IoT Security Spending Will Reach $1.5 Billion in
2018. https://www.gartner.com/en/newsroom/press-releases/2018-
03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-
point-5-billion-in-2018. 2018 (cit. on p. 1).

[13] Philipp Wegner. The 1,200 IoT companies that are creating the connected
world of the future – IoT Startup Landscape 2021. https://iot-analytics.
com/iot-startup-landscape/. June 2021 (cit. on p. 2).

[14] Amazon Web Services Inc. AWS IoT Core. Amazon Web Services, https:
//aws.amazon.com/iot-core/ (cit. on pp. 2, 9, 92).

[15] Google. Google Cloud IoT Core. https://cloud.google.com/iot-core.
2021 (cit. on pp. 2, 9, 92).

[16] Microsoft Azure. Azure IoT Hub. https://azure.microsoft.com/en-us/
services/iot-hub. 2022 (cit. on pp. 2, 9, 99, 101, 108).

[17] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis. “Open for hire: attack
trends and misconfiguration pitfalls of IoT devices”. In: ACM IMC. 2021 (cit.
on pp. 2, 25, 27).

[18] Arturs Lavrenovs and Gabor Visky. “Exploring features of HTTP responses for
the classification of devices on the Internet”. In: 2019 27th Telecommunications
Forum (TELFOR). 2019, pp. 1–4. doi: 10.1109/TELFOR48224.2019.8971100
(cit. on pp. 2, 25).

[19] Oliver Gasser et al. “Security Implications of Publicly Reachable Building
Automation Systems”. In: 2017 IEEE Security and Privacy Workshops (SPW).
2017, pp. 199–204. doi: 10.1109/SPW.2017.13 (cit. on pp. 2, 25).

[20] L. Izhikevich, R. Teixeira, and Z. Durumeric. “LZR: Identifying Unexpected
Internet Services”. In: USENIX Security Symposium. 2021 (cit. on pp. 2, 25,
27, 111, 117).

[21] Z. Durumeric et al. “A Search Engine Backed by Internet-Wide Scanning”. In:
ACM CCS. 2015 (cit. on pp. 2, 25, 27, 103).

[22] Shodan. Search Engine for the Internet of Everything. https://www.shodan.
io/. 2022 (cit. on pp. 2, 25, 27).

[23] Open MQTT Report – Expanding the Hunt for Vulnerable IoT devices. https:
//www.shadowserver.org/news/open-mqtt-report-expanding-the-hunt-
for-vulnerable-iot-devices/. 2020 (cit. on pp. 2, 25, 27).

130

https://arstechnica.com/information-technology/2017/04/rash-of-in-the-wild-attacks-permanently-destroys-poorly-secured-iot-devices/
https://arstechnica.com/information-technology/2017/04/rash-of-in-the-wild-attacks-permanently-destroys-poorly-secured-iot-devices/
https://arstechnica.com/information-technology/2017/04/rash-of-in-the-wild-attacks-permanently-destroys-poorly-secured-iot-devices/
https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018
https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018
https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018
https://iot-analytics.com/iot-startup-landscape/
https://iot-analytics.com/iot-startup-landscape/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://cloud.google.com/iot-core
https://azure.microsoft.com/en-us/services/iot-hub
https://azure.microsoft.com/en-us/services/iot-hub
https://doi.org/10.1109/TELFOR48224.2019.8971100
https://doi.org/10.1109/SPW.2017.13
https://www.shodan.io/
https://www.shodan.io/
https://www.shadowserver.org/news/open-mqtt-report-expanding-the-hunt-for-vulnerable-iot-devices/
https://www.shadowserver.org/news/open-mqtt-report-expanding-the-hunt-for-vulnerable-iot-devices/
https://www.shadowserver.org/news/open-mqtt-report-expanding-the-hunt-for-vulnerable-iot-devices/

Bibliography

[24] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman. “Can We Classify an
IoT Device using TCP Port Scan?” In: 2018 IEEE International Conference
on Information and Automation for Sustainability (ICIAfS). 2018, pp. 1–4
(cit. on pp. 2, 25).

[25] M. Nawrocki, T. C. Schmidt, and M Wählisch. “Uncovering Vulnerable In-
dustrial Control Systems from the Internet Core”. In: IEEE/IFIP Network
Operations and Management Symposium (NOMS). 2020 (cit. on pp. 2, 25).

[26] Ariana Mirian et al. “An Internet-wide view of ICS devices”. In: 2016 14th
Annual Conference on Privacy, Security and Trust (PST). 2016, pp. 96–103.
doi: 10.1109/PST.2016.7906943 (cit. on pp. 2, 25).

[27] D. Kumar and K. Shen and B. Case and D. Garg and G. Alperovich and
D. Kuznetsov and R. Gupta and Z. Durumeric. “All Things Considered: An
Analysis of IoT Devices on Home Networks”. In: USENIX Security Symposium.
2019 (cit. on pp. 2, 25, 100).

[28] M. Hammad Mazhar and Z. Shafiq. “Characterizing Smart Home IoT Traffic
in the Wild”. In: ACM/IEEE Conference on Internet of Things Design and
Implementation. 2020 (cit. on pp. 2, 3, 22, 23, 25–27, 64, 117).

[29] TCPDUMP/LIBPCAP public repository. http://www.tcpdump.org/. 2019
(cit. on pp. 3, 17).

[30] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Infor-
mational). Oct. 2004. url: http://www.ietf.org/rfc/rfc3954.txt (cit. on
pp. 3, 4, 26, 57, 59).

[31] B. Claise, B. Trammell, and P. Aitken. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011
(INTERNET STANDARD). Sept. 2013. url: http://www.ietf.org/rfc/
rfc7011.txt (cit. on pp. 3, 4, 16, 17, 26, 57, 59).

[32] Roman Kolcun et al. “Revisiting IoT Device Identification”. In: TMA. 2021
(cit. on pp. 3, 26).

[33] Oliver Thompson, Anna Maria Mandalari, and Hamed Haddadi. “Rapid IoT
Device Identification at the Edge”. In: Proceedings of the 2nd ACM Interna-
tional Workshop on Distributed Machine Learning. DistributedML ’21. Vir-
tual Event, Germany: Association for Computing Machinery, 2021, pp. 22–
28. isbn: 9781450391344. doi: 10 . 1145 / 3488659 . 3493777. url: https :
//doi.org/10.1145/3488659.3493777 (cit. on pp. 3, 26).

[34] Arman Pashamokhtari et al. “Inferring Connected IoT Devices from IPFIX
Records in Residential ISP Networks”. In: 2021 IEEE 46th Conference on Local
Computer Networks (LCN). IEEE. 2021, pp. 57–64 (cit. on pp. 3, 78).

[35] A. Sivanathan et al. “Classifying IoT Devices in Smart Environments Using
Network Traffic Characteristics”. In: IEEE Transactions on Mobile Computing
18.8 (2019) (cit. on pp. 3, 26).

131

https://doi.org/10.1109/PST.2016.7906943
http://www.tcpdump.org/
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc7011.txt
http://www.ietf.org/rfc/rfc7011.txt
https://doi.org/10.1145/3488659.3493777
https://doi.org/10.1145/3488659.3493777
https://doi.org/10.1145/3488659.3493777

Bibliography

[36] Rahmadi Trimananda et al. “Packet-level signatures for smart home devices”.
In: Network and Distributed Systems Security (NDSS) Symposium. Vol. 2020.
2020 (cit. on pp. 3, 26).

[37] Arunan Sivanathan et al. “Characterizing and classifying IoT traffic in smart
cities and campuses”. In: 2017 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). 2017, pp. 559–564. doi: 10.1109/
INFCOMW.2017.8116438 (cit. on p. 3).

[38] H. Guo and J. Heidemann. “Detecting IoT Devices in the Internet”. In: IEEE/ACM
Transactions on Networking (2020). [to appear] (cit. on pp. 3, 26, 78, 80).

[39] R. Perdisci et al. “IoTFinder: Efficient Large-Scale Identification of IoT De-
vices via Passive DNS Traffic Analysis”. In: IEEE European Symposium of
Security and Privacy. 2020 (cit. on pp. 3, 26, 74, 80, 100).

[40] O. Alrawi et al. “SoK: Security Evaluation of Home-Based IoT Deployments”.
In: S&P. 2019 (cit. on pp. 3, 27, 100, 101).

[41] O. Çetin et al. “Cleaning Up the Internet of Evil Things: Real-World Evidence
on ISP and Consumer Efforts to Remove Mirai”. In: NDSS. 2019 (cit. on pp. 3,
79).

[42] Arman Noroozian et al. “Can ISPs help mitigate IoT malware? A longitudinal
study of broadband ISP security efforts”. In: 2021 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE. 2021, pp. 337–352 (cit. on p. 3).

[43] Stephanie Borg Psaila. Right to access the Internet: the countries and the laws
that proclaim it. https://www.diplomacy.edu/blog/right-to-access-
the-internet-countries-and-laws-proclaim-it/. May 2011 (cit. on
p. 11).

[44] Anja Feldmann et al. “The Lockdown Effect: Implications of the COVID-19
Pandemic on Internet Traffic”. In: IMC ’20. Virtual Event, USA: Association
for Computing Machinery, 2020, pp. 1–18. isbn: 9781450381383. doi: 10.
1145/3419394.3423658. url: https://doi.org/10.1145/3419394.3423658
(cit. on p. 11).

[45] James F. Kurose and Keith W. Ross. Computer networking: A top-down ap-
proach, 6/E. Pearson, Mar. 2012, pp. 32–35. isbn: 9780132856201 (cit. on
pp. 11–13).

[46] Amogh Dhamdhere and Constantine Dovrolis. “The Internet is Flat: Modeling
the Transition from a Transit Hierarchy to a Peering Mesh”. In: Proceedings of
the 6th International COnference. Co-NEXT ’10. Philadelphia, Pennsylvania:
Association for Computing Machinery, 2010. isbn: 9781450304481. doi: 10.
1145/1921168.1921196. url: https://doi.org/10.1145/1921168.1921196
(cit. on p. 12).

[47] Amazon AWS. Regions and Zones. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
regions-availability-zones.html. 2022 (cit. on pp. 13, 108, 109).

[48] Microsoft Azure. Microsoft Azure. https://azure.microsoft.com/. 2022
(cit. on p. 13).

132

https://doi.org/10.1109/INFCOMW.2017.8116438
https://doi.org/10.1109/INFCOMW.2017.8116438
https://www.diplomacy.edu/blog/right-to-access-the-internet-countries-and-laws-proclaim-it/
https://www.diplomacy.edu/blog/right-to-access-the-internet-countries-and-laws-proclaim-it/
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/1921168.1921196
https://doi.org/10.1145/1921168.1921196
https://doi.org/10.1145/1921168.1921196
https://azure.microsoft.com/

Bibliography

[49] E. Nygren, R. K. Sitaraman, and J. Sun. “The Akamai Network: A Platform
for High-performance Internet Applications”. In: SIGOPS Oper. Syst. Rev.
44.3 (2010) (cit. on p. 13).

[50] Cisco. Introduction to Cisco IOS NetFlow - A Technical Overview. https:
//www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/
ios-netflow/prod_white_paper0900aecd80406232.html. 2012 (cit. on
pp. 15, 17, 86, 111).

[51] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard).
Obsoleted by RFC 7011. Jan. 2008. url: http : / / www . ietf . org / rfc /
rfc5101.txt (cit. on p. 16).

[52] IUANA. IP Flow Information Export (IPFIX) Entities. https://www.iana.
org/assignments/ipfix/ipfix.xhtml. 2022 (cit. on p. 16).

[53] R. Hofstede et al. “Flow Monitoring Explained: From Packet Captureto Data
Analysis With NetFlow and IPFIX”. In: IEEE Communications Surveys &
Tutorials 16.4 (2014) (cit. on p. 16).

[54] C. Cranor et al. “Gigascope: A Stream Database for Network Applications”.
In: ACM SIGMOD. 2003 (cit. on pp. 17, 18, 34).

[55] D. Sarlis et al. “Datix: A system for scalable network analytics”. In: ACM CCR
45.5 (2015) (cit. on p. 17).

[56] G. Cormode et al. “Finding hierarchical heavy hitters in data streams”. In:
VLDB. 2003 (cit. on p. 17).

[57] R. B. Basat et al. “Constant Time Updates in Hierarchical Heavy Hitters”. In:
ACM SIGCOMM. 2017 (cit. on pp. 17–19, 38, 47, 49).

[58] A. R Curtis et al. “DevoFlow: scaling flow management for high-performance
networks”. In: ACM CCR. Vol. 41. 4. 2011 (cit. on p. 17).

[59] A. Gupta et al. “Sonata: Query-driven Streaming Network Telemetry”. In:
ACM SIGCOMM. 2018 (cit. on pp. 16–18, 54).

[60] S. Narayana et al. “Language-Directed Hardware Design forNetwork Perfor-
mance Monitoring”. In: ACM SIGCOMM. 2017 (cit. on pp. 16–18).

[61] Q. Huang et al. “Sketchvisor: Robust network measurement for software packet
processing”. In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. 2017 (cit. on pp. 17, 19).

[62] R. Ben Basat et al. “Optimal elephant flow detection”. In: IEEE INFOCOM.
2017 (cit. on p. 17).

[63] Y. Da et al. “dShark: A General, Easy to Program and Scalable Framework
for Analyzing In-network Packet Traces”. In: NSDI. 2019 (cit. on pp. 17, 18).

[64] G. Cormode and S. Muthukrishnan. “An improved data stream summary:
The count-min sketch and its applications”. In: Latin American Symposium
on Theoretical Informatics. Springer. 2004, pp. 29–38 (cit. on p. 17).

133

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc5101.txt
 https://www.iana.org/assignments/ipfix/ipfix.xhtml
 https://www.iana.org/assignments/ipfix/ipfix.xhtml

Bibliography

[65] G. Cormode and M. Hadjieleftheriou. “Finding Frequent Items in Data Streams”.
In: VLDB. 2008 (cit. on p. 17).

[66] G. Cormode and S. Muthukrishnan. “Space Efficient Mining of Multigraph
Streams”. In: PODS. 2005 (cit. on p. 17).

[67] S. Narayana et al. “Compiling Path Queries”. In: NSDI. 2016 (cit. on p. 17).
[68] Y. Li et al. “FlowRadar: A Better NetFlow for Data Centers.” In: Nsdi. 2016,

pp. 311–324 (cit. on p. 17).
[69] Q. Huang, P. PC Lee, and Y. Bao. “Sketchlearn: relieving user burdens in ap-

proximate measurement with automated statistical inference”. In: ACM SIG-
COMM. 2018 (cit. on p. 17).

[70] O. Tilmans et al. “Stroboscope: Declarative Network Monitoring on a Budget”.
In: NSDI (2018) (cit. on pp. 16–18).

[71] T. Yang et al. “Elastic Sketch: Adaptive and Fast Network-wide Measure-
ments”. In: ACM SIGCOMM. 2018 (cit. on pp. 17, 19, 47).

[72] M. Yu, L. Jose, and R. Miao. “Software Defined Traffic Measurement with
OpenSketch”. In: NSDI. 2013 (cit. on pp. 17, 19).

[73] V. Bajpai and J. Schönwälder. “Network flow query language—Design, im-
plementation, performance, and applications”. In: IEEE TNSM 14.1 (2016)
(cit. on p. 17).

[74] A. G. Prieto and R. Stadler. “A-GAP: An adaptive protocol for continuous
network monitoring with accuracy objectives”. In: IEEE TNSM 4.1 (2007)
(cit. on pp. 17, 18).

[75] J. Shuyuan and D. S. Yeung. “A covariance analysis model for DDoS attack
detection”. In: IEEE ICC. 2004 (cit. on p. 17).

[76] V. Sekar et al. “LADS: Large-scale Automated DDoS Detection System.” In:
USENIX Annual Technical Conference, General Track. 2006, pp. 171–184 (cit.
on p. 17).

[77] S. M. Mousavi and M. St-Hilaire. “Early detection of DDoS attacks against
SDN controllers”. In: ICNC. 2015 (cit. on p. 17).

[78] A. Metwally, D. Agrawal, and A. El Abbadi. “Efficient computation of frequent
and top-k elements in data streams”. In: ICDT. 2005 (cit. on p. 17).

[79] R. Schweller et al. “Reversible sketches: enabling monitoring and analysis over
high-speed data streams”. In: IEEE/ACM Trans. Networking 15.5 (2007) (cit.
on p. 17).

[80] L. Tang, Q. Huang, and P. PC Lee. “MV-Sketch: A Fast and Compact Invert-
ible Sketch for Heavy Flow Detection in Network Data Streams”. In: IEEE
INFOCOM. 2019 (cit. on p. 17).

[81] C. Graham and S. Muthukrishnan. “What’s new: Finding significant differ-
ences in network data streams”. In: IEEE INFOCOM. 2004 (cit. on p. 17).

[82] P. Tammana, R. Agarwal, and M. Lee. “Simplifying datacenter network de-
bugging with pathdump”. In: ACM OSDI. 2016 (cit. on p. 17).

134

Bibliography

[83] P. Tammana, R. Agarwal, and M. Lee. “Distributed Network Monitoring and
Debugging with SwitchPointer”. In: NSDI. 2018 (cit. on p. 17).

[84] B. Arzani et al. “007: Democratically Finding the Cause of Packet Drops”. In:
NSDI. 2018 (cit. on p. 17).

[85] C. Estan et al. “Building a better NetFlow”. In: ACM SIGCOMM. 2004 (cit.
on pp. 17, 18).

[86] InMon – bhuyan2015towards. http://sflow.org/. 2019 (cit. on p. 17).
[87] M. Zaharia and M. Chowdhury and M. J. Franklin and S. Shenker and I. Sto-

ica. “Spark: Cluster Computing with Working Sets”. In: USENIX HotCloud.
2010 (cit. on pp. 17, 18).

[88] C. Labovitz et al. “Internet Inter-Domain Traffic”. In: ACM SIGCOMM. 2010
(cit. on p. 17).

[89] R. Caceres et al. “Measurement and analysis of IP network usage and behav-
ior”. In: IEEE Communications Magazine 38.5 (2000) (cit. on p. 17).

[90] European Union. Data protection in the EU, The General Data Protection Reg-
ulation (GDPR); Regulation (EU) 2016/679. https://ec.europa.eu/info/law/law-
topic/data-protection/. 2018 (cit. on p. 18).

[91] A. Wundsam et al. “OFRewind: Enabling Record and Replay Troubleshooting
for Networks”. In: Usenix ATC. 2011 (cit. on p. 18).

[92] A. Wundsam et al. “Network troubleshooting with mirror vnets”. In: GLOBE-
COM Workshops. 2010 (cit. on p. 18).

[93] Ross Teixeira et al. “Packetscope: Monitoring the packet lifecycle inside a
switch”. In: Proceedings of the Symposium on SDN Research. 2020, pp. 76–82
(cit. on p. 18).

[94] Muhammad Tirmazi et al. “Cheetah: Accelerating Database Queries with
Switch Pruning”. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2020, pp. 2407–2422 (cit. on p. 18).

[95] Damu Ding et al. “An incrementally-deployable P4-enabled architecture for
network-wide heavy-hitter detection”. In: IEEE Transactions on Network and
Service Management 17.1 (2020) (cit. on p. 18).

[96] Ran Ben Basat et al. “Designing Heavy-Hitter Detection Algorithms for Pro-
grammable Switches”. In: IEEE/ACM Transactions on Networking (2020) (cit.
on p. 18).

[97] S. Pontarelli et al. “Flowblaze: Stateful packet processing in hardware”. In:
NSDI. 2019 (cit. on p. 18).

[98] M. Zhang et al. “Poseidon: Mitigating volumetric ddos attacks with pro-
grammable switches”. In: NDSS. 2020 (cit. on p. 18).

[99] M. Yu. “Network telemetry: towards a top-down approach”. In: ACM CCR
49.1 (2019) (cit. on p. 18).

[100] Y. Lee and Y. Lee. “Toward Scalable Internet Traffic Measurement and Anal-
ysis with Hadoop”. In: ACM CCR 43.1 (2013) (cit. on p. 18).

135

http://sflow.org/

Bibliography

[101] Yandex. ClickHouse – open source distributed column-oriented DBMS. https://click-
house.yandex/. 2018 (cit. on pp. 18, 54).

[102] A. Vulimiri et al. “Global analytics in the face of bandwidth and regulatory
constraints”. In: NSDI. 2015 (cit. on p. 18).

[103] A. Vulimir et al. “WANalytics: Analytics for a Geo-Distributed Data-Intensive
Worl”. In: CIDR. 2015 (cit. on p. 18).

[104] R. Viswanathan, G. Ananthanarayanan, and A. Akella. “CLARINET: WAN-
Aware Optimization for Analytics Queries”. In: NSDI. 2016 (cit. on p. 18).

[105] K. Hsieh et al. “Gaia: Geo-Distributed Machine Learning Approaching LAN
Speeds”. In: NSDI. 2017 (cit. on p. 18).

[106] Yuzhen Huang et al. “Yugong: Geo-Distributed data and job placement at
scale”. In: Proceedings of the VLDB Endowment 12.12 (2019), pp. 2155–2169
(cit. on p. 18).

[107] Alessandro D’Alconzo et al. “A survey on big data for network traffic monitor-
ing and analysis”. In: IEEE Transactions on Network and Service Management
16.3 (2019), pp. 800–813 (cit. on p. 18).

[108] Ran Ben Basat et al. “Randomized admission policy for efficient top-k, fre-
quency, and volume estimation”. In: IEEE/ACM Transactions on Networking
27.4 (2019), pp. 1432–1445 (cit. on p. 18).

[109] C. Estan and G. Varghese. “New Directions in Traffic Measurement and Ac-
counting”. In: ACM SIGCOMM. 2002 (cit. on p. 18).

[110] Rob Harrison et al. “Carpe Elephants: Seize the Global Heavy Hitters”. In:
Proceedings of the Workshop on Secure Programmable Network Infrastructure.
2020, pp. 15–21 (cit. on p. 18).

[111] G. Cormode et al. “Diamond in the Rough: Finding Hierarchical Heavy Hitters
in Multi-Dimensional Data”. In: ACM SIGMOD. 2004 (cit. on pp. 18, 36–38).

[112] M. Mitzenmacher, T. Steinke, and J. Thaler. “Hierarchical Heavy Hitters with
the Space Saving Algorithm”. In: ALENEX. 2012 (cit. on pp. 18, 38, 49).

[113] G. Cormode and S. Muthukrishnan. “What’s new: Finding significant differ-
ences in network data streams”. In: IEEE/ACM Trans. Networking 13.6 (2005)
(cit. on p. 19).

[114] Nikita Ivkin et al. “I know what you did last summer: Network monitoring us-
ing interval queries”. In: Proceedings of the ACM on Measurement and Analysis
of Computing Systems 3.3 (2019) (cit. on p. 19).

[115] Z. Liu et al. “One sketch to rule them all: Rethinking network flow monitoring
with univmon”. In: ACM SIGCOMM. 2016 (cit. on p. 19).

[116] Theophilus Wellem et al. “A flexible sketch-based network traffic monitoring
infrastructure”. In: IEEE Access 7 (2019) (cit. on p. 19).

[117] Haibo Wang et al. “Fast and Accurate Traffic Measurement With Hierarchical
Filtering”. In: IEEE Transactions on Parallel and Distributed Systems 31.10
(2020), pp. 2360–2374 (cit. on p. 19).

136

Bibliography

[118] ITU. Security framework for the Internet of things based on the gateway model.
https://handle.itu.int/11.1002/1000/13607. 2018 (cit. on p. 21).

[119] Amazon AWS. Open MQTT Report – Expanding the Hunt for Vulnerable IoT
devices. https://aws.amazon.com/what-is/iot/ (cit. on p. 21).

[120] IEEE. Towards a Definition of the Internet of Things (IoT). https://iot.
ieee.org/definition.html. 2015 (cit. on p. 21).

[121] Mehwish Akram et al. Securing Web Transactions: TLS Server Certificate
Management. Tech. rep. National Institute of Standards and Technology, 2020
(cit. on p. 22).

[122] D. Mills et al. Network Time Protocol Version 4: Protocol and Algorithms
Specification. RFC 5905 (Proposed Standard). Updated by RFCs 7822, 8573,
9109. June 2010. url: http://www.ietf.org/rfc/rfc5905.txt (cit. on
p. 24).

[123] Eclipse Foundation. 2021 IoT & Edge Developer Survey Report. https://
outreach.eclipse.foundation/iot-edge-developer-2021. Jan. 2022 (cit.
on p. 24).

[124] OASIS Foundation.MQTT Specifications. https://mqtt.org/mqtt-specification/.
2022 (cit. on p. 24).

[125] Philipp Richter et al. “Distilling the internet’s application mix from packet-
sampled traffic”. In: International Conference on Passive and Active Network
Measurement. Springer. 2015, pp. 179–192 (cit. on p. 24).

[126] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252 (Proposed Standard). Updated by RFCs 7959, 8613, 8974,
9175. June 2014. url: http://www.ietf.org/rfc/rfc7252.txt (cit. on
p. 25).

[127] Poonam Yadav et al. “Position Paper: A Systematic Framework for Cate-
gorising IoT Device Fingerprinting Mechanisms”. In: Proceedings of the 2nd
International Workshop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things. AIChallengeIoT ’20. Virtual Event, Japan:
Association for Computing Machinery, 2020, pp. 62–68. isbn: 9781450381345.
doi: 10.1145/3417313.3429384. url: https://doi.org/10.1145/3417313.
3429384 (cit. on p. 25).

[128] Xuan Feng et al. “Acquisitional Rule-Based Engine for Discovering Internet-
of-Thing Devices”. In: Proceedings of the 27th USENIX Conference on Secu-
rity Symposium. SEC’18. Baltimore, MD, USA: USENIX Association, 2018,
pp. 327–341. isbn: 9781931971461 (cit. on p. 25).

[129] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman. “Inferring IoT Device
Types from Network Behavior Using Unsupervised Clustering”. In: IEEE Con-
ference on Local Computer Networks (LCN). 2019 (cit. on p. 26).

[130] S. Marchal et al. “AUDI: Towards Autonomous IoT Device-Type Identification
using Periodic Communication”. In: IEEE Journal on Sel. Areas in Comm. 37.6
(2019) (cit. on p. 26).

137

https://handle.itu.int/11.1002/1000/13607
 https://aws.amazon.com/what-is/iot/
https://iot.ieee.org/definition.html
https://iot.ieee.org/definition.html
http://www.ietf.org/rfc/rfc5905.txt
 https://outreach.eclipse.foundation/iot-edge-developer-2021
 https://outreach.eclipse.foundation/iot-edge-developer-2021
 https://mqtt.org/mqtt-specification/
http://www.ietf.org/rfc/rfc7252.txt
https://doi.org/10.1145/3417313.3429384
https://doi.org/10.1145/3417313.3429384
https://doi.org/10.1145/3417313.3429384

Bibliography

[131] Bharat Atul Desai et al. “A feature-ranking framework for IoT device classi-
fication”. In: 2019 11th International Conference on Communication Systems
and Networks (COMSNETS). 2019, pp. 64–71. doi: 10.1109/COMSNETS.
2019.8711210 (cit. on p. 26).

[132] N. Apthorpe, D. Reisman, and N. Feamster. “A Smart Home is No Castle:
Privacy Vulnerabilities of Encrypted IoT Traffic”. In: Data and Algorithmic
Transparency Workshop (2016) (cit. on p. 26).

[133] J. Ren et al. “Information Exposure From Consumer IoT Devices: A Multidi-
mensional, Network-Informed Measurement Approach”. In: ACM IMC. 2019
(cit. on pp. 26, 27, 57, 62, 64).

[134] D. Y. Huang et al. “IoTInspector: Crowdsourcing Labeled Network Traffic
from Smart Home Devices at Scale”. In: ACM IMWUT / Ubicomp. 2020 (cit.
on p. 26).

[135] G. Hu and K. Fukuda. “Toward Detecting IoT Device Traffic in Transit Net-
works”. In: International Conference on Artificial Intelligence in Information
and Communication (ICAIIC). 2020 (cit. on p. 26).

[136] Z. Durumeric, E. Wustrow, and J. A. Halderman. “ZMap: Fast Internet-Wide
Scanning and its Security Applications”. In: USENIX Security Symposium.
2013 (cit. on pp. 27, 29).

[137] X. He et al. “Fingerprinting Mainstream IoT Platforms Using Traffic Analysis”.
In: IEEE Internet of Things Journal 9.3 (2022), pp. 2083–2093 (cit. on pp. 27,
100, 101).

[138] Network Ingress Filtering: Defeating Denial of Service Attacks which employ
IP Source Address Spoofing. RFC 2827. 2000 (cit. on pp. 28, 112).

[139] C. Partridge and M. Allman. “Ethical Considerations in Network Measurement
Papers”. In: Communications of the ACM (2016) (cit. on p. 29).

[140] D. Dittrich, E. Kenneally, et al. “The Menlo Report: Ethical Principles Guiding
Information and Communication Technology Research”. In: U.S. Department
of Homeland Security (2012) (cit. on p. 29).

[141] KrebsOnSecurity Hit With Record DDoS. https://krebsonsecurity.com/
2016/09/krebsonsecurity-hit-with-record-ddos (cit. on p. 31).

[142] Dyn Analysis Summary Of Friday October 21 Attack. https://dyn.com/
blog/dyn-analysis- summary-of-friday-october-21-attack/. Oct. 2016
(cit. on p. 31).

[143] Flowyager in Github. https://github.com/saidjawad/Flowyager (cit. on
p. 31).

[144] N. Duffield, C. Lund, and M. Thorup. “Estimating Flow Distributions from
Sampled Flow Statistics”. In: ACM SIGCOMM. 2003 (cit. on p. 32).

[145] T. Repantis et al. “Scaling a Monitoring Infrastructure for the Akamai Net-
work”. In: SIGOPS Oper. Syst. Rev. 44.3 (2010) (cit. on p. 34).

138

https://doi.org/10.1109/COMSNETS.2019.8711210
https://doi.org/10.1109/COMSNETS.2019.8711210
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://dyn.com/blog/dyn-analysis-
https://dyn.com/blog/dyn-analysis-
summary-of-friday-october-21-attack/
https://github.com/saidjawad/Flowyager

Bibliography

[146] J. Cohen et al. “Keeping Track of 70,000+ Servers: The Akamai Query Sys-
tem”. In: USENIX LISA. 2010 (cit. on p. 34).

[147] J. Wallerich et al. “A Methodology for Studying Persistency Aspects of Inter-
net Flows”. In: ACM CCR 35.2 (Apr. 2005) (cit. on p. 36).

[148] Y. Zhang et al. “On the characteristics and origins of internet flow rates”. In:
ACM CCR. Vol. 32. 4. 2002 (cit. on p. 36).

[149] L. Breslau et al. “Web caching and Zipf-like distributions: Evidence and im-
plications”. In: IEEE INFOCOM. 1999 (cit. on p. 36).

[150] G. Cormode et al. “Finding Hierarchical Heavy Hitters in Streaming Data”.
In: ACM Trans. Knowl. Discov. Data 1.4 (2008) (cit. on pp. 36–38).

[151] mongoDB: The database for modern applications. https://www.mongodb.
com/. 2019 (cit. on p. 43).

[152] Apache Thrift. https://thrift.apache.org/. 2019 (cit. on p. 43).
[153] ANTLR (ANother Tool for Language Recognition). https://www.antlr.

org/. 2019 (cit. on p. 43).
[154] RStudio, Inc. Easy Web applications in R. 2013 (cit. on p. 43).
[155] MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.

2018 (cit. on p. 45).
[156] B. B. Ran. Implementation of the Constant Time Updates in Hierarchical

Heavy Hitters paper, ACM SIGCOMM 2017. https://github.com/ranbenbasat/
RHHH. 2018 (cit. on p. 49).

[157] CAIDA. The CAIDA UCSD Passive Monitor: Equinix-Chicago - 2016-02-18.
https://www.caida.org/data/monitors/passive-equinix-chicago.xml.
2018 (cit. on p. 49).

[158] S. T. Zargar, J. Joshi, and D. Tipper. “A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks”. In: IEEE communica-
tions surveys & tutorials 15.4 (2013), pp. 2046–2069 (cit. on p. 54).

[159] G. Carl et al. “Denial-of-service attack-detection techniques”. In: IEEE Inter-
net computing 10.1 (2006), pp. 82–89 (cit. on p. 54).

[160] C. Douligeris and A. Mitrokotsa. “DDoS attacks and defense mechanisms: clas-
sification and state-of-the-art”. In: Computer Networks 44.5 (2004), pp. 643–
666 (cit. on p. 54).

[161] K. Lee et al. “DDoS attack detection method using cluster analysis”. In: Expert
systems with applications 34.3 (2008), pp. 1659–1665 (cit. on p. 54).

[162] J. Czyz et al. “Taming the 800 Pound Gorilla: The Rise and Decline of NTP
DDoS Attacks”. In: ACM IMC. 2014 (cit. on pp. 54, 55).

[163] M. Jonker et al. “Millions of Targets Under Attack: A Macroscopic Charac-
terization of the DoS Ecosystem”. In: ACM IMC. 2017 (cit. on pp. 54, 55).

[164] C. Dietzel et al. “Stellar: network attack mitigation using advanced blackhol-
ing”. In: ACM CoNEXT. 2018 (cit. on pp. 54, 55).

139

https://www.mongodb.com/
https://www.mongodb.com/
https://thrift.apache.org/
https://www.antlr.org/
https://www.antlr.org/
http://mawi.wide.ad.jp/mawi/
https://github.com/ranbenbasat/RHHH
https://github.com/ranbenbasat/RHHH
https://www.caida.org/data/monitors/passive-equinix-chicago.xml

Bibliography

[165] M. Jonker et al. “Measuring the Adoption of DDoS Protection Services”. In:
ACM IMC. 2016 (cit. on p. 54).

[166] US-Cert: Alert (TA14-017A), UDP-Based Amplification Attacks. https://
www.us-cert.gov/ncas/alerts/TA14-017A. 2019 (cit. on p. 55).

[167] Akamai. State of the Internet Security Report (Attack Spotlight: Memcached).
https://www.akamai.com/us/en/multimedia/documents/state-of-the-
internet/soti-summer-2018-attack-spotlight.pdf. 2018 (cit. on p. 55).

[168] C. Rossow. “Amplification Hell: Revisiting Network Protocols for DDoS Abuse”.
In: NDSS (2014) (cit. on p. 55).

[169] Amazon.Alexa Voice Service Endpoints (accessed 2019-11). https://developer.
amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.
html#endpoints (cit. on pp. 57, 64, 69).

[170] L. F. DeKoven et al. “Measuring Security Practices and How They Impact
Security”. In: ACM IMC. 2019 (cit. on pp. 59, 74).

[171] P. Patel et al. “On the Effectiveness of Random Testing for Android: Or How
I Learned to Stop Worrying and Love the Monkey”. In: Proceedings of the 13th
International Workshop on Automation of Software Test. 2018 (cit. on p. 61).

[172] Farsight Security DNSDB. https://www.dnsdb.info/ (cit. on pp. 67, 103).
[173] Z. Durumeric et al. “A Search Engine Backed by Internet-Wide Scanning”. In:

ACM CCS. 2015 (cit. on pp. 67, 68).
[174] C. Iordanou et al. “Tracing cross border web tracking”. In: ACM IMC. 2018

(cit. on pp. 67, 105).
[175] F. Weimer. “Passive DNS Replication”. In: 17th Annual FIRST Conference.

2005 (cit. on pp. 67, 103).
[176] Amazon AWS. What is Amazon VPC? (accessed 2019-11). https://docs.

aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html (cit.
on p. 68).

[177] Amazon AWS. Public IPv4 addresses and external DNS hostnames (accessed
2019-11). https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using-instance-addressing.html#concepts-public-addresses (cit. on
p. 68).

[178] Microsoft. Public IP addresses (accessed 2019-11). https://docs.microsoft.
com/en-us/azure/virtual-network/virtual-network-ip-addresses-
overview-arm#public-ip-addresses (cit. on p. 68).

[179] Tuya Inc. Tuya Platform and Services (accessed 2019-12). https://www.
tuya.com/platform (cit. on p. 69).

[180] Electric Imp. Electric imp Platform (accessed 2019-12). https://www.electricimp.
com/platform/how-it-works/ (cit. on p. 69).

[181] Amazon. AWS IoT Platform (accessed 2019-12). https://aws.amazon.com/
iot/ (cit. on pp. 69, 99, 101, 108).

140

https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-attack-spotlight.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-attack-spotlight.pdf
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html#endpoints
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html#endpoints
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html#endpoints
https://www.dnsdb.info/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#concepts-public-addresses
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#concepts-public-addresses
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-ip-addresses-overview-arm#public-ip-addresses
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-ip-addresses-overview-arm#public-ip-addresses
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-ip-addresses-overview-arm#public-ip-addresses
https://www.tuya.com/platform
https://www.tuya.com/platform
https://www.electricimp.com/platform/how-it-works/
https://www.electricimp.com/platform/how-it-works/
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/

Bibliography

[182] AuraK, Samsung Community Moderator. Backgroundverbindungen (auch Standby),
Datenschutz - in German(accessed 2019-11). https://eu.community.samsung.
com/t5/TV/Backgroundverbindungen-auch-Standby-Datenschutz/m-
p/625473/highlight/true\#M24445. July 2018 (cit. on pp. 69, 70).

[183] Bitkom e.V. Zukunft der Consumer Technology – 2019 - in German (accessed
2019-11). https://www.bitkom.org/sites/default/files/2019-09/
190903_ct_studie_2019_online.pdf. 2019 (cit. on p. 74).

[184] IDC. Google Overtakes Amazon to Lead the European Smart Home Market in
1Q19, says IDC (accessed 2019-11). https://www.idc.com/getdoc.jsp?
containerId=prEUR145337319. 2019 (cit. on p. 74).

[185] Deutsche Welle. Voice Assistants on the rise in Germany (accessed 2019-11).
https://www.dw.com/en/voice-assistants-on-the-rise-in-germany/a-
45269599 (cit. on p. 74).

[186] A. H. Rasti et al. “Eyeball ASes: from Geography to Connectivity”. In: ACM
IMC. 2010 (cit. on p. 78).

[187] M. Antonakakis et al. “Understanding the Mirai Botnet”. In: USENIX Security
Symposium. 2017 (cit. on p. 79).

[188] A. M. Mandalari et al. “Towards Automatic Identification and Blocking of
Non-Critical IoT Traffic Destinations”. In: IEEE S & P Workshop on Tech-
nology and Consumer Protection. 2020 (cit. on p. 79).

[189] Google. DNS-over-TLS. https://developers.google.com/speed/public-
dns/docs/dns-over-tls. 2020 (cit. on p. 80).

[190] F. Chen, R. K. Sitaraman, and M. Torres. “End-User Mapping: Next Gen-
eration Request Routing for Content Delivery”. In: ACM SIGCOMM. 2015
(cit. on p. 80).

[191] S. Strowes. IPv6 Adoption in 2021. https : / / labs . ripe . net / author /
stephen_strowes/ipv6-adoption-in-2021/. 2021 (cit. on p. 83).

[192] G. Huston. IPv6 and the Internet of Things. https://blog.apnic.net/
2016/04/13/ipv6-internet-things/. 2016 (cit. on p. 83).

[193] T. Mrugalski et al. Dynamic Host Configuration Protocol for IPv6 (DHCPv6).
RFC 8415 (Proposed Standard). Nov. 2018. url: http://www.ietf.org/
rfc/rfc8415.txt (cit. on pp. 83, 84).

[194] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for Stateless Ad-
dress Autoconfiguration in IPv6. RFC 4941 (Draft Standard). Obsoleted by
RFC 8981. Sept. 2007. url: http://www.ietf.org/rfc/rfc4941.txt (cit.
on pp. 83, 84, 95).

[195] F. Gont et al. Temporary Address Extensions for Stateless Address Autocon-
figuration in IPv6. RFC 8981 (Proposed Standard). Feb. 2021. url: http:
//www.ietf.org/rfc/rfc8981.txt (cit. on pp. 83, 95).

[196] E. C. Rye, R. Beverly, and kc claffy. “Follow the Scent: Defeating IPv6 Prefix
Rotation Privacy”. In: ACM IMC. 2021 (cit. on pp. 83, 89).

141

https://eu.community.samsung.com/t5/TV/Backgroundverbindungen-auch-Standby-Datenschutz/m-p/625473/highlight/true\ #M24445
https://eu.community.samsung.com/t5/TV/Backgroundverbindungen-auch-Standby-Datenschutz/m-p/625473/highlight/true\ #M24445
https://eu.community.samsung.com/t5/TV/Backgroundverbindungen-auch-Standby-Datenschutz/m-p/625473/highlight/true\ #M24445
https://www.bitkom.org/sites/default/files/2019-09/190903_ct_studie_2019_online.pdf
https://www.bitkom.org/sites/default/files/2019-09/190903_ct_studie_2019_online.pdf
https://www.idc.com/getdoc.jsp?containerId=prEUR145337319
https://www.idc.com/getdoc.jsp?containerId=prEUR145337319
https://www.dw.com/en/voice-assistants-on-the-rise-in-germany/a-45269599
https://www.dw.com/en/voice-assistants-on-the-rise-in-germany/a-45269599
https://developers.google.com/speed/public-dns/docs/dns-over-tls
https://developers.google.com/speed/public-dns/docs/dns-over-tls
https://labs.ripe.net/author/stephen_strowes/ipv6-adoption-in-2021/
https://labs.ripe.net/author/stephen_strowes/ipv6-adoption-in-2021/
https://blog.apnic.net/2016/04/13/ipv6-internet-things/
https://blog.apnic.net/2016/04/13/ipv6-internet-things/
http://www.ietf.org/rfc/rfc8415.txt
http://www.ietf.org/rfc/rfc8415.txt
http://www.ietf.org/rfc/rfc4941.txt
http://www.ietf.org/rfc/rfc8981.txt
http://www.ietf.org/rfc/rfc8981.txt

Bibliography

[197] P. Gigis et al. “Seven Years in the Life of Hypergiants’ Off-Nets”. In: ACM
SIGCOMM. 2021 (cit. on pp. 83, 100, 103).

[198] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460 (Draft Standard). Obsoleted by RFC 8200, updated by RFCs 5095,
5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112. Dec. 1998. url: http://www.
ietf.org/rfc/rfc2460.txt (cit. on p. 84).

[199] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 8200 (INTERNET STANDARD). July 2017. url: http://www.ietf.
org/rfc/rfc8200.txt (cit. on p. 84).

[200] E. Karpilovsky et al. “Quantifying the extent of IPv6 deployment”. In: PAM.
2009 (cit. on p. 84).

[201] Google. IPv6 Adoption. https://www.google.com/intl/en/ipv6/statistics.
html (cit. on p. 84).

[202] F. Gont and T. Chown. Network Reconnaissance in IPv6 Networks. RFC 7707
(Informational). Mar. 2016. url: http://www.ietf.org/rfc/rfc7707.txt
(cit. on p. 84).

[203] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard).
Updated by RFCs 3396, 4361, 5494, 6842. Mar. 1997. url: http://www.ietf.
org/rfc/rfc2131.txt (cit. on p. 84).

[204] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfigu-
ration. RFC 4862 (Draft Standard). Updated by RFC 7527. Sept. 2007. url:
http://www.ietf.org/rfc/rfc4862.txt (cit. on p. 84).

[205] IEEE Standards Association. Guidelines for Use of Extended Unique Identifier
(EUI), Organizationally Unique Identifier (OUI), and Company ID (CID).
https://standards.ieee.org/content/dam/ieee-standards/standards/
web/documents/tutorials/eui.pdf. 2018 (cit. on p. 84).

[206] E. C. Rye, J. Martin, and R. Beverly. “EUI-64 Considered Harmful”. In: arXiv
preprint arXiv:1902.08968 (2019) (cit. on p. 84).

[207] O. Gasser et al. “Scanning the IPv6 Internet: Towards a Comprehensive Hitlist”.
In: TMA. 2016 (cit. on p. 84).

[208] O. Gasser et al. “Clusters in the Expanse: Understanding and Unbiasing IPv6
Hitlists”. In: ACM IMC. 2018 (cit. on pp. 84, 103).

[209] E. C. Rye and R. Beverly. “Discovering the IPv6 network periphery”. In: arXiv
preprint arXiv:2001.08684 (2020) (cit. on p. 84).

[210] R. Beverly et al. “In the IP of the beholder: Strategies for active IPv6 topology
discovery”. In: ACM IMC. 2018 (cit. on p. 84).

[211] J. P. Rohrer, B. LaFever, and R. Beverly. “Empirical study of router IPv6
interface address distributions”. In: IEEE Internet Computing 20.4 () (cit. on
p. 84).

[212] S. D. Strowes. “Bootstrapping Active IPv6 Measurement with IPv4 and Public
DNS”. In: arXiv preprint arXiv:1710.08536 (2017) (cit. on p. 84).

142

http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc8200.txt
http://www.ietf.org/rfc/rfc8200.txt
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://www.ietf.org/rfc/rfc7707.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc4862.txt
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf

Bibliography

[213] T. Fiebig et al. “Something from Nothing (There): Collecting Global IPv6
Datasets from DNS”. In: PAM. 2017 (cit. on p. 84).

[214] T. Fiebig et al. “In rDNS We Trust: Revisiting a Common Data-Source’s
Reliability”. In: PAM. 2018 (cit. on p. 84).

[215] K. Borgolte et al. “Enumerating Active IPv6 Hosts for Large-scale Security
Scans via DNSSEC-signed Reverse Zones”. In: IEEE Symposium on Security
and Privacy. 2018 (cit. on p. 84).

[216] J. Ullrich et al. “On reconnaissance with IPv6: a pattern-based scanning ap-
proach”. In: ARES. 2015 (cit. on p. 84).

[217] P. Foremski, D. Plonka, and A. Berger. “Entropy/IP: Uncovering Structure in
IPv6 Addresses”. In: ACM IMC. 2016 (cit. on p. 84).

[218] A. Murdock et al. “Target Generation for Internet-wide IPv6 Scanning”. In:
ACM IMC. 2017 (cit. on p. 84).

[219] K. Fukuda and J. Heidemann. “Who Knocks at the IPv6 Door? Detecting
IPv6 Scanning”. In: ACM IMC. 2018 (cit. on p. 84).

[220] Z. Liu et al. “6Tree: Efficient dynamic discovery of active addresses in the IPv6
address space”. In: Computer Networks 155 (2019) (cit. on p. 84).

[221] V. Bajpai and J. Schönwälder. “A Longitudinal View of Dual-Stacked Web-
sites—Failures, Latency and Happy Eyeballs”. In: IEEE/ACM Transactions
on Networking 27.2 (2019) (cit. on p. 84).

[222] R. Almeida et al. “Classification of Load Balancing in the Internet”. In: IEEE
INFOCOM. 2020 (cit. on p. 84).

[223] F. Li and D. Freeman. “Towards A User-Level Understanding of IPv6 Behav-
ior”. In: ACM IMC. 2020 (cit. on p. 84).

[224] R. Padmanabhan et al. “DynamIPs: Analyzing address assignment practices
in IPv4 and IPv6”. In: ACM CoNEXT. 2020 (cit. on p. 84).

[225] B. Hou et al. “6Hit: A Reinforcement Learning-based Approach to Target
Generation for Internet-wide IPv6 Scanning”. In: IEEE INFOCOM. 2021 (cit.
on p. 84).

[226] T. Cui et al. “6GAN: IPv6 Multi-Pattern Target Generation via Generative
Adversarial Nets with Reinforcement Learning”. In: IEEE INFOCOM. 2021
(cit. on p. 84).

[227] X. Li et al. “Fast IPv6 Network Periphery Discovery and Security Implica-
tions”. In: IEEE/IFIP DSN. 2021 (cit. on p. 84).

[228] G. Zheng, X. Xu, and C. Wang. “An Effective Target Address Generation
Method for IPv6 Address Scan”. In: IEEE ICCC. 2020 (cit. on p. 84).

[229] T. Bruns. “Network Reconnaissance in IPv6-based Residential Broadband
Networks”. In: arXiv preprint arXiv:2012.10652 (2020) (cit. on pp. 84, 95).

[230] Institute of Electrical and Electronics Engineers (IEEE). Organizationally
Unique Identifier (OUI) MAC Address Registry. http://standards-oui.
ieee.org/oui/oui.txt (cit. on pp. 85, 89).

143

http://standards-oui.ieee.org/oui/oui.txt
http://standards-oui.ieee.org/oui/oui.txt

Bibliography

[231] Apple Inc. IPv6 security. Apple Platform Security, https://support.apple.
com/guide/security/ipv6-security-seccb625dcd9/web (cit. on p. 89).

[232] S. J. Saidi et al. “A Haystack Full of Needles: Scalable Detection of IoT Devices
in the Wild”. In: ACM IMC. 2020 (cit. on pp. 92, 100, 105).

[233] A. Banks and R. Gupta. MQTT Version 3.1.1. MQTT Version 3.1.1, https:
//docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
(cit. on p. 92).

[234] Google.Android Enterprise Network Requirements. https://support.google.
com/work/android/answer/10513641?hl=en. 2021 (cit. on p. 93).

[235] T. Böttger et al. “A Hypergiant’s View of the Internet”. In: ACM SIGCOMM
CCR 47.1 (2017) (cit. on p. 94).

[236] European Commission. Internal Market, Industry, Entrepreneurship and SMEs
- CE Marking. https : / / ec . europa . eu / growth / single - market / ce -
marking_en. 2021 (cit. on p. 96).

[237] G. Van de Velde et al. Local Network Protection for IPv6. RFC 4864 (Infor-
mational). May 2007. url: http://www.ietf.org/rfc/rfc4864.txt (cit. on
p. 96).

[238] Google. AI and machine learning products. https://cloud.google.com/
products/ai. 2022 (cit. on p. 99).

[239] Amazon AWS. Machine Learning on AWS. https : / / aws . amazon . com /
machine-learning/. 2022 (cit. on p. 99).

[240] G. Kappel et al. “Internet of Production: Entering Phase Two of Industry 4.0”.
In: Comm. of the ACM (2022) (cit. on p. 99).

[241] Amazon AWS.Amazon Personalize. https://aws.amazon.com/personalize/.
2022 (cit. on p. 99).

[242] Google.Google Cloud IoT solutions. https://cloud.google.com/solutions/
iot. 2022 (cit. on pp. 99, 101, 108).

[243] W. Zhou et al. “Discovering and Understanding the Security Hazards in the
Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home
Platforms”. In: Usenix Security. 2019 (cit. on pp. 100, 101).

[244] T. Arnold et al. “Cloud Provider Connectivity in the Flat Internet”. In: ACM
IMC. 2020 (cit. on p. 100).

[245] T. K. Dang et al. “Cloudy with a Chance of Short RTTsAnalyzing Cloud
Connectivity in the Internet”. In: ACM IMC. 2021 (cit. on p. 100).

[246] Bosch. Bosch IoT Hub: protocol-adapters. https://docs.bosch-iot-suite.
com/hub/how-to/protocol-adapters/. 2022 (cit. on pp. 101, 102, 108).

[247] Fujitsu. Fujitsu IoT. https://iot-docs.jp-east-1.paas.cloud.global.
fujitsu.com/en/manual/v7/apireference_en.pdf. 2022 (cit. on pp. 101,
108).

[248] Siemens. MindSphere Documentation. https://siemens.mindsphere.io/
en/docs/documentation-overview. 2022 (cit. on pp. 101, 108).

144

https://support.apple.com/guide/security/ipv6-security-seccb625dcd9/web
https://support.apple.com/guide/security/ipv6-security-seccb625dcd9/web
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://support.google.com/work/android/answer/10513641?hl=en
https://support.google.com/work/android/answer/10513641?hl=en
https://ec.europa.eu/growth/single-market/ce-marking_en
https://ec.europa.eu/growth/single-market/ce-marking_en
http://www.ietf.org/rfc/rfc4864.txt
https://cloud.google.com/products/ai
https://cloud.google.com/products/ai
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/personalize/
https://cloud.google.com/solutions/iot
https://cloud.google.com/solutions/iot
https://docs.bosch-iot-suite.com/hub/how-to/protocol-adapters/
https://docs.bosch-iot-suite.com/hub/how-to/protocol-adapters/
https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/v7/apireference_en.pdf
https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/v7/apireference_en.pdf
https://siemens.mindsphere.io/en/docs/documentation-overview
https://siemens.mindsphere.io/en/docs/documentation-overview

Bibliography

[249] Huawei. IoTDA. https://www.huaweicloud.com/product/iothub.html.
2022 (cit. on pp. 101, 108).

[250] IBM. IoT Solutions. https://www.ibm.com/cloud/internet-of-things.
2022 (cit. on pp. 101, 108).

[251] Oracle. Oracle Internet of Things Cloud Service. https://docs.oracle.com/
en/cloud/paas/iot-cloud/index.html. 2022 (cit. on pp. 101, 108).

[252] SAP. SAP Internet of Things. https://www.sap.com/products/iot-data-
services.html. 2022 (cit. on pp. 101, 108).

[253] Alibaba. IoT Platform. https://www.alibabacloud.com/product/iot. 2022
(cit. on pp. 101, 108).

[254] Baidu. IoT Platform. https://intl.cloud.baidu.com/product/iot.html.
2022 (cit. on pp. 101, 108).

[255] B. Yeganeh et al. “How Cloud Traffic Goes Hiding:A Study of Amazon’s Peer-
ing Fabric”. In: ACM IMC. 2019 (cit. on p. 101).

[256] IoT Analytics. 2020 List of IoT Platforms Companies. https://iot-analytics.com/product/list-
of-iot-platform-companies. 2021 (cit. on p. 102).

[257] Alibaba. Protocols for connecting devices. https://partners-intl.aliyun.
com/help/en/iot-platform/latest/protocols-for-connecting-devices.
2022 (cit. on pp. 102, 108).

[258] Tencent. Device Connection Regions. https://intl.cloud.tencent.com/
document/product/1105/42712. 2022 (cit. on pp. 102, 108).

[259] F. Cangialosi et al. “Measurement and analysis of private key sharing in the
https ecosystem”. In: ACM CCS. 2016 (cit. on p. 103).

[260] T. Chung et al. “Measuring and applying invalid SSL certificates: The silent
majority”. In: ACM IMC. 2016 (cit. on p. 103).

[261] Z. Durmeric. ZGrab2. https://github.com/zmap/zgrab2. 2018 (cit. on
p. 103).

[262] Alibaba. Access IoT Platform by using HTTP. https://www.alibabacloud.
com/help/en/iot-platform/latest/access-iot-platform-by-using-
http. 2022 (cit. on p. 106).

[263] Amazon. Elastic IP addresses. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/elastic-ip-addresses-eip.html. 2022 (cit. on p. 108).

[264] Alibaba. IPv6-based MQTT connections. https://partners-intl.aliyun.
com/help/en/iot-platform/latest/ipv6-based-mqtt-connections. 2022
(cit. on p. 108).

[265] Amazon AWS.Device communication protocols. https://docs.aws.amazon.com/iot/lat-
est/developerguide/protocols.html. 2022 (cit. on p. 108).

[266] Baidu. IoT Core. https://cloud.baidu.com/doc/IOT/index.html. 2022
(cit. on p. 108).

145

https://www.huaweicloud.com/product/iothub.html
https://www.ibm.com/cloud/internet-of-things
https://docs.oracle.com/en/cloud/paas/iot-cloud/index.html
https://docs.oracle.com/en/cloud/paas/iot-cloud/index.html
https://www.sap.com/products/iot-data-services.html
https://www.sap.com/products/iot-data-services.html
https://www.alibabacloud.com/product/iot
https://intl.cloud.baidu.com/product/iot.html
https://partners-intl.aliyun.com/help/en/iot-platform/latest/protocols-for-connecting-devices
https://partners-intl.aliyun.com/help/en/iot-platform/latest/protocols-for-connecting-devices
https://intl.cloud.tencent.com/document/product/1105/42712
https://intl.cloud.tencent.com/document/product/1105/42712
https://github.com/zmap/zgrab2
https://www.alibabacloud.com/help/en/iot-platform/latest/access-iot-platform-by-using-http
https://www.alibabacloud.com/help/en/iot-platform/latest/access-iot-platform-by-using-http
https://www.alibabacloud.com/help/en/iot-platform/latest/access-iot-platform-by-using-http
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://partners-intl.aliyun.com/help/en/iot-platform/latest/ipv6-based-mqtt-connections
https://partners-intl.aliyun.com/help/en/iot-platform/latest/ipv6-based-mqtt-connections
https://cloud.baidu.com/doc/IOT/index.html

Bibliography

[267] Baidu. Region - IoT services related product area information. https://intl.cloud.baidu.com/-
doc/Reference/s/2jwvz23xx-en. 2022 (cit. on pp. 108, 109).

[268] Cisco. Cisco Kinetic. https://developer.cisco.com/site/kinetic/. 2022 (cit. on
p. 108).

[269] Cisco Kinetic. IoT Platform. https://developer.cisco.com/docs/GMM/#!
requirements/requirements. 2022 (cit. on p. 108).

[270] Google. Publishing over the MQTT: MQTT Server. https://cloud.google.
com/iot/docs/how-tos. 2022 (cit. on pp. 108, 111).

[271] IBM. Connect your device to Watson IoT Platform. https://cloud.ibm.
com/docs/IoT/index.html#step2. 2022 (cit. on p. 108).

[272] Microsoft Azure. IoT Hub IP addresses. https://docs.microsoft.com/en-
us/azure/iot-hub/iot-hub-understand-ip-address. 2022 (cit. on p. 108).

[273] Oracle. About the IoT Connectivity Protocols. https://docs.oracle.com/
en/cloud/paas/iot-cloud/develop/iot-connectivity-protocols.html.
2022 (cit. on p. 108).

[274] PTC. ThingWorx IIoT Solutions Platform. https : / / www . ptc . com / en /
products/thingworx. 2022 (cit. on p. 108).

[275] SAP. SAP IoT Device Connectivity. https://help.sap.com/docs/SAP_IoT/
226d46a15bb245b7bf8126604bd6f0fb/9c7273450a874772ad2db007ce212a79.
html?version=2112b. 2022 (cit. on p. 108).

[276] Siemens. MindConnect API. https : / / documentation . mindsphere . io /
MindSphere/apis/connectivity-mindconnect/api-mindconnect-overview.
html#access. 2022 (cit. on p. 108).

[277] Sierra Wireless. Getting Started with AirVantage Platform. https://source.
sierrawireless.com/airvantage/av/howto/gettingstarted/. 2022 (cit.
on p. 108).

[278] Sierra Wireless. Introduction to MQTT. https://source.sierrawireless.
com/airvantage/av/reference/hardware/protocols/mqtt/. 2022 (cit. on
p. 108).

[279] Sierra Wireless. How to configure my infrastructure when devices are in a
private APN? https://source.sierrawireless.com/airvantage/av/
reference/register/howtos/configureInfrastructureForPrivateAPN/.
2022 (cit. on p. 108).

[280] Tencent. IoT Hub. https://intl.cloud.tencent.com/document/product/
1105. 2022 (cit. on p. 108).

[281] S. J. Saidi et al. Deep Dive into the IoT Backend Ecosystem artifacts. https:
//github.com/saidjawad/iot-backend. 2022 (cit. on p. 108).

[282] Google. Google Cloud Locations. https : / / cloud . google . com / about /
locations. 2022 (cit. on p. 109).

[283] Alibaba. Regions and zones. https://www.alibabacloud.com/help/en/
basics-for-beginners/latest/regions-and-zones. 2022 (cit. on p. 109).

146

https://developer.cisco.com/docs/GMM/ # !requirements/requirements
https://developer.cisco.com/docs/GMM/ # !requirements/requirements
https://cloud.google.com/iot/docs/how-tos
https://cloud.google.com/iot/docs/how-tos
https://cloud.ibm.com/docs/IoT/index.html # step2
https://cloud.ibm.com/docs/IoT/index.html # step2
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-understand-ip-address
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-understand-ip-address
https://docs.oracle.com/en/cloud/paas/iot-cloud/develop/iot-connectivity-protocols.html
https://docs.oracle.com/en/cloud/paas/iot-cloud/develop/iot-connectivity-protocols.html
https://www.ptc.com/en/products/thingworx
https://www.ptc.com/en/products/thingworx
https://help.sap.com/docs/SAP_IoT/226d46a15bb245b7bf8126604bd6f0fb/9c7273450a874772ad2db007ce212a79.html?version=2112b
https://help.sap.com/docs/SAP_IoT/226d46a15bb245b7bf8126604bd6f0fb/9c7273450a874772ad2db007ce212a79.html?version=2112b
https://help.sap.com/docs/SAP_IoT/226d46a15bb245b7bf8126604bd6f0fb/9c7273450a874772ad2db007ce212a79.html?version=2112b
https://documentation.mindsphere.io/MindSphere/apis/connectivity-mindconnect/api-mindconnect-overview.html # access
https://documentation.mindsphere.io/MindSphere/apis/connectivity-mindconnect/api-mindconnect-overview.html # access
https://documentation.mindsphere.io/MindSphere/apis/connectivity-mindconnect/api-mindconnect-overview.html # access
https://source.sierrawireless.com/airvantage/av/howto/gettingstarted/
https://source.sierrawireless.com/airvantage/av/howto/gettingstarted/
https://source.sierrawireless.com/airvantage/av/reference/hardware/protocols/mqtt/
https://source.sierrawireless.com/airvantage/av/reference/hardware/protocols/mqtt/
https://source.sierrawireless.com/airvantage/av/reference/register/howtos/configureInfrastructureForPrivateAPN/
https://source.sierrawireless.com/airvantage/av/reference/register/howtos/configureInfrastructureForPrivateAPN/
https://intl.cloud.tencent.com/document/product/1105
https://intl.cloud.tencent.com/document/product/1105
https://github.com/saidjawad/iot-backend
https://github.com/saidjawad/iot-backend
https://cloud.google.com/about/locations
https://cloud.google.com/about/locations
https://www.alibabacloud.com/help/en/basics-for-beginners/latest/regions-and-zones
https://www.alibabacloud.com/help/en/basics-for-beginners/latest/regions-and-zones

Bibliography

[284] Huawei.Huawei Cloud Regions and Endpoints. https://developer.huaweicloud.
com/intl/en-us/endpoint. 2022 (cit. on p. 109).

[285] Routeviews Project – University of Oregon. http://www.routeviews.org/
(cit. on p. 110).

[286] Amazon AWS. AWS Global Accelerator. https://aws.amazon.com/global-
accelerator/. 2022 (cit. on p. 110).

[287] P. Richter and A. Berger. “Scanning the Scanners: Sensing the Internet from a
Massively Distributed Network Telescope”. In: ACM IMC. 2019 (cit. on p. 112).

[288] Apache ActiveMQ. Apache ActiveMQ Artemis. https://activemq.apache.
org/components/artemis/documentation/1.4.0/. 2022 (cit. on p. 117).

[289] J. Varmarken et al. “The TV is Smart and Full of Trackers:Measuring Smart
TV Advertising and Tracking”. In: 2020 (cit. on p. 117).

[290] J. Varmarken et al. “FingerprinTV: Fingerprinting Smart TV Apps”. In: 2022
(cit. on p. 117).

[291] AWS. Summary of the AWS Service Event in the Northern Virginia (US-
EAST-1) Region. https://aws.amazon.com/message/12721/. 2021 (cit. on
p. 121).

[292] S. Soper and J. Gillum. Amazon says software problem was at root of huge
Internet outage this week. https://fortune.com/2021/12/10/amazon-
software-problem-cloud-outage-cause/. 2021 (cit. on p. 121).

[293] C. Villemez. AWS Outage Analysis: December 7, 2021. https://www.thousandeyes.
com/blog/aws-outage-analysis-dec-7-2021. 2021 (cit. on p. 121).

[294] J. Greene. Amazon’s cloud-computing unit problems take down websites, ser-
vices. https://www.washingtonpost.com/technology/2021/12/07/aws-
outage-websites-offline/. Dec. 2021 (cit. on p. 121).

[295] I. Steger. How Amazon Outage Left Smart Homes Not So Smart After All.
https : / / www . bloomberg . com / news / articles / 2021 - 12 - 08 / amazon -
outage-sparks-anger-as-fridges-stop-people-locked-out. 2021 (cit. on
p. 121).

[296] A. Akhtar. Furious customers blast Amazon as an outage knocks Ring door-
bells, baby monitors, and Alexa products offline. https://www.businessinsider.
com/ring-home-monitoring-services-down-aws-outage-2021-12. Dec.
2021 (cit. on p. 121).

[297] Cisco Crosswork Cloud. BGPStream. https://bgpstream.crosswork.cisco.
com/. 2022 (cit. on p. 122).

[298] FireHOL Porject. FireHOL IP Lists | IP Blacklists | IP Blocklists | IP Repu-
tation. https://iplists.firehol.org/. 2022 (cit. on p. 122).

[299] W. Wegner. IoT Platform Companies Landscape 2021/2022: Market consolida-
tion has started. https://iot-analytics.com/iot-platform-companies-landscape/.
2021 (cit. on p. 123).

147

https://developer.huaweicloud.com/intl/en-us/endpoint
https://developer.huaweicloud.com/intl/en-us/endpoint
http://www.routeviews.org/
https://aws.amazon.com/global-accelerator/
https://aws.amazon.com/global-accelerator/
https://activemq.apache.org/components/artemis/documentation/1.4.0/
https://activemq.apache.org/components/artemis/documentation/1.4.0/
https://aws.amazon.com/message/12721/
https://fortune.com/2021/12/10/amazon-software-problem-cloud-outage-cause/
https://fortune.com/2021/12/10/amazon-software-problem-cloud-outage-cause/
https://www.thousandeyes.com/blog/aws-outage-analysis-dec-7-2021
https://www.thousandeyes.com/blog/aws-outage-analysis-dec-7-2021
https://www.washingtonpost.com/technology/2021/12/07/aws-outage-websites-offline/
https://www.washingtonpost.com/technology/2021/12/07/aws-outage-websites-offline/
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.businessinsider.com/ring-home-monitoring-services-down-aws-outage-2021-12
https://www.businessinsider.com/ring-home-monitoring-services-down-aws-outage-2021-12
https://bgpstream.crosswork.cisco.com/
https://bgpstream.crosswork.cisco.com/
https://iplists.firehol.org/

List of Figures

2.1 Hierarchical Model of Internet Structure 12
2.2 Flat model of Internet Structure . 13
2.3 Architecture of an IXP . 14

3.1 IoT Ecosystem . 22
3.2 IoT to Non-IoT spectrum . 23

4.1 Flowyager: Interacting with 1-feature Flowtrees. 34
4.2 Flowyager: Interacting with 2-feature Flowtrees. 35
4.3 Flowyager architecture. 35
4.4 Flowyager Processing Pipeline. 36
4.5 2-Feature flow hierarchy . 37
4.6 Flowtree concept. 39
4.7 4-feature Flowtree. 40
4.8 Flowtree queries. 40
4.9 Flowtree Operators: Merge and Diff 41
4.10 FlowDB overview. 42
4.11 Flowtree: # of entries . 46
4.12 Flowtree: build time . 46
4.13 Flowtree: ARE and F1 Accuracy . 47
4.14 Accuracy: Flowtree vs. RHHH . 50
4.15 Flowyager: space saving . 50
4.16 Flowyager: num nodes per Flowtree 50
4.17 Flowyager space usage . 51
4.18 Pie Chart: MongoDB footprint. 51
4.19 IXP: Flowyager times, 1 Day aggregation Flowtrees 53
4.20 ISP: DDoS NTP attack investigation. 54

5.1 IoT communication pattern . 58
5.2 IoT detection methodology overview 58
5.3 IoT detection: ISP setup . 59
5.4 IoT detection: IXP setup . 59
5.5 Home-VP vs. ISP-VP. 61
5.6 Fraction of observed IPs ISP-VP vs. Home-VP 61
5.7 IoT Traffic detection methodology overview. 65
5.8 Home-VP: average # of packets/hour per domain 66
5.9 Home-VP: ECDF of average # of packets/hour 67
5.10 Home-VP: Time to detect IoT (per threshold). 71
5.11 ISP: Per Hour, Subscriber lines with IoT activity 73
5.12 ISP: Drill down for Amazon and Samsung IoT devices 73
5.13 ISP: Cumulative # of subscriber lines 74
5.14 ISP: Drill down for 32 IoT device types 75
5.15 IXP: # Samsung IoT, Alexa Enabled, and Other 32 IoTs 76

148

List of Figures

5.16 IXP: ECDF of Per-ASN Percentage (# Unique IPs) 76
5.17 Home-VP/GT Household: Single Alexa Enabled device. 77
5.18 ISP: # Subscribers with active Alexa Enabled/hour. 77

6.1 Privacy leakage across prefixes. 85
6.2 Venn diagram for EUI-64 and non-EUI-64 IPv6 addresses 87
6.3 OUI popularity . 87
6.4 EUI-64 addresses per device category 88
6.5 Composition of IoT-only manufacturers 90
6.6 Prevalence of EUI-64 in IoT devices 92
6.7 Heatmap of ports for the top 50 OUIs 93
6.8 Hamming weight distribution of non-EUI-64 IIDs. 94
6.9 IPs in prefixes with both EUI-64 and non-EUI-64 95
6.10 # of leaked prefixes per hypergiant . 96

7.1 IoT backend provider architecture. 100
7.2 Our methodology to infer IoT backends’ footprint. 102
7.3 Fraction and # of IPs per provider per source 106
7.4 IoT backend: Stability of server IP set. 107
7.5 Scanner threshold vs. % IPv4 IoT backends 112
7.6 ISP: % of Server IPs per IoT backend 113
7.7 ISP–per IoT platform: % decrease if DNSDB not used 114
7.8 ISP–per IoT platform: # of active subscriber lines. 114
7.9 ISP–per IoT platform: Normalized total downstream traffic 114
7.10 ISP–per IoT platform: Ratio of Downstream to Upstream. 115
7.11 ISP–per IoT platform: % traffic volume per port. 116
7.12 ISP vantage point: Traffic characteristics for traffic exchanged in a day

between a subscriber line and IoT backend providers or popular ports
in our study. 118

7.13 % of ISP clients with % of Servers in each continent. 119
7.14 % of ISP Traffic communicating with Servers in each continent. 119
7.15 ISP–IoT backend T1: Normalized downstream traffic/region 120
7.16 ISP–IoT backend T1: # of subscriber lines/region 121

149

List of Tables

2.1 Typical Networks Queries and Their Related Work 17

4.1 Comparison of systems w.r.t. functionality offered. 3: full support, 7:
no support. 33

4.2 Deployment overview: IXP, ISP, and MAWI. 44
4.3 Overview of the feature sets of Flowtree. 45
4.4 F1 Accuracy: Flowtree vs. RHHH . 49
4.5 Flowyager Benchmark Queries . 52

5.1 IoT Device Detection: Table of devices 60

6.1 Description of device categories. 90
6.2 Description of IoT manufacturer categories. 91

7.1 Regexes and queries for a few IoT Backends 104
7.2 Selected IoT backends and their base characteristics 108

150

	Introduction
	Dissertation Goal
	Contributions
	Collaborations and Pre-published Work
	Thesis Structure

	Background
	Internet Structure
	Traditional View
	Modern View
	Internet Exchange Points

	Network Flow Capturing
	NetFlow
	IPFIX

	Exploring Network-wide Flow Capture Data
	A Priori Unkown Queries
	Related Work

	Chapter Summary

	Setup for IoT Studies
	Internet of Things Ecosystem: Terminologies
	IoT Communication Protocols
	Message Queuing Telemetry Transport (MQTT)
	Advanced Message Queuing Protocol (AMQP)
	Hyper Text Transfer Protocol (HTTP)
	Constrained Application Protocol (CoAP)

	Detecting IoT Devices
	IoT Backend Servers
	ISP and IXP Vantage Points
	European Tier-1 Internet Service Provider
	European Internet Exchange Point

	Ethical Considerations for Other Datasets
	Active Scanning
	DNS Resolution
	External Data

	Chapter Summary

	Flowyager: Exploring Network-Wide Flow Capture Data
	System Requirements
	Flowyager Architecture
	Flowtree
	Hierarchical Heavy Hitters
	Flowtree Data Structure
	Flowtree: Visualizing the Concepts
	Flowtree Operators

	FlowDB
	FlowDB Implementation
	FlowQL Query Language

	Experimental Deployments
	Flowyager Prototype Evaluation
	Flowtree Evaluation
	Flowyager Evaluation
	Flowyager Limitations

	Investigating DDoS attacks with Flowyager
	Chapter Summary

	Detection of IoT Devices in the Wild
	IoT – Controlled Experiments
	Network Setting
	Ground Truth Traffic Setting
	Active and Idle IoT Experiments

	IoT Traffic – Visibility
	IoT Device detection methodology
	Classifying IoT Domains
	Identifying Dedicated Infrastructures
	From IoT-Specific Domains to Service IPs: DNSDB
	From IoT-Specific Domains to Service IPs: Censys
	Removal of Shared IoT Backend Infrastructures

	IoT Services to Device Detection Rules
	Determining IoT Detection Level
	Generation of Detection Rules

	Methodology: Crosscheck
	Results: IoT in the Wild
	Ethical Considerations and Privacy Implications
	Vantage Point: ISP
	Vantage Point: IXP

	Discussion and Related Work
	Device Usage Detection
	Potential Security Benefits
	Limitations
	Lessons Learned

	Chapter Summary

	IoT Devices: A Case Study on Leaking Users' Privacy
	Background
	Methodology
	Datasets
	Privacy Violations at the Edge
	Quantifying EUI-64 Prevalence
	Popularity of EUI-64 Manufacturers
	EUI-64 Manufacturer Categorization
	EUI-64 Use Among IoT Devices
	Traffic Profile by Manufacturer
	Analysis of Non-EUI-64 IPv6 Addresses
	Collateral Privacy Leakage

	Discussion
	Chapter Summary

	IoT Backend Servers: A Deep Dive into Backend Providers
	Scenario and Related Work
	IoT Backend Providers
	Related Work

	Methodology
	Selection of IoT Backend Providers and Study Periods
	Identification of IoT Domain Patterns
	Identification of Server IPs
	Validation of Server IPs
	Contribution of Each Dataset
	Limitations

	IoT Backend Characterization
	Stability of IoT Backends
	Footprint
	Network Diversity
	Protocol Support

	IoT Traffic Flows
	Vantage Point
	IoT Backend Platforms: Visibility
	ISP Subscriber Line Activity by IoT Backend Platform
	IoT Backend Traffic
	IoT backend provider–Port Usage
	Traffic Characteristics
	Crossing Region Borders

	IoT Backend Disruptions
	AWS Outage
	Potential Disruptions

	Chapter Summary

	Conclusion and Outlook
	Summary
	Reflections
	Future Work

	Bibliography
	List of Figures
	List of Tables

