Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37604
Volltext verfügbar? / Dokumentlieferung
Titel: Continuous Operating Elastocaloric Heating and Cooling Device: Model-Based Parameter Study With Airflow Losses
VerfasserIn: Welsch, Felix
Kirsch, Susanne-Marie
Michaelis, Nicolas
Motzki, Paul
Schütze, Andreas
Seelecke, Stefan
Sprache: Englisch
Titel: Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems - 2019 : Development and Characterization of Multifunctional Materials : Mechanics and Behavior of Active Materials : Modeling, Simulation, and Control of Adaptive Systems : Integrated System Design and Implementation : Structural Health Monitoring : Energy Harvesting : Emerging Technologies : presented at ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 9-11, 2019, Louisville, Kentucky, USA / sponsored by: the Aerospace Division, ASME
Verlag/Plattform: ASME
Erscheinungsjahr: 2019
Erscheinungsort: New York
Konferenzort: Louisville, Kentucky, USA
Freie Schlagwörter: cooling process
elastocaloric effect
thermo-mechanical coupling
shape memory alloy
heat exchange
DDC-Sachgruppe: 600 Technik
Dokumenttyp: Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag)
Abstract: Elastocaloric cooling uses solid-state NiTi-based shape memory alloy (SMA) as a non-volatile cooling medium and enables a novel environment-friendly cooling technology. Due to the high specific latent heats activated by mechanical loading/unloading, substantial temperature changes are generated in the material. Accompanied by a small required work input, a high coefficient of performance is achievable. Recently, a fully-functional and illustrative continuous operating elastocaloric air cooling system based on SMA was developed and realized. To assist the design process of an optimized device with given performance and efficiency requirements, a fully coupled thermo-mechanical system-level model of the multi-wire cooling unit was developed and implemented in MATLAB. The resulting compact simulation tool is qualified for massively parallel computation on modern multi-core computers, which allows fast and comprehensive parameter scans. The comparison of first measurements and simulation results showed differences in the system performance. As the airflow rate influences the thermal power and the outlet temperature significantly, the demonstrator is extended with a spatial airflow measurement system to analyze the crossflow between the hot and cold side. Following, the fluid transport model is advanced by the effect of cross-flow losses, and first modeling results with the variation of airflow rate and rotation frequency are presented.
DOI der Erstveröffentlichung: 10.1115/SMASIS2019-5636
URL der Erstveröffentlichung: https://asmedigitalcollection.asme.org/SMASIS/proceedings-abstract/SMASIS2019/59131/V001T04A020/1071369
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-376047
hdl:20.500.11880/34020
http://dx.doi.org/10.22028/D291-37604
ISBN: 978-0-7918-5913-1
Datum des Eintrags: 14-Okt-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.