Please use this identifier to cite or link to this item: doi:10.22028/D291-37564
Title: On the global regularity for minimizers of variational integrals : splitting-type problems in 2D and extensions to the general anisotropic setting
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Title: Journal of Elliptic and Parabolic Equations
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: Global higher integrability
Splitting-type energies
Anisotropic growth
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We mainly discuss superquadratic minimization problems for splitting-type variational integrals on a bounded Lipschitz domain Ω ⊂ ℝ2 and prove higher integrability of the gradient up to the boundary by incorporating an appropriate weightfunction measuring the distance of the solution to the boundary data. As a corollary, the local Hölder coefcient with respect to some improved Hölder continuity is quantifed in terms of the function dist(⋅, 휕Ω).The results are extended to anisotropic problems without splitting structure under natural growth and ellipticity conditions. In both cases we argue with variants of Caccioppoli’s inequality involving small weights.
DOI of the first publication: 10.1007/s41808-022-00179-4
URL of the first publication: https://link.springer.com/article/10.1007/s41808-022-00179-4
Link to this record: urn:nbn:de:bsz:291--ds-375645
hdl:20.500.11880/33986
http://dx.doi.org/10.22028/D291-37564
ISSN: 2296-9039
2296-9020
Date of registration: 13-Oct-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Martin Fuchs
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41808-022-00179-4.pdf2,27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons