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Abstract
We mainly discuss superquadratic minimization problems for splitting-type vari-
ational integrals on a bounded Lipschitz domain Ω ⊂ ℝ

2 and prove higher integra-
bility of the gradient up to the boundary by incorporating an appropriate weight-
function measuring the distance of the solution to the boundary data. As a corollary, 
the local Hölder coefficient with respect to some improved Hölder continuity is 
quantified in terms of the function dist(⋅, �Ω).The results are extended to anisotropic 
problems without splitting structure under natural growth and ellipticity conditions. 
In both cases we argue with variants of Caccioppoli’s inequality involving small 
weights.
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1 Introduction

In the main part of our note we consider splitting-type energies as a particular class 
of variational integrals

defined for functions u: ℝn
⊃ Ω → ℝ . In the splitting case, the energy density f: 

ℝ
n
→ ℝ admits an additive decomposition into different parts depending on the 

various first partial derivatives of the admissible functions u, for example, we can 
consider the case

(1)J[u] ∶= ∫
Ω

f (∇u) dx
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with functions fi : ℝ → ℝ , i = 1 , ..., n, of possibly different growth rates.
This also leads us to the more general category of variational problems with 

non-standard growth, where in the simplest case one studies an energy functional 
J defined in equation  (1) with convex density f being bounded from above and 
from below by different powers of |∇u|.

For an overview of the various aspects of variational problems with non-
standard growth including aspects as existence and regularity we refer the inter-
ested reader, e.g., to [1–8] and to the recent paper [9] together with the references 
quoted therein.

Regarding the question of interior regularity of J-minimizers in the non-standard 
setting, the above references provide rather complete answers, while the problem of 
boundary regularity for the solution of

with sufficiently smooth boundary datum u0 seems to be not so well investigated.
We mention the contribution [10], where the higher integrability of the minimizer 

u up to the boundary is established for densities f being in some sense close to the 
splitting-class defined in (2). A precise formulation of the assumptions concerning 
the density f is given in inequality (2.1) of the paper [10], and we also like to stress 
that a survey of the known global regularity results is provided in the introduction of 
this reference.

Even more recently the contribution of Koch [11] addresses the global higher 
integrability of the gradient of solutions of variational problems with (p, q)-growth, 
which to our knowledge is the first result to improve global integrabilty of the gra-
dient allowing full anisotropy with different growth rates with respect to different 
partial derivatives. The boundary data are supposed to belong to some fractional 
order spaces (see, e.g., [12] or [13]) and roughly speaking are handled like an addi-
tional x-dependence following ideas as outlined in, e.g., [14] for the interior situa-
tion. Hence, the admissible energy densities correspond to the examples presented 
in [14]. On the other hand the case of vectorial functions u: ℝn

⊃ Ω → ℝ
m , n ≥ 2 , 

m ≥ 1 , as well as the subquadratic situation are included.
In our note we first discuss the variational problem (3) on a bounded Lipschitz 

domain Ω ⊂ ℝ
2 with energy functional J defined in equation (1) under the following 

assumptions on the data: for i = 1 , 2 let fi ∈ C2(ℝ) satisfy

with constants ai , Ai > 0 and exponents

We define the energy density f: ℝ2
→ ℝ according to (recall the “splitting 

condition” (2))

(2)f (∇u) =

n∑

i=1

fi(�iu)

(3)J[u] → min , u = u0 on �Ω ,

(4)ai(1 + t2)
qi−2

2 ≤ f ��
i
(t) ≤ Ai(1 + t2)

qi−2

2 , t ∈ ℝ ,

(5)qi > 2 .
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Note that (4) yields the anisotropic ellipticity condition

valid for Z, Y ∈ ℝ
2 with positive constants c1 , c2 and for the choice of exponents 

p = 2 and q ∶= max{q1, q2} . In fact,  (7) is a direct consequence of  (5) and the 
formula

Finally, we fix a functiom

remarking that actually u0 ∈ W1,t(Ω) with exponent t being sufficiently large 
(depending on q1 and q2 ) is needed in our calculations. For a definition of the 
Sobolev spaces Wk,r(Ω) and their local variants we refer to [12].

The function u0 acts as a prescribed boundary datum in the minimization problem

Now we state our result in the splitting case by the way establishing global higher 
integrability without relating q1 and q2 and under quite weak assumptions on u0 
which means that we do not have to impose additional hypotheses concerning the 
regularity of the trace of u0 in the sense that u0|�Ω belongs to some fractional Sobolev 
space. The price we have to pay is a weight function which has to be incorporated.

Theorem  1.1 Let the assumptions  (4)–(6) and  (9) hold. Moreover, let 
u ∈ u0 +W

1,1

0
(Ω) denote the unique solution of problem (10). Then it holds

for any choice of the exponent t such that

with a finite lower bound T(q1, q2) ≥ 1 depending on the growth rates q1 , q2.

Remark 1.1 An admissible choice for the quantity T(q1, q2) from (12) is

Here and in the following we let

(6)f (Z) ∶= f1(z1) + f2(z2) , Z = (z1, z2) ∈ ℝ
2 .

(7)c1(1 + |Z|2)
p−2

2 |Y|2 ≤ D2f (Z)(Y ,Y) ≤ c2(1 + |Z|2)
q−2

2 |Y|2

(8)D2f (Z)(Y , Y) =

2∑

i=1

f ��
i
(zi)|yi|2 , Z, Y ∈ ℝ

2 .

(9)u0 ∈ W1,∞(Ω)

(10)J[u] ∶= ∫
Ω

f (∇u) dx → min in u0 +W
1,1

0
(Ω) .

(11)|u − u0|t
(
||�1u||

3

2
q1 + ||�2u||

3

2
q2
)
∈ L1(Ω)

(12)t > T(q1, q2)

(13)T(q1, q2) = 6max

{
1,

1

2

qmax

qmin

qmin − 1

qmin − 2
,

qmin

qmin − 2
−

1

6

}
qmin

qmin − 2
.
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In the case qi > 5 , i = 1 , 2, we can replace (13) by the expression

which means that in the case of higher initial integrability we can decrease the expo-
nent t in  (11) leading to a stronger result. We also note that for the choice qi > 5 , 
i = 1 , 2, the condition  (9) can be replaced by the requirement u0 ∈ W1,qmin (Ω) 
together with �iu0 ∈ Lqi (Ω) , i = 1 , 2.

Remark 1.2 The existence and the uniqueness of a solution u to problem (10) eas-
ily follow from the growth properties of f and its strict convexity combined with 
our assumption  (9) on the boundary datum u0 . Obviously the minimizer satisfies 
�iu ∈ Lqi (Ω) , i = 1 , 2, and from Theorem 1.1 ii) in [8] we deduce interior Hölder 
continuity of the first partial derivatives. This in turn implies that u is in the space 
W

2,2

loc
(Ω).

Remark 1.3 Of course we expect that our theorem can be extended to the case n > 2 , 
i.e. to densities

with functions fi satisfying  (4) and  (5) being replaced by qi > n , i = 1 , ..., n. We 
restrict our considerations in the splitting case to the 2D-situation for two reasons: 
first, a generalization to the case n ≥ 2 would be accompanied by a tremendous 
technical effort without promising a deeper insight. Secondly, the interior regularity 
results of [8] as the starting point for our arguments would have to be generalized to 
the full splitting case in n dimensions which goes beyond the aim of this note.

Remark 1.4 Inequality (11) can be seen as weighted global higher integrability result 
for ∇u . In fact, on account of (5), u is Hölder continuous up to the boundary, which 
means |u(x) − u0(x)| ≈ dist�(x, �Ω) for points x near �Ω . Thus, in this vague sense, 
Theorem 1.1 yields |�iu|tidist�(⋅, �Ω) ∈ L1(Ω) for a certain range of exponents 𝛽 > 0 
and ti > qi.

Another interpretation will be given in Corollary 1.1 on the behaviour of a suit-
able Hölder coefficient.

In the second part of our paper we drop the splitting condition (6) and look at 
densities f with anisotropic (p,q)-growth in the sense of (7) and for a moment we 
still restrict our considerations to the two-dimensional case. Then the arguments 
of the first part can be carried over provided that p and q are not too far apart.

qmin ∶= min{q1, q2} , qmax ∶= max{q1, q2} .

(14)T(q1, q2) = 6qmax max

{
1

2qmin − 4
,

1

qmax + 2

}

f (Z) =

n∑

i=1

fi(zi) Z ∈ ℝ
n ,
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Theorem 1.2 Assume that f: ℝ2
→ ℝ is of class C2(ℝ2) satisfying (7) with exponents 

2 < p ≤ q such that

Let (9) hold for the boundary datum u0 and let u ∈ u0 +W
1,1

0
(Ω) denote the unique 

solution of problem (10). Then we have ( Γ ∶= 1 + |∇u|2)

for any exponents � , s such that

and

Remark 1.5 Since f is strictly convex and since we have (9), existence and unique-
ness of a solution u to problem  (10) are immediate. Note that  (15) implies (4.2) 
in Marcellini’s paper [15], hence u ∈ W

1,q

loc
(Ω) on account of Theorem 4.1 in [15]. 

Quoting Corollary 2.2 from this reference we deduce u ∈ C1,�(Ω) and u ∈ W
2,2

loc
(Ω).

In our final theorem we incorporate two new features: we modify the idea of 
the proofs of the previous results by starting with a more subtle inequality being 
applied to terms on the left-hand sides of our foregoing calculations by the way 
extending the range of admissible exponents p and q. Moreover, we include the 
general case of n-dimensions, n ≥ 2 . This can be done without technical efforts 
comparable to the ones which are needed to generalize the 2D splitting case.

Now the precise formulation of our last result is as follows:

Theorem 1.3 Consider the variational problem (10) on a bounded Lipschitz domain 
Ω ⊂ ℝ

n now just assuming (p,q)-growth of the C2-density f: ℝn
→ ℝ in the sense 

of (7) without splitting structure. Let the boundary datum u0 satisfy (9). Suppose that

By assumption (18) we may choose a real number 𝜅 > 1 sufficiently large such that

Moreover, let

(15)q < min
{
p +

1

2
, 2p − 2

}
.

|u − u0|2�Γs ∈ L1(Ω)

(16)s ∈
(q
2
+

3

4
, p −

1

4

)

(17)𝜅 > max

{
p

p − 2
,

s

s −
( q

2
+

3

4

) ,
2s(p − 1)

(p − 2)2

}
.

(18)2 ≤ n < p ≤ q and q < p +
2(p − n)

n
.

(19)q < p +
2(p − n)

n
−

2p − 1

n𝜅
.
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Increasing � , if necessary, we suppose in addition that

and that we have the inequalities (103) below. Then it holds

for a finite constant c depending on n, p, q, � and s.

Remark 1.6 Passing to the limit � → ∞, (20) becomes

Remark 1.7 We note that Remark 1.5 extends to the setting studied in Theorem 1.3, 
since now condition (4.2) from [15] is a consequence of the more restrictive inequal-
ity (18).

Our paper is organized as follows: in Section  2 we present the proof of Theo-
rem 1.1 for a given Lipschitz boundary datum u0 (recall (9)) and just supposing (5). 
In the case q1 , q2 > 5 the lower bound T(q1, q2) occurring in (12) looks much nicer 
and (9) can be considerably weakened. We sketch some arguments in Section 3. The 
two-dimensional non-splitting case, i.e. the setting described in Theorem 1.2, is dis-
cussed in Section 4 and in Section 5 we discuss the higher dimensional situation of 
Theorem 1.3.

During the proofs of our results we make essential use of Caccioppoli-type 
inequalities. As a main new feature these inequalities involve “small weights”, for 
instance weight functions like (1 + |�iu|)� , i = 1 , 2, with a certain range of negative 
exponents � . A rather general analysis of these tools is presented in Section 6.

Before we get into all these technical details we finish the introduction by adding 
some extra comments concerning the interpretation of our results. For simplicity we 
restrict ourselves to the setting described in Theorem 1.1 and denote by u the unique 
solution of problem (10) under the hypothesis of Theorem 1.1.

We start with a local observation: by adding a distance function if necessary, we 
find an appropriate representative of the boundary data respecting a lower bound for 
|u − u0| in a neighbourhood of a fixed x0 ∈ Ω.

Proposition 1.1 Fix x0 ∈ Ω . Then there exists a neighbourhood U = U(x0) ⋐ Ω of x0 
such that we may assume that for all x ∈ U

(20)s < p
𝜅(n + 2) − 2

2n𝜅
−

𝜅 − 1

2n𝜅
.

(21)s < (𝜅 − 1)
p − n

n
+

p

2

�
Ω

Γs|u − u0|2(�−1) dx ≤ c , Γ ∶= 1 + |∇u|2 ,

s ≤ p

2
+

2p − 1

2n
.

|û|(x) = |u − u0|(x) ≥ d ∶=
1

2
d(x0) , û ∶= u − u0 ,
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where

denotes the distance function to the boundary �Ω.

Proof of Proposition 1.1 The distance function d is discussed, e.g., in [16], Appen-
dix 14.6. In particular, if Ω is a domain in ℝn with non-empty boundary, then by 
(14.91) of [16] d is uniformly Lipschitz continuous.

Let us suppose w.l.o.g.  that û(x0) ≥ 0 . If û(x0) < d(x0) , then we choose 
ũ0 ∶= u0 − d as admissible Lipschitz boundary datum with u0 = ũ0 on �Ω . Hence 
both u0 and ũ0 produce the same minimizer u of the Dirichlet problem (10) and by 
definition we have

The considerations of our note completely remain unchanged if we replace u0 by 
ũ0 . Hence we have w.l.o.g. that û(x0) ≥ d(x0) . Proposition 1.1 then follows from the 
continuity of u and u0 .   ◻

Let us fix x0 ∈ Ω , and define U, û as in Proposition  1.1. Moreover we let h: 

Ω → ℝ , h ∶= |û|
4

3

𝜅

qmin
+1 , hence

Theorem 1.1 gives

Letting � =
4

3

�

qmin

+ 1 , the imbedding into Hölder spaces yields |û|𝜁 ∈ C0,𝜇(Ω) with 

� = 1 −
4

3qmin

.
Now we consider the Taylor  expansion of the function g: ℝ+

→ ℝ , w ↦ w� 
around a fixed w̃ > 0 : for w sufficiently close to w̃ we have

Suppose w.l.o.g.  that û > 0 in U. Inserting w̃ = û(x0) and w = û(x) , x sufficiently 
close to x0 , in the Taylor expansion we obtain using Proposition 1.1

Since |û|𝜁 is of class C0,�(Ω) and since according to (9) u0 is Lipschitz, by (22) we 
find a constant c > 0 not depending on x0 such that

d(x) = dist(x, �Ω) ,

(u − ũ0)(x0) = (u − u0 + d)(x0) ≥ d(x0) .

|∇h| ≤
[
4

3

𝜅

qmin

+ 1

]
|û|

4

3

𝜅

qmin |∇û| .

�
Ω

|∇h|
3

2
qmin dx ≤ c , i.e. h ∈ W

1,
3

2
qmin (Ω) .

w𝜁 = w̃𝜁 + 𝜁w̃𝜁−1(w − w̃) + O(|w − w̃|2) .

(22)

|û𝜁 (x) − û𝜁 (x0)|
𝜁d𝜁−1

≥ |û𝜁 (x) − û𝜁 (x0)|
𝜁 û𝜁−1(x0)

≥u(x) − u(x0) + u0(x0) − u0(x) + O(|û(x) − û(x0)|2) .
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Changing the roles of x and x0 and following the arguments leading to (23), we find 
a constant c > 0 not depending on x0 such that for all x sufficiently close to x0 we 
have

Summarizing the results we obtain the following corollary to Theorem 1.1.

Corollary 1.1 Under the assumptions of Theorem 1.1 we let

If x0 ∈ Ω is fixed, then for every sufficiently small neighbourhood U = U(x0) ⋐ Ω of 
x0 the Hölder coefficient of u (see [16] for notation) satisfies

where the constant c is not depending on x0.

2  Proof of Theorem 1.1

We proceed in several steps assuming from now on the validity of the hypoth-
eses  (4),  (5),  (6) and (9). Let u denote the unique solution of problem (10) and 
recall the (interior) regularity properties of u stated in Remark 1.2. We start with 
the following elementary observation:

Proposition 2.1 Consider numbers � , s1 , s2 ≥ 1 . Then there is a finite constant c such 
that for i = 1 , 2 and any � ∈ C1

0
(Ω)

Proof of Proposition  2.1 Let v ∶= Γ
si∕2

i
|�|� and observe that due to 

u ∈ W
2,2

loc
∩W

1,∞

loc
(Ω) the function v is in the space W1,1

0
(Ω) , hence the Sobolev-Poin-

caré inequality implies

(23)u(x) − u(x0) ≤ c
1

�d�−1
|x − x0|� + O(|x − x0|2�) .

(24)|u(x) − u(x0)| ≤ c
1

�d�−1
|x − x0|� .

� ∶=
4

3

�

qmin

+ 1 , � ∶= 1 −
4

3qmin

.

[u]
�;x0

∶= sup
U

|u(x) − u(x0)|
|x − x0|�

≤ c
1

�d�−1(x0)
,

(25)�
Ω

Γ
si
i
|�|2� dx ≤c

{[

�
Ω

||∇Γ
si

2

i
|| |�|� dx

]2
+

[

�
Ω

Γ

si

2

i
|∇�||�|�−1 dx

]2}

=∶ c
{
(I)i + (II)i

}
, Γi ∶= 1 + |�iu|2 .



1 3

On the global regularity for minimizers of variational…

and inequality (25) directly follows by observing that ||∇|�||| ≤ |∇�| .   ◻

Next we replace � by a sequence �m , m ∈ ℕ , being defined through

with �m ∈ C1
0
(Ω) , 0 ≤ �m ≤ 1,

Note that due to  (5) and (9) inequality (25) extends to �m , moreover, according to 
[16], Theorem 7.17, we have

for points x ∈ Ω at distance ≤ � to �Ω , provided � is sufficiently small.
The quantity (II)i defined in (25) with respect to the choice � = �m behaves as 

follows:

Proposition 2.2 Let � ∶= qmin − 2 and consider numbers si , � ≥ 1 , i = 1 , 2, such that

Then it holds for (II)i = (IIm)i , i = 1 , 2, defined in (25) with respect to the function �m 
from (26)

c denoting a finite constant being uniform in m.

Proof of Proposition 2.2 By Hölder’s inequality we have

and for the second integral on the r.h.s. we observe (recall (26) and (27), (28))

�
Ω

v2 dx ≤ c

[

�
Ω

|∇v| dx
]2

,

(26)�m ∶= �m(u − u0)

(27)

�m = 1 on
{
x ∈ Ω ∶ dist(x, �Ω) ≥ 1

m

}
, �m = 0 on

{
x ∈ Ω ∶ dist(x, �Ω) ≤ 1

2m

}
,

|∇�m| ≤ cm , c = c(�Ω) .

(28)|u(x) − u0(x)| ≤ c�
1−

2

qmin , qmin ∶= min{q1, q2} ,

(29)si >
𝛿

2
, 𝜅 ≥ �̂� ∶=

qmin − 1

qmin − 2
.

(30)(II)i ≤ c�
Ω

Γ
si−

𝛿

2

i
|𝜂m|2𝜅−2�̂� dx =∶ c(III)i , i = 1, 2 ,

(II)i =

[

�
Ω

Γ

si

2
−

𝛿

4

i
|𝜂m|𝜅−�̂�|𝜂m|�̂�−1|∇𝜂m|Γ

𝛿

4

i
dx

]2

≤
[

�
Ω

Γ
si−

𝛿

2

i
|𝜂m|2𝜅−2�̂� dx

][

�
Ω

Γ
𝛿

2

i
|𝜂m|2�̂�−2|∇𝜂m|2 dx

]
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Since Ω is Lipschitz we observe that |spt∇�m| ≤ c∕m and obtain

The choice  (29) of �̂� shows that the right-hand side of  (32) is bounded. Letting 
Γ ∶= 1 + |∇u|2 we arrive at

where in the final step we have used the definition of � . Now (30) clearly is a conse-
quence of (9) (in fact, u0 ∈ W1,qmin (Ω) would be sufficient).   ◻

In the following we will discuss the quantity (III)i defined in (30) under the assump-
tions of Proposition 2.2.

We have by Young’s inequality for any 𝜀 > 0

with exponent

[… ]∗ denoting the exponent conjugate to si

si−�∕2
 . Note that � ≥ 0 provided we addi-

tionally assume that � ≥ 1 satisfies the inequality

Inserting the above estimate for (III)i into (30), we find

and if we choose � sufficiently small, we see that (25) yields the following result:

(31)
|𝜂m|2�̂�−2|∇𝜂m|2 ≤ c

[
|∇(u − u0)|2 + |∇𝜑m|2|u − u0|2�̂�

]

≤ c
[
|∇u|2 + |∇u0|2 + m2

(
1

m

)2�̂�(1−2∕qmin)
]
.

(32)�spt∇𝜑m

Γ
𝛿

2

i
m

2−2�̂�(1−
2

qmin
)
dx ≤ �

Ω

Γ

qmin

2

i
dx + m

[2−2�̂�(1−
2

qmin
)]

qmin

2 m−1

(II)i ≤ c (III)i

[

�
Ω

[
Γ

�

2Γ + Γ
�

2 |∇u0|2
]
dx + 1

]

≤ c (III)i

[

�
Ω

Γ
qmin

2 dx + �
Ω

|∇u0|qmin dx + 1

]
,

(III)i =�
Ω

Γ
si

si−𝛿∕2

si

i
|𝜂m|2𝜅−2�̂� dx = �

Ω

[
Γ
si
i
|𝜂m|2𝜅

] si−𝛿∕2

si |𝜂m|
2𝜅−2�̂�−2𝜅

si−𝛿∕2

si dx

≤ 𝜀�
Ω

Γ
si
i
|𝜂m|2𝜅 dx + c(𝜀)�

Ω

|𝜂m|𝜗 dx

𝜗 ∶=

[ si

si − 𝛿∕2

]∗(
2𝜅 − 2�̂� − 2𝜅

si − 𝛿∕2

si

)
,

(33)𝜅 ≥ 2si

𝛿
�̂� = 2si

qmin − 1

(qmin − 2)2
.

(II)i ≤ ��
Ω

Γ
si
i
|�m|2� dx + c(�) ,
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Proposition 2.3 Let si , � ≥ 1 satisfy  (29) and  (33). Then there exists a constant c 
being independent of m such that ( i = 1 , 2)

In order to prove Theorem 1.1 it remains to discuss the quantity (I) = (I)i for 
i = 1 , 2, i.e.  now second derivatives of u have to be handled in an appropriate 
way. It holds

and in the same manner

We have

where the last estimate follows from Hölder’s inequality and �i , i = 1 , 2, denote real 
numbers such that for the moment

Note that the condition (35) guarantees the validity of

for a finite constant c. Recalling (4) we see that (36) yields the bound

again for i = 1 , 2.
Let us look at the quantities T̃i : we have by Hölder’s inequality

(34)�
Ω

Γ
si
i
|�m|2� dx ≤ c

[
(I)i + 1

]
, (I)i ∶=

[

�
Ω

||∇Γ
si

2

i
|| |�m|� dx

]2
.

(I)1 ≤ c

[

�
Ω

Γ

s1

2
−1

1
|∇Γ1| |𝜂m|𝜅 dx

]2

≤ c

[

�
Ω

Γ

s1−1

2

1
|𝜕1𝜕1u| |𝜂m|𝜅 dx

]2
+ c

[

�
Ω

Γ

s1−1

2

1
|𝜕1𝜕2u| |𝜂m|𝜅 dx

]2
=∶ T1 + T̃1 ,

(I)2 ≤ c

[

�
Ω

Γ

s2−1

2

2
|𝜕2𝜕2u| |𝜂m|𝜅 dx

]2
+ c

[

�
Ω

Γ

s2−1

2

2
|𝜕1𝜕2u| |𝜂m|𝜅 dx

]2
=∶ T2 + T̃2 .

Ti = c

[

�
Ω

Γ

qi−2

4

i
|�i�iu| |�m|�Γ

�i

2

i
Γ

si−1

2
−

qi−2

4
−

�i

2

i
dx

]2

≤ c

[

�
Ω

Γ

qi−2

2

i
|�i�iu|2|�m|2�Γ

�i

i
dx

][

�
Ω

Γ
si−1−

qi−2

2
−�i

i
dx

]
,

(35)si ≤ qi + �i , i = 1, 2 .

(36)�
Ω

Γ
si−1−

qi−2

2
−�i

i
dx ≤ c , i = 1, 2 ,

(37)Ti ≤ c�
Ω

f ��
i
(�iu)|�i�iu|2|�m|2�Γ

�i

i
dx
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In order to benefit from the inequality (38), we replace (35) by the stronger bound

together with the requirement

Here we note that (39) together with (40) yields (35). We then obtain on account of 
Young’s inequality

with exponent

where we used (39), (40) and (40), (5), respectively, for the last inequalities. Thus 
(38) reduces to

In the same spirit it follows

Let us return to (34): we have by (37), (41) and (42) and by (8)

(38)

T̃1 = c

[

�
Ω

Γ

q1−2

4

1
|𝜕1𝜕2u||𝜂m|𝜅Γ

s1−1

2

1
Γ

𝛼

2

2
Γ
−

q1−2

4

1
Γ
−

𝛼2

2

2
dx

]2

≤ c

[

�
Ω

Γ

q1−2

2

1
|𝜕1𝜕2u|2|𝜂m|2𝜅Γ

𝛼2

2
dx

][

�
Ω

Γ
s1−1−

q1−2

2

1
Γ
−𝛼2
2

dx

]

≤ c

[

�
Ω

f ��
1
(𝜕1u)|𝜕1𝜕2u|2|𝜂m|2𝜅Γ

𝛼2

2
dx

][

�
Ω

Γ
s1−1−

q1−2

2

1
Γ
−𝛼2
2

dx

]

=∶ cS�
1
⋅ S��

1
.

(39)si ≤ 3

4
qi , i = 1, 2 ,

(40)�i ∈ (−1∕2, 0) , i = 1, 2 .

S��
1
≤ c

[

�
Ω

Γ

q1

2

1
dx + �

Ω

Γ
�

2
dx

]

� ∶= −�2

[ q1∕2

s1 − q1∕2

]∗
= −�2

q1∕2

q1 − s1
≤ −2�2 ≤ q2

2
,

(41)T̃1 ≤ c�
Ω

f ��
1
(𝜕1u)|𝜕1𝜕2u|2|𝜂m|2𝜅Γ

𝛼2

2
dx .

(42)T̃2 ≤ c�
Ω

f ��
2
(𝜕2u)|𝜕1𝜕2u|2|𝜂m|2𝜅Γ

𝛼1

1
dx .
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The remaining integrals are handled with the help of Proposition 6.1 (compare also 
inequality (4.6) from [17]) replacing l by � and � by |�m| , respectively. We note that 
the proof of Proposition 6.1 obviously remains valid with these replacements. We 
emphasize that (40) is an essential assumption to apply Proposition 6.1. We get

Finally we let si =
3

4
qi , i = 1 , 2, which is the optimal choice with respect to (39). We 

note that with this choice (33) follows from

and (44) is valid if � is chosen according to assumption (12) from Theorem 1.1 with 
T(q1, q2) defined in (13).

From (4) and (8) we deduce

We recall the definition (26) of �m and the gradient bound for �m stated in (27). This 
yields for integrand of the first integral on the right-hand side of (45):

�
Ω

[
Γ
s1
1
+ Γ

s2
2

]
|𝜂m|2𝜅 dx ≤ c

[
1 + T1 + T̃2 + T̃1 + T2]

= c

[
1 + �

Ω

(
f ��
1
(𝜕1u)|𝜕1𝜕1u|2 + f ��

2
(𝜕2u)|𝜕1𝜕2u|2

)
|𝜂m|2𝜅Γ

𝛼1

1
dx

+ �
Ω

(
f ��
1
(𝜕1u)|𝜕1𝜕2u|2 + f ��

2
(𝜕2u)|𝜕2𝜕2u|2

)
|𝜂m|2𝜅Γ

𝛼2

2
dx

]

= c

[
1 + �

Ω

D2f (∇u)
(
𝜕1∇u, 𝜕1∇u

)
|𝜂m|2𝜅Γ

𝛼1

1
dx

+ �
Ω

D2f (∇u)
(
𝜕2∇u, 𝜕2∇u

)
|𝜂m|2𝜅Γ

𝛼2

2
dx

]
.

(43)

�
Ω

[
Γ
s1
1
+ Γ

s2
2

]
|�m|2�dx ≤ c

[
1 + �

Ω

D2f (∇u)
(
∇|�m|,∇|�m|

)
Γ
1+�1
1

|�m|2�−2 dx

+ �
Ω

D2f (∇u)
(
∇|�m|,∇|�m|

)
Γ
1+�2
2

|�m|2�−2 dx
]
.

(44)� ≥ 3

2

qmax(qmin − 1)

(qmin − 2)2
,

(45)

r.h.s. of (2.19) ≤ c

[
1 +

2∑

i=1
�
Ω

Γ

qi

2
+�i

i
|�i�m|2|�m|2�−2 dx

+ �
Ω

Γ

q2−2

2

2
|�2�m|2|�m|2�−2Γ

1+�1
1

dx

+ �
Ω

Γ

q1−2

2

1
|�1�m|2|�m|2�−2Γ

1+�2
2

dx

]
.

Γ

qi

2
+�i

i
|�i�m|2|�m|2�−2 ≤ c

[
Γ

qi

2
+�i

i
|�i(u − u0)|2|�m|2�−2 + Γ

qi

2
+�i

i
|�i�m|2|u − u0|2�

]
.
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We quote inequality  (28) and recall that ∇�m has support in the set 
{x ∈ Ω ∶ dist(x, �Ω) ≤ 1∕m} satisfying |spt∇�m| ≤ c∕m , hence

where (recall (40))

Thus the second integral on the right-hand side is bounded if, with �i sufficiently 
close to −1∕2 , we have

Assuming (46) we arrive at

for any �i sufficiently close to −1∕2 . Assuming this we next let

and apply Young’s inequality in an obvious way to get

where the first term can be absorbed in the left-hand side of (43), while the second 
one bounded under the assumption

Here we used the fact that for q > 2 the function q∕(q − 2) is a decreasing function. 
Altogether we have shown that for exponents �i close to −1∕2 the first integral on 
the right-hand side of (45) splits into two parts, where the first one can be absorbed 
in the left-hand side of (45) and the second one stays bounded. During our calcula-
tions we evidently used  (9), however  (9) can be replaced by weaker integrability 
assumtions concerning �iu0 . We leave the details to the reader.

Let us finally consider the “mixed terms” on the right-hand side of  (45). We 
first observe the inequality

�
Ω

Γ

qi

2
+�i

i
|�i�m|2|u − u0|2� dx ≤�spt∇�m

Γ

qi

2
+�i

i
m

2−2�
qmin−2

qmin dx

≤c�
Ω

Γ

qi

2

i
dx + c�spt∇�m

m
[2−2�

qmin−2

qmin
]�∗

i dx ,

�i =
qi

qi + 2�i
, �

∗

i
=

[
qi

qi + 2�i

]∗
= −

qi

2�i
.

(46)𝜅 >
2qmax − 1

2qmax

qmin

qmin − 2
.

(47)�
Ω

Γ

qi

2
+�i

i
|�i�m|2|�m|2�−2 dx ≤ c

[
1 + �

Ω

Γ

qi

2
+�i

i
|�iu − �iu0|2|�m|2�−2 dx

]

�i =
3qi

2qi + 4(1 + �i)
with conjugate exponent �

∗

i
=

3qi

qi − 4(1 + �i)

�
Ω

Γ

qi

2
+�i+1

i
|�m|2�−2 dx ≤ ��

Ω

Γ
si
i
|�m|2� dx + c(�)�

Ω

|�m|2�−2�
∗
i dx ,

(48)𝜅 >
3qmin

qmin − 2
.
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Considering the limit case �1 = −1∕2 , the first integral on the right-hand side 
of (49) basically is of the form

and this integral directly results from an application of Caccioppoli’s inequality. If 
we like to show an integrability result for Γt2

2
 with some power t2 > q2∕2 , then the 

idea is to apply Young’s inequality choosing

leading to the quantities Γt2
2
 and Γ

t2

2t2−q2

1
 . If t1 = t1(q1) > q1∕2 denotes the desired inte-

grability exponent for Γ1 , then this requires the bound

and of course we need the same condition changing the roles of t1 and t2 . With the 
symmetric Ansatz ti = �qi for some 𝜃 > 1∕2 we are immediately led to ti =

3

4
qi , 

i = 1 , 2, which again motivates our choice of si.
More precisely: discussing the first integral on the right-hand side of  (49) we 

choose �1 = 3∕2 with conjugate exponent �∗
1
= 3 and obtain

Here the first integral is absorbed in the left-hand side of (43) and since �1 is chosen 
sufficiently close to −1∕2 , the second integral is bounded provided that we suppose 
in addition

If q1 < 3 , using

we are led to ( ̃𝜀 ≪ 𝜀)

(49)

�
Ω

Γ

q2−2

2

2
|�2�m|2|�m|2�−2Γ

1+�1
1

dx

≤ c�
Ω

Γ

q2−2

2

2
(�2(u − u0))

2|�m|2�−2Γ
1+�1
1

dx

+ �
Ω

Γ

q2−2

2

2
|�2�m|2|u − u0|2|�m|2�−2Γ

1+�1
1

dx .

∫
Ω

Γ

q2

2

2
Γ

1

2

1
|�m|2�−2 dx

� =
2t2

q2
with conjugate exponent �

∗ =
2t2

2t2 − q2

t2

2t2 − q2
≤ t1(q1) for all q1 > 2

�
Ω

Γ

q2

2

2
|�m|2�−2Γ

1+�1
1

dx =�
Ω

Γ

q2

2

2
Γ
1+�1
1

|�m|
2�

�1 |�m|
2�

�
∗
1

−2
dx

≤ ��
Ω

Γ
s2
2
|�m|2� dx + c(�)�

Ω

Γ
3(1+�1)

1
|�m|2�−6 dx .

(50)q1 > 3 and 𝜅 ≥ 3 .

�2 =
q1

4(1 + �1)
, �

∗

2
=

q1

q1 − 4(1 + �1)
,
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where the first integral is absorbed in the right-hand side of (43) and if �1 sufficiently 
close to −1∕2 we now suppose

Note that the condition (51) is a consequence of (48).
It remains to discuss the second integral on the right-hand side of (49). Using 

Young’s inequality with

we obtain

where again the first integral is absorbed in the left-hand side of (43). Considering 
the second integral we choose

This gives ( ̃𝜀 ≪ 𝜀)

As usual the first integral on the right-hand side of (53) is absorbed in the left-hand 
side of (43) and we calculate

We obtain recalling (27) and (28)

c(𝜀)�
Ω

Γ
3(1+𝛼1)

1
𝜂
2𝜅−6
m

dx ≤ �̃��
Ω

Γ
s1
1
𝜂
2𝜅dx + c(�̃�)�

Ω

𝜂
2𝜅−6𝛽∗

2 dx ,

(51)𝜅 >
3q1

q1 − 2
.

�3 =
3

2

q2

q2 − 2
, �

∗

3
=

3q2

q2 + 4
,

(52)

�
Ω

Γ

q2−2

2

2
|�2�m|2|u − u0|2|�m|2�−2Γ

1+�1
1

dx

≤ ��
Ω

Γ
s2
2
|�m|2� dx

+ c(�)�
Ω

Γ
(1+�1)

3q2

q2+4

1
|�2�m|2�

∗
3 |u − u0|2�

∗
3 |�m|2�−2�

∗
3 dx ,

�4 =
q1(q2 + 4)

4q2(1 + �1)
with conjugate exponent �

∗

4
=

q1(q2 + 4)

q2[q1 − 4(1 + �1)] + 4q1
.

(53)

c(𝜀)�
Ω

Γ
(1+𝛼1)

3q2

q2+4

1
|𝜕2𝜑m|2𝛽

∗
3 |u − u0|2𝛽

∗
3 |𝜂m|2𝜅−2𝛽

∗
3 dx

≤ �̃��
Ω

Γ
s1
1
|𝜂m|2𝜅 dx

+ c(�̃�)�spt∇𝜑m

|𝜕2𝜑m|2𝛽
∗
3
𝛽
∗
4 |u − u0|2𝛽

∗
3
𝛽
∗
4 |𝜂m|2𝜅−2𝛽

∗
3
𝛽
∗
4 dx .

(54)�
∗

3
�
∗

4
=

3q1q2

q2[q1 − 4(1 + �1)] + 4q1
.
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For �1 sufficiently close to −1∕2 this leads to the requirement

With q1 > 2 fixed and for q2 > 2 we consider the function g(q2) =
6q1q2

q2(q1−2)+4q1
 . We 

have

hence g is an increasing function and

Thus,

implies the validity of (56).
Summarizing the conditions imposed on � during our calculations, i.e. recalling 

the bounds (29), (44), (46), (48), (57) we are led to the lower bound

for the exponent � . Assuming the validity of (58) and returning to (43) we now have 
shown that for �i sufficiently close to −1∕2 the right-hand side of (43) can be splitted 
into terms which either can be absorbed in the left-hand side of  (43) or stay uni-
formly bounded, hence

for a finite constant c independent of m. Passing to the limit m → ∞ in  (59) our 
claim  (11) follows. Obviously  (12) is a consequence of  (58) and the definition of 

(55)

�spt∇�m

|�2�m|2�
∗
3
�
∗
4 |u − u0|2�

∗
3
�
∗
4 |�m|2�−2�

∗
3
�
∗
4 dx

≤ �spt∇�m

|�2�m|2�
∗
3
�
∗
4 |u − u0|2�

∗
3
�
∗
4 |u − u0|2�−2�

∗
3
�
∗
4 dx

≤ cm−1m
6q1q2

q2[q1−4(1+�1)]+4q1 m
−

qmin−2

qmin
2�
.

(56)𝜅 >
qmin

qmin − 2

1

2

[
6q1q2

q2(q1 − 2) + 4q1
− 1

]
.

g�(q2) =
6q1

q2(q1 − 2) + 4q1
−

6q1q2

(q2(q1 − 2) + 4q1)
2
(q1 − 2)

=
24q2

1

(q2(q1 − 2) + 4q1)
2
> 0 ,

g(q2) ≤ lim
t→∞

6q1t

t(q1 − 2) + 4q1
=

6q1

q1 − 2
.

(57)� ≥ qmin

qmin − 2

1

2

[
6

qmin

qmin − 2
− 1

]

(58)𝜅 > 3max

{
1,

1

2

qmax

qmin

qmin − 1

qmin − 2
,

qmin

qmin − 2
−

1

6

}
qmin

qmin − 2

(59)�
Ω

[
Γ

3

4
q1

1
+ Γ

3

4
q2

2

]
|�m|2� dx ≤ c
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T(q1, q2) stated in  (13), which completes the proof of Theorem  1.1 for arbitrary 
exponents q1 , q2 > 2 .   ◻

Remark 2.1 Let us add some comments on the behaviour of � , which means that 
we look at the lower bound for the exponent � given by the right-hand side of 
inequality (58). 

i) Since u − u0 ∈ W1,qmin (Ω) and thereby u − u0 ∈ C0,�(Ω) , � ∶= 1 − 2∕qmin , the 
Hölder exponent enters (58), which also corresponds to the natural effect that

ii) � → ∞ as qmin → 2.
iii) The ratio qmax∕qmin determines the growth of �.
iv) In the limit qmax = qmin → ∞ condition (58) reduces to 𝜅 > 3.

3  Comments on the case q
min

> 5

We now choose the sequence �m ∈ C1
0
(Ω) according to

For some elementary properties of anisotropic Sobolev spaces including an appro-
priate version of this density result we refer, e.g., to [18, 19]). We emphasize that 
during the following calculations condition  (9) can be replaced by the weaker 
requirement �iu0 ∈ Lqi (Ω) , i = 1 , 2. Proposition 2.1 obviously holds for �m , and with 
� as in Proposition 2.2 we now obtain  (30) with the choice �̂� = 1 observing that 
going through the proof of (30) the quantity (II)i can be handled as follows: first we 
note

and then we use

which is a consequence of (60).
We continue with the discussion of (III)i for the choice �̂� = 1 , and observe that (33) 

has to be replaced by

Exactly as in Section 2 we obtain the inequalities (43), (45) now being valid for any 
exponents si , �i , � such that ( i = 1 , 2)

(60)
�i�m → �iu ,in Lqi(Ω) , i = 1, 2 ,

�m → u − u0uniformly as m → ∞ .

(II)i ≤
[

�
Ω

Γ
si−

�

2 |�m|2�−2 dx
]
⋅

[

�
Ω

|∇�m|2Γ
�

2

i
dx

]
,

�
Ω

|∇�m|2Γ
�

2

i
dx ≤ c

[
1 + �

Ω

|∇u|qmin dx

]
,

(61)� ≥ 2

�
si .
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Still following the lines of Section 2 we let si =
3

4
qi , i = 1 , 2 , and replace (61) by

We let

and consider the terms on the right-hand side of  (45). Young’s inequality yields 
( 0 < 𝜀 < 1)

with

While the �-part of (64) can be absorbed, the remaining integrals are bounded if for 
i = 1 , 2

Noting that the function t ↦ t∕(t + 2) , t ≥ 0 , is increasing and by choosing �i , i = 1 , 
2, sufficiently close to −1∕2 , we see that these requirements are consequences of the 
strict inequalities

We thus have assuming (63) and (65)

(62)�i ∈ (−1∕2, 0) , si ≤ 3

4
qi , � ≥ 2

�
si .

(63)� ≥ 3

2�
qmax .

�i ∶= 2� − 2 − 2�
[qi
2
+ �i

]
1

si

(64)

2∑

i=1
�
Ω

Γ

qi

2
+�i

i
|�i�m|2|�m|2�−2 dx

=

2∑

i=1
�
Ω

[
Γ
si
i
|�m|2�

] 1

si

[
qi

2
+�i

]
|�i�m|2|�m|�i dx

≤
2∑

i=1

[
��

Ω

Γ
si
i
|�m|2� dx + c(�)�

Ω

|�m|�i�
∗
i |�i�m|2�

∗
i dx

]

�i ∶=
si

qi

2
+ �i

=
3qi

2qi + 4�i
, �

∗

i
=

3qi

qi − 4�i
.

�i ≥ 0 and 2�∗
i
≤ qi .

(65)qmax > 4 , 𝜅 >
3qmax

qmax + 2
.

(66)
�
Ω

[
Γ
s1
1
+ Γ

s2
2

]
|�m|2� dx ≤c

[
1 + �

Ω

Γ

q2−2

2

2
|�2�m|2|�m|2�−2Γ

1+�1
1

dx

+ �
Ω

Γ

q1−2

2

1
|�1�m|2|�m|2�−2Γ

1+�2
2

dx

]
.
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Let us have closer look at the first integral on the right-hand side of (66). Youngs’s 
inequality gives

Here the first integral is absorbed and the second is bounded if we have (again �2 
being sufficiently close to −1∕2)

The first condition follows from the requirement  (65), the second one holds if we 
assume in addition that qmin > 5.

In the same way the last term on the right-hand side of (66) is handled and by 
combining (63), (65) we have shown Theorem 1.1 together with the formula (14).  
 ◻

4  Proof of Theorem 1.2

We proceed along the lines of Section 2 assuming that all the hypothese of Theo-
rem 1.2 are satisfied. In place of (25) we have ( Γ ∶= 1 + |∇u|2)

and (68) holds for any s, � ≥ 1 and � ∈ C1
0
(Ω) . We define the sequence �m as in (26) 

observing that  (28) holds with qmin replaced by p. Letting � ∶= p − 2 , defining 
�̂� ∶=

p−1

p−2
 we obtain for

applying obvious modifications in the proof of (30)

(67)

�
Ω

Γ

q2−2

2

2
|�2�m|2|�m|2�−2Γ

1+�1
1

dx

≤ �
Ω

|�2�m|q2 dx + �
Ω

Γ

q2

2

2
|�m|

(2�−2)
q2

q2−2Γ
(1+�1)

q2

q2−2

1
dx

≤ c

[
1 + �

Ω

[
Γ
s2
2
|�m|2�

] 2

3 |�m|
(2�−2)

q2

q2−2
−

4

3
�
Γ
(1+�1)

q2

q2−2

1
dx

]

≤ c + ��
Ω

Γ
s2
2
|�m|2� dx

+ c(�)�
Ω

|�m|
3

[
(2�−2)

q2

q2−2
−

4

3
�

]
Γ
3(1+�1)

q2

q2−2

1
dx .

(2𝜅 − 2)
q2

q2 − 2
−

4

3
𝜅 ≥ 0 and

3

2

q2

q2 − 2
<

q1

2
.

(68)�
Ω

Γs|�|2� dx ≤ c

{[

�
Ω

|∇Γ
s

2 | |�|� dx
]2

+

[

�
Ω

Γ
s

2 |∇�| |�|�−1 dx
]2}

=∶c{(I) + (II)} ,

(69)s >
𝛿

2
, 𝜅 ≥ �̂�
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Here (II) just denotes the term occurring on the right-hand side of (68) with � being 
replaced by �m . The quantity (III) is discussed analogously to the term (III)i : in 
accordance with the calculations presented after the proof of Proposition 2.2 we get 
for any 𝜀 > 0

wtith exponent � ≥ 0 , if we assume that

is satisfied. Choosing � sufficiently small, inserting (71) in (70) and returning to (68) 
it is shown (compare (35))

Adjusting the calculations presented after inequality (35) to the situation at hand we 
consider numbers s, � satisfying

and find recalling (7) and using (74)

where from now on the sum is taken with respect to the index i. Let us assume in 
addition to (74) that we have

as lower bound for the parameter � . Quoting  (107) from Proposition  6.2 (with � 
being replaced by |�m|� ) and returning to (73) we find:

(70)(II) ≤ c�
Ω

Γ
s−

𝛿

2 |𝜂m|2𝜅−2�̂� dx =∶ c(III) .

(71)

(III) ≤ 𝜀�
Ω

Γs|𝜂m|2𝜅 dx + c(𝜀)�
Ω

|𝜂m|𝜗 dx ,

𝜗 ∶=

[
s

s −
𝛿

2

]∗(
2𝜅 − 2�̂� − 2𝜅

s −
𝛿

2

s

)
,

(72)𝜅 ≥ 2
s

𝛿
�̂�

(73)�
Ω

Γs|�m|2� dx ≤ c
{
(I) + 1

}
(I) ∶=

[

�
Ω

|∇Γ
s

2 | |�m|� dx
]2

.

(74)s ≤ p + �

(I) ≤ c

[

�
Ω

Γ
s−1

2 |∇2u||�m|� dx
]2

≤ c

[

�
Ω

Γ
p−2

2 |∇2u|2|�m|2�Γ� dx

]
⋅

[

�
Ω

Γ
s−1−

p−2

2
−�

]
dx

≤ c�
Ω

D2f (∇u)
(
�i∇u, �i∇u

)
|�m|2�Γ� dx ,

(75)𝛼 > −
1

4
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On the right-hand side of (76) we use the second inequality from the ellipticity con-
dition (7) to obtain (in analogy to the inequalities (43), (45))

The right-hand side of  (77) is discussed following the arguments presented 
after (45): we first have (recall (28))

where we have defined

Obviously this requires the bound p
2
≥ q

2
+ � , i.e. the condition

in combination with (75) yields the maximal range of anisotropy , since then we can 
choose � sufficiently close to −1∕4 to guarantee p > q + 2𝛼 . Moreover, we assume 
the validity of −1 + �

∗[2 − 2�(p − 2)∕p] ≤ 0 . This is true again for � chosen suffi-
ciently close to −1∕4 , provided that

Recalling (78) we see that (79) is a consequence of the stronger bound

In accordance with (47) we therefore arrive at

Neglecting the contribution resulting from ∇u0 and under the additional hypothesis

(76)�
Ω

Γs|�m|2� dx ≤ c�
Ω

D2f (∇u)
(
∇|�m|,∇|�m|

)
Γ1+�|�m|2�−2 dx .

(77)�
Ω

Γs|�m|2� dx ≤ c�
Ω

Γ
q

2
+�|∇�m|2|�m|2�−2 dx .

�
Ω

Γ
q

2
+�|∇�m|2|u − u0|2� dx ≤�spt∇�m

Γ
q

2
+�
m

2−2�
p−2

p dx

≤ c�
Ω

Γ
p

2 dx + �spt∇�m

m
�
∗[2−2�

p−2

p
]
dx ,

� ∶=
p∕2
q

2
+ �

, �
∗ ∶=

�

� − 1
.

(78)q < p +
1

2

(79)𝜅 >

p + q −
1

2

2(p − 2)
.

(80)𝜅 >
p

p − 2
.

(81)r.h.s. of (4.10) ≤ c

[
1 + �

Ω

Γ
q

2
+�|∇u − ∇u0|2|�m|2�−2 dx

]
.

(82)s >
q

2
+

3

4
,
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which guarantees the validity of s > q

2
+ 1 + 𝛼 for 𝛼 > −1∕4 , we have

Let us add a comment concerning the conditions imposed on s: as remarked 
after (78) and during the subsequent calculations the parameter � has to be adjusted 
in an appropriate way and might become very close to the critical value −1∕4 . For 
this reason inequality (74) is replaced by the stronger one (recall (16))

In order to find numbers s satisfying (82) and (85) we need the bound q < 2p − 2 
being more restrictive for p ∈ (2, 5∕2) than inequality (78).

Finally we note that the exponent 2� − 2�∗ occurring in the second integral on 
the right-hand side of (83) is non-negative provided � ≥ s∕(s − [1 +

q

2
+ �]) , and the 

latter inequality holds for � sufficiently close to −1∕4 , if (compare (17))

Assuming  (86) our claim follows by inserting  (83) into  (81) and choosing � suffi-
ciently small.   ◻

5  Proof of Theorem 1.3

Let all the assumptions of Theorem 1.3 hold. We define the number

and note that

We also remark that for any fixed � and for any 𝜅 > 1 the inequality

is equivalent to the requirement 𝛼 > −p∕n.

Lemma 5.1 Fix 𝛼 > −1∕(2n) , 𝜅 > 1 with (87) and choose a real number s
�
 satisfying

(83)�
Ω

Γ
q

2
+1+�|�m|2�−2 dx ≤ ��

Ω

Γs|�m|2� dx + c(�)�
Ω

|�m|2�−2�
∗

dx ,

(84)�
∗ ∶=

�

� − 1
, � ∶=

s

1 +
q

2
+ �

.

(85)s < p −
1

4
.

(86)𝜅 >
s

s −
[ q
2
+

3

4

] .

𝛾 ∶=
2n

n + 2
, 1 ≤ 𝛾 < 2 , with Sobolev conjugate

n𝛾

n − 𝛾
= 2 ,

n − �

n
=

n

n + 2
=

�

2
,

�

2 − �
=

n

2
.

(87)
p

2
< p

𝜅(n + 2) − 2

2n𝜅
+ 𝛼

𝜅 − 1

𝜅
.
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Then we have for any 𝜀 > 0 and for � ∈ C1
0
(Ω)

for a constant being independent on � , where s is given by (90).

Proof of Lemma 5.1 We first observe that for

we have after an application of Young’s inequality

for any �̃� > 0 . We then estimate using Sobolev’s inequality

Let us first consider T1 . Hölder’s inequality gives

For T1,2 we observe recalling (90)

(88)
p

2
< s

𝛼
< p

𝜅(n + 2) − 2

2n𝜅
+ 𝛼

𝜅 − 1

𝜅
.

(89)
�
Ω

Γs
� |�|2(�−1) dx ≤ ��

Ω

Γ
q

2
+�|∇�|2|�|2(�−1) dx

+ ��
Ω

Γ
−

p

n
+s|∇�|2|�|2(�−1) dx + c

(90)s = s
�

�

� − 1
−

p

2(� − 1)

(91)
�
Ω

Γs
𝛼 |𝜂|2(𝜅−1) dx =�

Ω

Γ
s
𝛼
−

p

2𝜅 |𝜂|2(𝜅−1)Γ
p

2𝜅 dx ≤ �̃��
Ω

Γs|𝜂|2𝜅 dx + c(�̃�)�
Ω

Γ
p

2 dx

(92)

�
Ω

Γs|�|2� dx =�
Ω

[
Γ

s

2 |�|�
]2
dx ≤ c

[

�
Ω

||∇
[
Γ

s

2 |�|�
]||

�
dx

] 2

�

≤ c

[

�
Ω

||∇Γ
s

2 ||
� |�|�� dx

] 2

�

+ c(�)

[

�
Ω

Γ
s�

2 |�|(�−1)� |∇�|� dx
] 2

�

= cT

2

�

1
+ cT

2

�

2
.

(93)

T

2

�

1
≤c

[

�
Ω

|∇2u|�Γ�
s−1

2 |�|�� dx
] 2

�

= c

[

�
Ω

|∇2u|�Γ�
p−2

4 Γ
�
�

2 Γ
�
2−p

4 Γ
−�

�

2 Γ
�
s−1

2 |�|�� dx
] 2

�

≤ c

[

�
Ω

|∇2u|2Γ
p−2

2 Γ�|�|2� dx
]
⋅

[

�
Ω

Γ
�

2−�
(
2−p

2
−�+s−1)

dx

] 2−�

�

= cT1,1 ⋅ T

2−�

�

1,2
.
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which is true by the choice (88) of s
�
 , hence T1,2 is uniformly bounded.

We handle T1,1 with the help of Proposition 6.2 (replacing � by |�|�):

From (92) - (94) we conclude

with constants c being independent of � and it remains to discuss T2 in (95): we have 
for �̂� = 2∕𝛾 , � = 2∕(2 − �),

With  (91) for �̃� < 𝜀∕c sufficiently small, (95) and  (96) the proof of Lemma 5.1 is 
completed.   ◻

Now we come to the proof of the theorem: we choose �m = (u − u0)�m with �m 
defined after (26). Then Lemma 5.1 yields

Here the first two integrals on the right-hand side can be absorbed in the left-hand 
side provided that we have (recall that u0 is Lipschitz)

n

2

[2 − p

2
− 𝛼 + s − 1

]
<

p

2
⇔ s

𝛼
< p

𝜅(n + 2) − 2

2n𝜅
+ 𝛼

𝜅 − 1

𝜅
,

(94)

T1,1 ≤c�
Ω

D2f (∇u)
(
∇�

�
u,∇�

�
u
)
Γ�|�|2� dx

≤ c�
Ω

D2f (∇u)
(
∇|�|� ,∇|�|�

)
|∇u|2Γ� dx

≤ c�
Ω

Γ
q−2

2 |�|2�−2|∇�|2Γ1+� dx = c�
Ω

Γ
q

2
+�|∇�|2|�|2�−2 dx .

(95)�
Ω

Γs|�|2� dx ≤ c�
Ω

Γ
q

2
+�|∇�|2|�|2(�−1) dx + cT

2

�

2

(96)
T

2

�

2
=

[

�
Ω

Γ
s�

2 |∇�|� |�|(�−1)� dx
] 2

�

=

[

�
Ω

Γ
p

2� Γ
−

p

2� Γ
s�

2 |∇�|� |�|(�−1)� dx
] 2

�

≤ c

[

�
Ω

Γ
p

2 dx

] 2

n

⋅ �
Ω

Γ
−

p

n
+s|∇�|2|�|2(�−1) dx .

(97)

�
Ω

Γs
� |�m|2(�−1) dx ≤��

Ω

Γ
q

2
+�
[
|∇u| + |∇u0|

]2|�m|2(�−1) dx

+ ��
Ω

Γ
−

p

n
+s
[
|∇u| + |∇u0|

]2|�m|2(�−1) dx

+ ��
Ω

Γ
(
q

2
+�)|∇�m|2|u − u0|2|�m|2(�−1) dx

+ ��
Ω

Γ
−

p

n
+s|∇�m|2|u − u0|2|�m|2(�−1) dx + c .
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Also on account of  (98) we can handle the remaining integrals on the right-hand 
side of (97) with the help of Young’s inequality. We obtain

as well as

In (99) we choose �1 such that

with conjugate exponent (recall q − p < 2p∕n on account of (18))

Note that for � sufficiently close to −1∕(2n) it holds (recall 88)

In (100) we define �2 according to

with conjugate exponent

and choosing � close to −1∕(2n) we can arrange that (recall 88)

(98)max
{q

2
+ 𝛼,−

p

n
+ s

}
< s

𝛼
− 1 .

(99)
�
Ω

Γ
q

2
+�|∇�m|2|u − u0|2|�m|2(�−1) dx

≤ �
Ω

Γs
� |�m|2(�−1) dx + c�spt∇�m

|∇�m|2�
∗
1 |u − u0|2�

∗
1 |�m|2(�−1) dx .

(100)
�
Ω

Γ
−

p

n
+s|∇�m|2|u − u0|2�2(�−1)m

dx

≤ �
Ω

Γs
� �

2(�−1)
m

dx + c�spt∇�m

|∇�m|2�
∗
2 |u − u0|2�

∗
2 �

2(�−1)
m

dx .

1 < 𝛽1 <

[
p
𝜅(n + 2) − 2

𝜅
−

𝜅 − 1

𝜅

]
1

qn − 1

(101)𝛽
∗

1
>

𝜅
[
p(n + 2) − 1

]
− 2p + 1

𝜅
[
2p − (q − p)n

]
− 2p + 1

.

1 < 𝛽1 < s
𝛼

[q
2
−

1

2n

]−1
.

1 < 𝛽2 <

[
p
𝜅(n + 2) − 2

2𝜅
−

𝜅 − 1

2𝜅

]
1

sn − p

(102)𝛽
∗

2
>

𝜅
[
pn + 4p − 1 − 2sn

]
− 2p + 1

𝜅
[
2p − (q − p)n

]
− 2p + 1

.

1 < 𝛽2 < s
𝛼

[
−

p

n
+ s

]−1
.
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Returning to (99) and (100), respectively, the first integral again is absorbed in the 
left-hand side of (97). The remaining integrals stay bounded if we have for i = 1 , 2

Thus we require the condition

which on account of p > n is satisfied for � sufficiently large.
It remains to arrange  (98) together with the inequality on the right-hand side 

of (88). Here we first observe

For � sufficiently close to −1∕(2n), (104) is a consequence of (19). We finally have 
to discuss

Assumption  (21) implies  (105). Hence, (97),  (99) and  (100) prove Theorem  1.3 
passing to the limit m → ∞ .   ◻

6  Appendix. Caccioppoli‑type inequalities

We prove two Caccioppoli-type inequalities with small weights (i.e. involving pow-
ers of Γ = 1 + |∇u|2 or of Γi = 1 + |�iu|2 , i = 1 , ..., n, with a certain range of nega-
tive exponents), where the first one is the appropriate version in the splitting context.

There is no need to restrict the following considerations to the case n = 2 . Thus, 
throughout this appendix, we suppose that Ω ⊂ ℝ

n is a bounded Lipschitz domain 
and that f: ℝn

→ ℝ is of class C2 satisfying D2f (Z)(Y , Y) > 0 for all Z, Y ∈ ℝ
n.

Moreover we suppose that u ∈ W
2,2

loc
(Ω) ∩ C1(Ω) solves the differentiated Euler 

equation

and for any 1 ≤ i ≤ n fixed.

m−1m
�
∗
i

[
2−2(1−n∕p)

]
−2(�−1)(1−n∕p) ≤ c ,

(103)𝛽
∗

i
< (𝜅 − 1)

p − n

n
+

p

2n
, i = 1, 2 ,

(104)

q

2
+ 𝛼 < p

𝜅(n + 2) − 2

2n𝜅
+ 𝛼

𝜅 − 1

𝜅
− 1 ⇔q < p

𝜅(n + 2) − 2

n𝜅
− 2 − 2

𝛼

𝜅

⇔ q − p <
2

n
(p − n) −

2p + 2n𝛼

n𝜅

(105)
−
p

n
+ s ≤ s

𝛼
− 1 ⇔ −

p

n
+ s

𝛼

𝜅

𝜅 − 1
−

p

2(𝜅 − 1)
< s

𝛼
− 1

⇔s
𝛼
< (𝜅 − 1)

p − n

n
+

p

2
.

(106)0 = ∫
Ω

D2f (∇u)
(
∇�iu,∇�

)
dx for all � ∈ C∞

0
(Ω)
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Proposition 6.1 Fix l ∈ ℕ and suppose that � ∈ C∞
0
(Ω) , 0 ≤ � ≤ 1 . Then the 

inequality

holds for any 𝛼 > −1∕2 and for any fixed 1 ≤ i ≤ n.

Proof of Proposition  6.1 Suppose that −1∕2 < 𝛼 and fix 1 ≤ i ≤ n (no summation 
with respect to i). Using approximation arguments we may insert

in the equation (106) with the result

In (108) we have

which gives S1 ≤ 0 if � ≥ 0 . In this case we will just neglect S1 in the following. In 
the case −1∕2 < 𝛼 < 0 we estimate

Since we have 2|𝛼| < 1 we may absorb |S1| in the left-hand side of (108), hence

For 0 < 𝜀 sufficiently small we apply the Cauchy-Schwarz inequality to discuss S2:

(107)
�
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
�
2lΓ�

i
dx

≤ c�
Ω

D2f (∇u)(∇�,∇�)�2l−2Γ�+1
i

dx , Γi ∶= 1 + |�iu|2 ,

� ∶= �
2l
�iuΓ

�

i

(108)

∫
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
�
2lΓ�

i
dx = − ∫

Ω

D2f (∇u)
(
∇�iu,∇Γ

�

i

)
�iu�

2l dx

− ∫
Ω

D2f (∇u)
(
∇�iu,∇(�

2l)
)
�iuΓ

�

i
dx

=∶S1 + S2 .

S1 = −2� ∫
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
|�iu|2Γ�−1

i
�
2l dx

|S1| = 2|�|�
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
|�iu|2Γ�−1

i
�
2l dx

≤ 2|�|�
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
Γ�

i
�
2l dx .

�
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
�
2lΓ�

i
dx ≤ c|S2| .
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After absorbing the first term in the right-hand side of (108) we have established our 
claim (107).   ◻

Instead of the quantities Γi our second inequality (compare [20] for the discussion 
in two dimensions) involves the full derivative, i.e. we incorporate certain negative 
powers of Γ = 1 + |∇u|2 . As a consequence we do not obtain the range −1∕2 < 𝛼 
and have to replace this condition by the requirement −1∕(2n) < 𝛼.

Proposition 6.2 Suppose that � ∈ C∞
0

(
Ω
)
 and fix some real number � such that 

−1∕(2n) < 𝛼 . Then we have (summation with respect to i = 1 , ..., n)

where the constant c is not depending on � . In particular it holds

Proof For i = 1 , ..., n and any � as above we deduce from (106)

where at this stage no summation with respect to the index i is performed. Follow-
ing [20] we denote the bilinear form D2f (⋅, ⋅) by ⟨⋅, ⋅⟩ . The first observation is the 
inequality

�
Ω

D2f (∇u)(∇�iu,∇�)�
2l−1Γ�

i
�iu dx

≤ ��
Ω

D2f (∇u)(∇�iu,∇�iu)�
2lΓ�

i
dx

+ c(�)�
Ω

D2f (∇u)(∇�,∇�)�2l−2Γ�

i
|�iu|2 dx .

(109)

[
1 + 2�n

]
�
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
Γ�

�
2 dx

≤ c

[

�spt∇�

D2f (∇u)
(
∇�iu,∇�iu

)
Γ�

�
2 dx

] 1

2

⋅

[

�spt∇�

D2f (∇u)
(
∇�,∇�

)||∇u||
2
Γ� dx

] 1

2

,

(110)
�
Ω

D2f (∇u)
(
∇�iu,∇�iu)Γ

�
�
2 dx ≤ c�spt∇�

D2f (∇u)
(
∇�,∇�

)||∇u||
2
Γ� dx .

(111)

∫
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
Γ�

�
2 dx

= − ∫
Ω

D2f (∇u)
(
∇�iu, �iu∇Γ

�
)
�
2 dx

− 2∫
Ω

D2f (∇u)
(
∇�iu,∇�

)
�iuΓ

�
� dx =∶ I + II ,
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For handling the integrand of the term I from (111) we use the identity

The last term on the right-hand side of (113) is estimated as follows

This, together with (113) gives (recall −2𝛼 > 0)

(112)

n∑

i=1

⟨
�i∇u, �i∇u

⟩
Γ� ≥

n∑

i=1

⟨
�i∇u, �i∇u

⟩ n∑

j=1

(�ju)
2Γ�−1

≥
n∑

i=1

⟨
�i∇u, �i∇u

⟩
(�iu)

2Γ�−1

=

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
Γ�−1 .

(113)

−

n∑

i=1

⟨
�i∇u, �iu∇Γ

�

⟩
= − �

n∑

i=1

⟨
�iu�i∇u,∇

n∑

j=1

(�ju)
2
⟩
Γ�−1

= − 2�

n∑

i=1

⟨
�iu�i∇u,

n∑

j=1

�ju�j∇u
⟩
Γ�−1

= − 2�

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
Γ�−1

− 2�

n∑

i=1

⟨
�iu�i∇u,

∑

j≠i
�ju�j∇u

⟩
Γ�−1 .

n∑

i=1

⟨
�iu�i∇u,

∑

j≠i
�ju�j∇u

⟩

≤
n∑

i=1

[∑

j≠i
1

2

[⟨
�iu�i∇u, �iu�i∇u

⟩
+

⟨
�ju�j∇u, �ju�j∇u

⟩]]

=
1

2

n∑

i=1

[
(n − 1)

⟨
�iu�i∇u, �iu�i∇u

⟩
+
∑

j≠i

⟨
�ju�j∇u, �ju�j∇u

⟩]]

=
1

2

n∑

i=1

[
(n − 2)

⟨
�iu�i∇u, �iu�i∇u

⟩
+

n∑

j=1

⟨
�ju�j∇u, �ju�j∇u

⟩]]

=
1

2

[
(n − 2)

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
+ n

n∑

j=1

⟨
�ju�j∇u, �ju�j∇u

⟩]]

= (n − 1)

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
.
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Combining (114) and (112) we get

Returning to (111) and using (115) we get (from now on summation with respect to 
i)

This finishes the proof by applying the Cauchy-Schwarz inequality.   ◻
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(114)

−

n∑

i=1

⟨
�i∇u, �iu∇Γ

�

⟩
= − 2�

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
Γ�−1

− 2�

n∑

i=1

⟨
�iu�i∇u,

∑

j≠i
�ju�j∇u

⟩
Γ�−1

≤ − 2�

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
Γ�−1

− 2�(n − 1)

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
Γ�−1

= − 2�n

n∑

i=1

⟨
�iu�i∇u, �iu�i∇u

⟩
Γ�−1 .
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−

n∑

i=1
�
Ω

D2f (∇u)
(
�i∇u, �iu∇Γ

�
)
�
2 dx

≤ −2�n
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i=1
�
Ω

D2f (∇u)
(
�i∇u, �i∇u

)
Γ�

�
2 dx .

(116)

[
1 + 2�n

]
�
Ω

D2f (∇u)
(
∇�iu,∇�iu

)
Γ�

�
2 dx

≤ −2�spt∇�

D2f (∇u)
(
�∇�iu, �iu∇�

)
Γ� dx .
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