Please use this identifier to cite or link to this item: doi:10.22028/D291-37255
Files for this record:
File Description SizeFormat 
s00209-022-03044-1.pdf351,68 kBAdobe PDFView/Open
Title: von Neumann’s inequality for row contractive matrix tuples
Author(s): Hartz, Michael UdsID
Richter, Stefan
Shalit, Orr Moshe
Language: English
In:
Title: Mathematische Zeitschrift
Volume: 301
Issue: 4
Pages: 3877–3894
Publisher/Platform: Springer
Year of Publication: 2022
Free key words: Von Neumann type inequality
Noncommutative function theory
Gleason’s problem
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We prove that for all n∈N, there exists a constant Cn such that for all d∈N, for every row contraction T consisting of d commuting n×n matrices and every polynomial p, the following inequality holds: ∥p(T)∥≤Cnsupz∈Bd|p(z)|. We apply this result and the considerations involved in the proof to several open problems from the pertinent literature. First, we show that Gleason’s problem cannot be solved contractively in H∞(Bd) for d≥2. Second, we prove that the multiplier algebra Mult(Da(Bd)) of the weighted Dirichlet space Da(Bd) on the ball is not topologically subhomogeneous when d≥2 and a∈(0,d). In fact, we determine all the bounded finite dimensional representations of the norm closed subalgebra A(Da(Bd)) of Mult(Da(Bd)) generated by polynomials. Lastly, we also show that there exists a uniformly bounded nc holomorphic function on the free commutative ball CBd that is levelwise uniformly continuous but not globally uniformly continuous.
DOI of the first publication: 10.1007/s00209-022-03044-1
URL of the first publication: https://link.springer.com/article/10.1007/s00209-022-03044-1
Link to this record: urn:nbn:de:bsz:291--ds-372559
hdl:20.500.11880/33771
http://dx.doi.org/10.22028/D291-37255
ISSN: 1432-1823
0025-5874
Date of registration: 16-Sep-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Junior Professor Michael Hartz
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



This item is licensed under a Creative Commons License Creative Commons