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Abstract
We prove that for all n ∈ N, there exists a constant Cn such that for all d ∈ N, for every
row contraction T consisting of d commuting n × n matrices and every polynomial p, the
following inequality holds:

‖p(T )‖ ≤ Cn sup
z∈Bd

|p(z)|.

Weapply this result and the considerations involved in the proof to several openproblems from
the pertinent literature. First, we show that Gleason’s problem cannot be solved contractively
in H∞(Bd) for d ≥ 2. Second, we prove that the multiplier algebra Mult(Da(Bd)) of the
weighted Dirichlet spaceDa(Bd) on the ball is not topologically subhomogeneous when d ≥
2 and a ∈ (0, d). In fact, we determine all the bounded finite dimensional representations of
the norm closed subalgebra A(Da(Bd)) of Mult(Da(Bd)) generated by polynomials. Lastly,
we also show that there exists a uniformly bounded nc holomorphic function on the free
commutative ball CBd that is levelwise uniformly continuous but not globally uniformly
continuous.
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1 Introduction

Recall that a tuple T = (T1, . . . , Td) ∈ B(H)d of operators on a Hilbert space H is said to be
a row contraction if ‖T ‖ = ‖ ∑d

i=1 Ti T
∗
i ‖1/2 ≤ 1. We say that T is a strict row contraction

if ‖T ‖ < 1. If in addition Ti Tj = Tj Ti for all i, j then we say that T is a commuting row
contraction.

The central result of this paper is the following theorem, which answers Question 9.15 in
[23].

Theorem 1.1 Let n ∈ N. There exists a constant Cn such that for all d ∈ N, for every
commuting row contraction T = (T1, . . . , Td) on a Hilbert space of dimension n and for
every polynomial p ∈ C[z1, . . . , zd ], the inequality

‖p(T )‖ ≤ Cn sup
z∈Bd

|p(z)|

holds.

This result is the content of Theorem 4.7 below. For each d, n ∈ N, we find an explicit
upper bound for constants Cd,n such that

‖p(T )‖ ≤ Cd,n sup
z∈Bd

|p(z)| (1)

holds for every row contraction T consisting of d commuting n× n matrices. The inequality
(1) with a constant that possibly depends on d is the main result of this paper. By applying
essentially linear algebraic considerations, we will show that the best constants Cd,n are
bounded in d for fixed n, so that we may define Cn = supd Cd,n . However, for fixed d ∈ N,
the constants Cd,n converge to infinity at a slower rate than the constants Cn . Although it
is very likely that the expression we find for general d, n is a gross overestimation of the
optimal constant, for the special case n = 2 we find the best possible constant; in fact, we
show that Cd,2 = 1 for all d; see Corollary 3.4.

It is well known that when d ≥ 2 no constant can be found that will satisfy the inequality
(1) for all n. To see this, recall that the supremum of ‖p(T )‖ as T ranges over all n × n
row contractions and all n is equal to the multiplier norm ‖p‖Mult(H2

d ) of p, considered as

a multiplier on the Drury-Arveson space H2
d (see, for example, [23, Section 11]). On the

other hand, we have on the right hand side of the inequality the supremum norm ‖p‖∞ :=
supz∈Bd

|p(z)| of p on the Euclidean unit ballBd inC
d . The incomparability of the multiplier

norm and the supremum norm was already observed by Drury [9].
The incomparability of the multiplier and supremum norms notwithstanding, one might

guess that Theorem 1.1, at least in the form of inequality (1), can be obtained by a straight-
forward application of standard techniques, since the row contractions appearing in it are
restricted to act on spaces of a fixed finite dimension. However, we found that some new
ideas are needed in order to prove the existence of the constantsCd,n . It is worth highlighting
that as a consequence of Theorem 1.1 and of the techniques used in the proof, we obtain
several results that answer other questions in the literature. We now survey these additional
results.

To simplify notation, let CBd(n) ⊆ Mn(C)d denote the set of all strict row contractions
consisting of d commuting n × n matrices, and let CBd(n) denote its closure, the set of all
commuting n × n row contractions. The set

CBd =
∞⊔

n=1

CBd(n)
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von Neumann’s inequality for... 3879

is called the free commutative ball.
In Sect. 3, we make a connection between the n-point muliplier norm ‖ f ‖Mult(H2

d ),n ,
defined in [3], and Theorem 1.1. In Proposition 3.1 we prove that

‖ f ‖Mult(H2
d ),n = sup{‖ f (T )‖ : T ∈ CBd(n) diagonalizable}.

This is used to prove that Cd,2 = 1 for all d .
It is natural to wonder whether Cd,n = 1 for other values of d, n (besides the well known

C1,n = 1, which is just von Neumann’s inequality). We answer this in Proposition 3.5, which
shows that C2,3 > 1 and hence Cd,n > 1 whenever d ≥ 2 and n ≥ 3. This result is used in
Sect. 5 to show that Gleason’s problem cannot be solved contractively in H∞(Bd) for d ≥ 2.

For a > 0, let Da(Bd) be the reproducing kernel Hilbert space (RKHS for short) on Bd

with reproducing kernel

k(z, w) = 1

(1 − 〈z, w〉)a .

If a = 1, then Da(Bd) = H2
d , the Drury–Arveson space. Section 4 is concerned with

the relationship between operator theory and the multiplier algebra of Da(Bd). The main
technical achievement is Lemma 4.6, in which we show that if f ∈ H∞(Bd) and T is a tuple
of commuting n × n matrices whose joint spectrum is contained in Bd , then there exists a
function g ∈ Mult(Da(Bd)) with f (T ) = g(T ) and ‖g‖Mult(Da(Bd )) ≤ C‖ f ‖∞, where C is
a constant that depends only on n and a. Since the multiplier norms are well behaved with
respect to the holomorphic functional calculus, this lemma allows us to control the norm of
f (T ) in terms of ‖ f ‖∞. An immediate consequence of this result is Theorem 4.7, which is
a refined version of Theorem 1.1.

In Sect. 6 we employ the tools from Sect. 4 to study the representation theory of the
multiplier algebras Mult(Da(Bd)) and of their norm closed subalgebras A(Da(Bd)) gener-
ated by the polynomials. We give a complete description of the bounded finite dimensional
representations of A(Da(Bd)), and we also show that the algebras A(Da(Bd)), and hence
Mult(Da(Bd)), are not topologically subhomogeneous for a < 0 < d , thereby solving an
open problem from [3].

We conclude this paper by solving an open problem from [23]:we show, in Proposition 7.2,
that there exists a function f ∈ Mult(H2

d ) that gives rise to a noncommutative function on
the closed free commutative unit ball �∞

n=1CBd(n) that is levelwise uniformly continuous,
but not globally uniformly continuous (see Sect. 7 for details). It might be interesting to note
that the question behind Theorem 1.1 grew out of an earlier attempt to settle this problem on
uniform continuity.

2 Preliminaries onmultvariable spectral theory

We will require some elementary facts about the spectrum of a commuting tuple of matrices,
which we now briefly review. For more information on joint spectra see the monograph [18].

Recall that given a commutative unital Banach algebra B with maximal ideal space�(B),
and a d-tuple a = (a1, . . . , ad) ∈ Bd , the joint spectrum of a with respect to B is the subset
of C

d defined by

σB(a) = {(χ(a1), . . . , χ(ad)) : χ ∈ �(B)}.
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3880 M. Hartz et al.

When the algebra B is understood we simply write σ(a). Sometimes the joint spectrum is
referred to simply as spectrum. This is perhaps the simplest notion of spectrum and it will
suffice for our needs.

If T = (T1, . . . , Td) ∈ B(H)d is a tuple of commuting operators on a Hilbert space,
then there is also the notion of Taylor spectrum. We shall not define the Taylor spectrum,
but we remark that it is contained in σB(T ) for any commutative unital Banach algebra
B ⊆ B(H) that contains T1, . . . , Td . In any case, when H is finite dimensional then the
spectrum σ(T ) = σB(T ) is independent of the unital commutative algebra B that contains
T , and is given as the set of points

σ(T ) =
{(〈T1vi , vi 〉, . . . , 〈Tdvi , vi 〉

) : i = 1, . . . , n
}

⊂ C
d ,

where v1, . . . , vn is an orthonormal basis for H in which T1, . . . , Td are jointly upper triangu-
lar. The above set is also equal to the Taylor spectrum as well as to the so-called Waelbroeck
spectrum. The equality of all these spectra in the finite dimensional seetting is explained
nicely in Sect. 2.1 in [6].

If T is a commuting row contraction, then the joint spectrum of T with respect to the unital
Banach algebra generated by T is contained in the closed unit ball Bd . Indeed, this follows
from the fact that characters on operator algebras are automatically completely contractive.

We will also require a basic holomorphic functional calculus for commuting tuples of
matrices, which can be regarded as a very special case of the Arens–Calderon functional
calculus or of the Taylor functional calculus, see [18, Section 30]. Explicitly, we will use
that if T is a tuple of commuting matrices whose joint spectrum is contained in Bd , then
the ordinary polynomial functional calculus p 
→ p(T ) extends to a continuous algebra
homomorphism on the algebra O(Bd) of all holomorphic functions on Bd ; we denote the
extended homomorphism by f 
→ f (T ). If T is jointly diagonalizable, then f (T ) can
simply be computed by applying f to the diagonal entries of a diagonal representation of T .
As the general constructions of the Arens–Calderon and of the Taylor functional calculus are
somewhat involved, we provide an elementary construction that is sufficient for our needs in
Theorem A.1 in the appendix.

3 Small matrices and the n-point norm

First, we observe that the question behind Theorem 1.1 is closely related to the relationship
between the n-point multiplier norm on the Drury–Arveson space and the sup norm. To recall
the definition of the n-point multiplier norm, let H be a reproducing kernel Hilbert space
of functions on Bd . For background on reproducing kernel Hilbert spaces, see [1, 21]. For
F ⊂ Bd , we denote by H

∣
∣
F the reproducing kernel Hilbert space on F whose reproducing

kernel is the restriction of the reproducing kernel ofH to F × F . For n ∈ N with n ≥ 1, the
n-point multiplier norm of a function f : Bd → C is defined as

‖ f ‖Mult(H),n = sup

{

‖ f
∣
∣
F‖

Mult(H
∣
∣
F
)
: F ⊂ Bd with |F | ≤ n

}

.

Clearly, the condition |F | ≤ n can be replaced with |F | = n. See [3] for background on the
n-point muliplier norm.

Proposition 3.1 Let f be holomorphic in a neighborhood of Bd . Then

‖ f ‖Mult(H2
d ),n = sup{‖ f (T )‖ : T ∈ CBd(n) diagonalizable}.
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Proof We first show the inequality “≤”. Given a subset F ⊂ Bd with |F | = n, consider
the n-dimensional RKHS H2

d

∣
∣
F on F and the tuple (T1, . . . , Td), where Ti is the operator

of multiplication by zi on H2
d

∣
∣
F . Clearly, T is a commuting row contraction. Moreover, the

tuple T is jointly diagonalizable, as the kernel functions at the points in F form a basis of
H2
d

∣
∣
F and are joint eigenvectors of the adjoint tuple T ∗. Moreover,

‖ f ‖Mult(H2
d |F ) = ‖ f (T )‖.

Taking the supremum over all subsets F of Bd with |F | = n, we therefore find that

‖ f ‖Mult(H2
d ),n ≤ sup{‖ f (T )‖ : T ∈ CBd(n) diagonalizable}.

Conversely, let T ∈ CBd(n) be diagonalizable and suppose that f is holomorphic with
‖ f ‖Mult(H2

d ),n ≤ 1. We wish to show that ‖ f (T )‖ ≤ 1. An approximation argument shows
that we may assume that T ∈ CBd(n). Let λ1, . . . , λn ∈ Bd be the joint eigenvalues of T
and set F = {λ1, . . . , λn}. Since T is diagonalizable, if g is another holomorphic function
on Bd that agrees with f on F , then f (T ) = g(T ). Now, since ‖ f ‖Mult(H2

d ),n ≤ 1, we have

‖ f
∣
∣
F‖

Mult(H2
d

∣
∣
F
)
≤ 1, so by the Pick property of H2

d [1, Chapter 8], there exists g ∈ Mult(H2
d )

with g
∣
∣
F = f

∣
∣
F and ‖g‖Mult(H2

d ) ≤ 1. Consequently, by the von Neumann inequality for

H2
d of Drury [9], Müller-Vasilescu [20] and Arveson [4], we find that

‖ f (T )‖ = ‖g(T )‖ ≤ 1,

as desired. ��
If f ∈ Mult(H2

d ), then for all r ∈ (0, 1) the function fr (z) := f (r z) is holomorphic in a
neighborhood of Bd , and

sup
0<r<1

‖ fr‖Mult(H2
d ) = ‖ f ‖Mult(H2

d ),

see, e.g. [25, Theorem 3.5.5]. Since ‖ f ‖Mult(H2
d ) = supn ‖ f ‖Mult(H2

d ),n , we obtain the fol-
lowing corollary.

Corollary 3.2 For all f ∈ Mult(H2
d ),

‖ f ‖Mult(H2
d ) = sup{‖ f (T )‖ : n ∈ N and T ∈ CBd(n) diagonalizable}.

The fact that

‖ f ‖Mult(H2
d ) = sup{‖ f (T )‖ : n ∈ N and T ∈ CBd(n)}

has been already observed in the literature on nc functions; see, e.g., [23, Remark 11.3]. This
raises the question whether

‖ f ‖Mult(H2
d ),n = sup{‖ f (T )‖ : T ∈ CBd(n)}?

We have not been able to answer this question.
We next use Proposition 3.1 to show that the two point norm on the Drury-Arveson space

is simply the supremum norm.

Lemma 3.3 Let F ⊂ Bd with |F | ≤ 2 and let m, n ≥ 1. If f ∈ Mn,m(H∞(Bd)), then there
exists g ∈ Mn,m(Mult(H2

d )) with f
∣
∣
F = g

∣
∣
F and ‖g‖Mult(H2

d ) ≤ ‖ f ‖∞. In particular, if
n = m = 1, then ‖ f ‖Mult(H2

d ),2 = ‖ f ‖∞.
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Proof If |F | ≤ 1, then we can choose g to be a constant function, so let |F | = 2. Suppose
initially that F = {0, re1} for some r ∈ (0, 1). Let

i : D → Bd , z 
→ (z, 0, . . . , 0),

be the inclusion and let P : Bd → D be the projection onto the first coordinate. Then
f ◦ i ∈ Mn,m(H∞(D)) has norm at most ‖ f ‖∞. The map h 
→ h ◦ P is a complete
isometry from H∞(D) into Mult(H2

d ) (see, for example, [3, Lemma 6.2]). Hence, if we
define g = ( f ◦ i) ◦ P , then g ∈ Mn,m(Mult(H2

d )) satisfies the conclusions of the lemma.
If F is an arbitrary two point subset ofBd , then there exists a biholomorphic automorphism

θ of Bd so that θ(F) has the form considered in the first paragraph; see [22, Section 2.2].
So the result follows from completely isometric automorphism invariance of H∞(Bd) and
Mult(H2

d ); see, e.g. Propositions 4.1 and 4.3 in [13].
As for the additional statement, notice that the inequality ‖ f ‖∞ ≤ ‖ f ‖Mult(H2

d ),2 always
holds. Conversely, if |F | = 2, then we apply the first statement to find that

‖ f
∣
∣
F‖Mult(H2

d |F ) = ‖g∣∣F‖Mult(H2
d |F ) ≤ ‖g‖Mult(H2

d ) ≤ ‖ f ‖∞.

Taking the supremum over all F yields ‖ f ‖Mult(H2
d ),2 ≤ ‖ f ‖∞. ��

As a consequence, we obtain a von Neumann-type inequality with constant 1 for 2 × 2
row contractions.

Corollary 3.4 If T is a commuting 2 × 2 row contraction, then

‖p(T )‖ ≤ ‖p‖∞
for all p ∈ C[z1, . . . , zd ]. In other words, we may choose C2 = 1 in Theorem 1.1.

Proof Suppose initially that T is jointly diagonalizable.ApplyingProposition 3.1 andLemma
3.3, we find that

‖p(T )‖ ≤ ‖p‖Mult(H2
d ),2 = ‖p‖∞. (2)

In general, it is known that any tuple T of commuting 2×2 matrices can be approximated
by a sequence (Tn) of commuting diagonalizable 2 × 2 matrices (see the remarks on page
133 of [14]). The row norm of (Tn) converges to the row norm of T , so by applying (2) to
rnTn for a suitable sequence rn ∈ (0, 1) tending to 1, the general result follows. ��

The following result shows that the last corollary does not extend to 3 × 3 matrices.

Proposition 3.5 There exists a polynomial p so that ‖p‖Mult(H2
2 ),3 > ‖p‖∞. In particular,

there exists a pair of commuting 3×3matrices that is a row contraction such that ‖p(T )‖ >

‖p‖∞. Consequently, Cd,n > 1 for all d and n such that d ≥ 2 and n ≥ 3.

Proof Let p(z) = z21 + z22, so that ‖p‖∞ = 1. One can check that the Pick matrix in H2
2 of

p at the points
( 4
5 ,

1
5

)
,
( 1
5 ,

4
5

)
,
( 2
5 ,

2
5

)
is not positive semidefinite (the determinant is strictly

negative). Hence ‖p‖Mult(H2
2 ),3 > 1. The rest follows from Proposition 3.1 and from the

definitions. ��
One possible approach to showing that Cd,3 < ∞, extending the basic idea behind the

proof of Lemma 3.3, is to use the special structure of solutions to extremal 3-point Pick
problems on the ball obtained by Kosińsksi and Zwonek [16]. It is conceivable that the
numerical value of the constant Cd,3 could be determined in this way. In the next section,
we use a somewhat different method, which very likely does not give optimal constants, but
will yield that Cd,n < ∞ for any d, n ≥ 1.
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von Neumann’s inequality for... 3883

4 von Neumann’s inequality up to a constant

Our next goal is to prove Theorem 1.1 in general. To this end, we use a variant of the Schur
algorithm, somewhat similar to the proof of the main result in [12].

We require the solution of Gleason’s problem in H∞(Bd), which we state as a lemma for
easier reference. See [22, Section 6.6] for a proof.

Lemma 4.1 Let d ∈ N. There exists a constant C(d) > 0 so that for every f ∈ H∞(Bd)with
f (0) = 0, there exist f1, . . . , fd ∈ H∞(Bd) with f = ∑d

i=1 zi fi and ‖ fi‖∞ ≤ C(d)‖ f ‖∞
for all i .

Our arguments do not just apply to the Drury–Arveson space, but to standard weighted
spaces on the ball. For a > 0, let Da(Bd) be the RKHS on Bd with reproducing kernel

1

(1 − 〈z, w〉)a .

Lemma 4.2 Let a > 0. The coordinate functions zi are multipliers of Da(Bd) and

‖ [
z1 · · · zd

] ‖Mult(D(Bd )⊗Cd ,Da(Bd )) = max(1, a−1/2).

Proof Let c > 0. We have to show that the row
[
cz1 . . . czd

]

is a contractive multiplier of Da(Bd) if and only if c2 ≤ min(1, a). To this end, a standard
result about multipliers (see, e.g. [21, Theorem 6.28]) shows that the row is a contractive
multiplier if and only if the Hermitian kernel L defined by

L(z, w) = 1 − c2〈z, w〉
(1 − 〈z, w〉)a

is positive. But

L(z, w) = (1 − c2〈z, w〉)
∞∑

n=0

(−1)n
(−a

n

)

〈z, w〉n,

which is positive if and only if every coefficient of 〈z, w〉n is non-negative (see, e.g. [13,
Corollary 6.3]), which happens if and only if

(−1)n+1
( −a

n + 1

)

− c2(−1)n
(−a

n

)

≥ 0

for all n ≥ 0. Since
( −a
n+1

) = −a−n
n+1

(−a
n

)
, this happens if and only if

c2 ≤ a + n

n + 1
for all n ≥ 0. (3)

If 0 < a ≤ 1, then the function t 
→ a+t
t+1 is increasing, so (3) holds if and only if it holds for

n = 0, that is, if and only if c2 ≤ a. If a ≥ 1, then the right-hand side of (3) is at least 1 and
tends to 1 as n → ∞, so (3) holds if and only if c2 ≤ 1. ��
Remark 4.3 For a ≥ 1, Lemma 4.2 can be easily deduced from the fact that the coordinate
functions form a row contraction on H2

d . Indeed, since the kernel of H2
d is a factor of the

kernel of Da(Bd) for a ≥ 1, the Schur product theorem easily implies that the row of the

123
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coordinate functions has multiplier norm at most 1 on Da(Bd) for a ≥ 1. On the other hand,
the row of the coordinate functions has supremum norm 1, so the multiplier norm has to be
equal to 1.

Unfortunately, it is in general not true that commuting diagonalizable matrices are dense
in the set of commuting matrices, so consideration of the n-point norm alone is not sufficient.
Instead, we will work directly with the n×n matrices. The following result is the key lemma
in the proof of Theorem 1.1 and some of the later results.

Lemma 4.4 Let f ∈ H∞(Bd), let T be a d-tuple of commuting n × n matrices whose joint
spectrum is contained in Bd and let a > 0. Then there exists a function g ∈ Mult(Da(Bd))

with f (T ) = g(T ) and

‖g‖Mult(Da(Bd )) ≤ (2C(d)
√
d max(1, a−1/2))n−1‖ f ‖∞,

where C(d) is the constant of Lemma 4.1.

Proof The proof is by induction on n. If n = 1, we may choose g to be a constant function.
Suppose that n ≥ 2 and that the statement has been shown for (n − 1) × (n − 1) row
contractions.

Let T be a tuple of commuting n × n matrices whose spectrum is contained in Bd . By a
unitary change of basis, we may assume that each Ti is upper triangular, say

Ti =
[
ai bi
0 Ai

]

,

where ai is a scalar, bi is a row of length n − 1, and Ai is an (n − 1) × (n − 1) matrix.
The assumption on the spectrum of T implies that (a1, . . . , ad) ∈ Bd , so there exists a
biholomorphic automorphism θ of Bd that maps (a1, . . . , ad) to 0. Note that the spectrum of
θ(T ) is again contained in Bd . Thus, replacing T with θ(T ) and f with f ◦ θ−1 and using
automorphism invariance of H∞(Bd) and Mult(Da(Bd)) (see, e.g. Propositions 4.1 and 4.3
in [13]), we may assume that ai = 0 for all i ; this uses the superposition principle for the
functional calculus (Proposition A.2). Hence,

Ti =
[
0 bi
0 Ai

]

. (4)

Note that the joint spectrum of the tuple A = (A1, . . . , Ad) is also contained in Bd .
Next, let

ε = (2C(d)
√
d max(1, a−1/2))−(n−1),

and suppose that ‖ f ‖∞ ≤ ε. We will show that there exists g ∈ Mult(Da(Bd))with f (T ) =
g(T ) and ‖g‖Mult(Da(Bd )) ≤ 1. Let c = f (0) and let ψ be an automorphism of D that maps
c to 0 and 0 to c. Define h = ψ ◦ f . Using a standard estimate for holomorphic self-maps of
D [7, Corollary 2.40], we see that

|h(z)| = |ψ( f (z))| ≤ |c| + | f (z)|
1 + |c|| f (z)| ≤ 2ε.

Thus, h ∈ H∞(Bd)with ‖h‖∞ ≤ 2ε and h(0) = 0. By Lemma 4.1, there exist h1, . . . , hd ∈
H∞(Bd) with h = ∑d

i=1 zi hi and ‖hi‖∞ ≤ 2C(d)ε. From (4), we infer that

h(T ) =
d∑

i=1

Tihi (T ) =
d∑

i=1

[
0 bi
0 Ai

] [
hi (0) ∗
0 hi (A)

]

=
d∑

i=1

[
0 bi hi (A)

0 Aihi (A)

]

. (5)
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By the inductive hypothesis, there exist u1, . . . , ud ∈ Mult(Da(Bd)) with ui (A) = hi (A)

and

‖ui‖Mult(Da(Bd )) ≤ (2C(d)
√
d max(a, a−1/2))n−2‖hi‖∞

≤ (2C(d))n−1(
√
d max(1, a−1/2))n−2ε = (

√
d max(1, a−1/2))−1

(6)

by choice of ε. Let

u =
d∑

i=1

zi ui = [
z1 · · · zd

]

⎡

⎢
⎣

u1
...

ud

⎤

⎥
⎦ .

From (6), it follows that the column has multiplier norm at most max(1, a−1/2)−1, so Lemma
4.2 implies that u ∈ Mult(Da(Bd)) with ‖u‖Mult(Da(Bd )) ≤ 1. Moreover, since ui (A) =
hi (A), the computation in (5) shows that u(T ) = h(T ). Since ‖u‖Mult(Da(Bd )) ≤ 1, we may
define g = ψ−1 ◦ u, so that g ∈ Mult(Da(Bd)) with ‖g‖Mult(Da(Bd )) ≤ 1 by the classical
von Neumann inequality. Moreover, since h = ψ ◦ f and h(T ) = u(T ), it follows that
f (T ) = ψ−1(u(T )) = g(T ). This completes the induction and hence the proof. ��
The following lemma is useful for improving estimates if the number of variables d is

significantly larger than the size of the matrix n. It is inspired by the result in [16] that
solutions to extremal 3-point Pick problems in any number of variables only depend on two
variables up to automorphisms.

Lemma 4.5 Let T be a d-tuple of commuting n×n matriceswhose joint spectrum is contained
in Bd .

(a) If d ≥ n ≥ 2 and if T is jointly diagonalizable, then there exists a biholomorphic
automorphism θ of Bd such that at most the first n − 1 operators in the d-tuple θ(T ) are
non-zero.

(b) If d > �n2/4� + 1, then there exists a biholomorphic automorphism θ of Bd , given by a
d × d unitary, such that at most the first �n2/4� + 1 operators in the d-tuple θ(T ) are
non-zero.

Proof (a) The joint spectrum σ(T ) of T consists of at most n points in Bd . Thus, we may
find a biholomorphic automorphism θ of Bd such that θ(σ (T )) ⊂ Bn−1 × {0} by first
moving one of the points in σ(T ) to the origin and then applying a suitable d×d unitary.
Since T is jointly diagonalizable, it follows that at most the first n − 1 entries in θ(T )

are non-zero.
(b) Let T = (T1, . . . , Td) and consider the linear map

	 : C
d → Mn, (α j )

d
j=1 
→

d∑

j=1

α j Tj .

Bya theoremofSchur, a commutative subalgebra ofMn has dimension atmost �n2/4�+1.
It follows that ker(	) has codimension at most �n2/4� + 1. Therefore, there exists an
orthonormal basis (u j )

d
j=1 of C

d such that u j ∈ ker(	) for j > �n2/4� + 1. Define a
unitary matrix

U =
⎡

⎢
⎣

uT1
...

uTd

⎤

⎥
⎦
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and let θ be the automorphism given by U . By definition, the j-th entry of the d-tuple
θ(T ) is given by 	(u j ), which is zero if j > �n2/4� + 1.

��
With the help of the preceding lemma, we can improve the constant in Lemma 4.4 in the

case when d is siginificantly larger than n.

Lemma 4.6 Let f ∈ H∞(Bd), let T be a d-tuple of commuting n × n matrices whose joint
spectrum is contained in Bd and let a > 0. Then there exists a function g ∈ Mult(Da(Bd))

with f (T ) = g(T ) and

‖g‖Mult(Da(Bd )) ≤ (2min(C(d)
√
d,C(n′)

√
n′)max(1, a−1/2))n−1‖ f ‖∞,

where n′ = �n2/4� + 1 and C(k) is the constant of Lemma 4.1.

Proof Let T = (T1, . . . , Td). In view of Lemma 4.4, wemay assume that d > n′ = �n2/4�+
1. In this case, part (b) of Lemma 4.5 shows that there exists a biholomorphic automorphism
θ of Bd such that at most the first n′ entries of θ(T ) are non-zero. Thus, by replacing T with
θ(T ) and using automorphism invariance of Mult(Da(Bd)) as in the proof of Lemma 4.4,
we may assume that Tj = 0 for j ≥ n′ + 1.

Let P : C
d → C

n′
be the projection onto the first n′ coordinates and let i : C

n′ → C
d be

the inclusion. Let f ∈ H∞(Bd). Applying Lemma 4.4 to f ◦ i ∈ H∞(Bn′) and the shortened
tuple (T1, . . . , Tn′), we find h ∈ Mult(Da(Bn′)) such that

h(T1, . . . , Tn′) = ( f ◦ i)(T1, . . . , Tn′) = f (T )

and

‖h‖Mult(Da(Bn′ )) ≤ (2C(n′)
√
n′ max(1, a−1/2))n−1‖ f ‖∞.

Let g = h ◦ P . Then g ∈ Mult(Da(Bd)) with ‖g‖Mult(Da(Bd )) = ‖h‖Mult(Da(Bn′ )), see for
instance [3, Lemma 6.2]. Moreover,

g(T ) = h(T1, . . . , Tn′) = f (T ),

as desired. ��
The following theorem is a refinement of Theorem 1.1.

Theorem 4.7 If T = (T1, . . . , Td) is a commuting n × n row contraction, then

‖p(T )‖ ≤ Cd,n‖p‖∞
for all p ∈ C[z1, . . . , zd ], where

Cd,n ≤ (2min(C(d)
√
d,C(n′)

√
n′))n−1,

n′ = �n2/4� + 1, and C(k) is the constant of Lemma 4.1.

Proof As noted in Sect. 2, we have that σ(T ) ⊆ Bd . Replacing T with rT for 0 <

r < 1, we may assume that the spectrum of T is contained in Bd . By Lemma 4.6,
there exists g ∈ Mult(H2

d ) with g(T ) = p(T ) and ‖g‖Mult(H2
d ) ≤ C̃d,n , where C̃d,n =

(2min(C(d)
√
d,C(n′)

√
n′))n−1‖p‖∞. Hence, by the von Neumann inequality for H2

d of
Drury [9], Müller-Vasilescu [20] and Arveson [4], we obtain the estimate

‖p(T )‖ = ‖g(T )‖ ≤ ‖g‖Mult(H2
d ) ≤ C̃d,n‖p‖∞,

as desired. ��
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Notice that the constant in Theorem 4.7 may be bounded above by

(2C(n′)
√
n′)n−1,

which is independent of d and only depends on n. However, for fixed d and large n, the
estimate in Theorem 4.7 is better.

Remark 4.8 It follows from the incomparability of the norms ‖ · ‖Mult(H2
d ) and ‖ · ‖∞ (see

the discussion in the introduction) that Cd,n
n→∞−−−→ ∞ for all d ≥ 2. In fact, considering the

compression of the tuple Mz on H2
d to the space of all polynomials of degree at most k and

using computations done in the proof of [4, Theorem 3.3], one can show that for d ≥ 2 and
k ≥ 1,

Cd,n ≥ (2π)
d−1
4 d− 1

4 k
d−1
4 ,

where n = (dk+d
d

)
is the dimension of the space of polynomials of degree at most k in d

variables. In particular, for sufficiently large n, we have

Cd,n ≥ C2,n ≥ n
1
8 .

Unfortunately, the gap between these lower bounds and the upper bounds given by The-
orem 4.7 is huge, and we are not able to determine whether there is a strict inequality
C2,n < Cd,n for any n > 2.

We also easily obtain a completely bounded version of Theorem 4.7.

Corollary 4.9 Let T = (T1, . . . , Td) be a commuting n × n row contraction and let P ∈
Mr (C[z1, . . . , zd ]). Then

‖P(T )‖ ≤ nCd,n‖P‖∞,

where Cd,n is the constant from Theorem 4.7.

Proof Theorem 4.7 says that the map

C[z1, . . . , zd ] → Mn, p 
→ p(T ),

is bounded with norm at mostCd,n when we regard C[z1, . . . , zd ] as a subspace of H∞(Bd).
Bybasic operator space theory (see [10,Corollary 2.2.4]), it follows that themap is completely
bounded with completely bounded norm at most nCd,n . ��

5 Gleason’s problem

Recall that Gleason’s problem for H∞(Bd) is the question of whether every function f ∈
H∞(Bd) with f (0) = 0 can we written as

f =
d∑

i=1

zi fi

for some f1, . . . , fd ∈ H∞(Bd). Work of Leibenson and of Ahern and Schneider shows that
this question has a positive answer (see [22, Section 6.6] and Lemma 4.1). Thus, it is natural
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to ask about the minimal possible norm of a tuple ( f1, . . . , fd) of solutions. In [8], Doubtsov
studied linear operators

L : { f ∈ H∞(Bd) : f (0) = 0} → H∞(Bd)
d

solving Gleason’s problem; he showed that the solution of Leibenson and Ahern–Schneider
gives the minimal norm among all such operators. Moreover, he determined the minimal
norm when H∞(Bd) is replaced with H2(Bd).

We now use the fact that C2,3 > 1 to show that Gleason’s problem cannot be solved
contractively in H∞(Bd) for d ≥ 2. The idea is that if Gleason’s problem could be solved
contractively, then one could use the Schur algorithm as in Sect. 4 and the fact that the two
point norm on H2

d equals the supremum norm in the vector-valued setting (Lemma 3.3) to
show that the three point norm equals the supremum norm as well.

Proposition 5.1 Let d ≥ 2. There exists a rational function f ∈ A(Bd) with f (0) = 0
and ‖ f ‖∞ = 1 that cannot be written as f = ∑d

i=1 zi fi with fi ∈ H∞(Bd) and
supz∈Bd

∑d
i=1 | fi (z)|2 ≤ 1.

Proof Clearly, it suffices to consider d = 2. By Proposition 3.5, there exists a polynomial p
and a set F = {λ1, λ2, λ3} ⊂ B2 so that

‖p∣∣F‖
Mult(H2

2

∣
∣
F
)
> ‖p‖∞ = 1. (7)

Let θ be a biholomorphic automorphism ofB2 mapping λ1 to 0 and letψ be a biholomorphic
automorphism of D mapping p(λ1) to 0. Set f = ψ ◦ p ◦ θ−1. Then f is a rational function
in A(B2) with f (0) = 0 and ‖ f ‖∞ = 1. We claim that Gleason’s problem for f cannot be
solved contractively.

Suppose towards a contradiction that there exist f1, f2 ∈ H∞(B2) so that

f = [
z1 z2

]
[
f1
f2

]

and

∥
∥
∥
∥

[
f1
f2

]∥
∥
∥
∥∞

≤ 1.

Write θ(F) = {0} ∪ F ′ with |F ′| = 2. Applying Lemma 3.3 to the column

[
f1
f2

]

, we find

a column

[
h1
h2

]

∈ M2,1(Mult(H2
d )) of norm at most 1 so that fi

∣
∣
F ′ = hi

∣
∣
F ′ for i = 1, 2.

Define

g = [
z1 z2

]
[
h1
h2

]

.

Then ‖g‖Mult(H2
d ) ≤ 1 and g

∣
∣
θ(F)

= f
∣
∣
θ(F)

, because f and g agree on F ′ and at 0. Set

u = ψ−1◦g◦θ . By automorphism invariance ofMult(H2
d ) and by the classical vonNeumann

inequality, we have ‖u‖Mult(H2
d ) ≤ 1. Moreover, since f = ψ ◦ p ◦θ−1, we find that u agrees

with p on F . This contradicts (7) and hence finishes the proof. ��

6 Applications to RKHS on the ball

In this section, we show that our methods can also be used to answer Question 10.3 of
[3]. It was shown in [3] that for 0 ≤ a < d+1

2 , the n-point multiplier norm on Da(Bd) is
not comparable to the full multiplier norm, and in fact Mult(Da(Bd)) is not topologically
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subhomogeneous. This means that there do not exist constants c andC and an integer N such
that for all f ∈ Mult(Da(Bd)),

‖ f ‖Mult(Da(Bd )) ≤ c sup{‖π( f )‖},
where the supremum is taken over all unital homomorphisms π : A → Mk with ‖π‖ ≤ C
and all k ≤ N .

If a ≥ d , then Mult(Da(Bd)) = H∞(Bd) completely isometrically, so it was asked
whether Mult(Da(Bd)) is topologically subhomogeneous for d+1

2 ≤ a < d .
To answer this question, we require the following consequence of Lemma 4.6. We let

A(Da(Bd)) denote the norm closure of the polynomials in Mult(Da(Bd)).

Lemma 6.1 Let a > 0. There exists a constant C(a, n) so that for any unital bounded
homomorphism π : A(Da(Bd)) → Mn, we have

‖π( f )‖ ≤ C(a, n)‖π‖‖ f ‖∞

for all f ∈ A(Da(Bd)).

Proof Let π : A(Da(Bd)) → Mn be a unital bounded homomorphism and let T =
(T1, . . . , Td) = (π(Mz1), . . . , π(Mzd )), so that π(p) = p(T ) for all polynomials p. Recall
that the spectrum of Mz in the Banach algebra A(Da(Bd)) is contained in Bd (for a ≤ 1,
this follows for instance from the discussion following Lemma 5.3 in [5]; for a ≥ 1, it holds
since Mz is a row contraction). Hence the joint spectrum of T is also contained in Bd .

If f ∈ O(Bd) and 0 < r < 1, let fr (z) = f (r z). It is well known that the map f 
→
fr is a unital completely contractive homomorphism from Mult(Da(Bd)) into A(Da(Bd)).
Defining πr ( f ) = π( fr ), we obtain a unital homomorphism πr : Mult(Da(Bd)) → Mn

with ‖πr‖ ≤ ‖π‖ and πr (Mz) = rT . Given a polyonomial p and 0 < r < 1, Lemma 4.6
yields a constant C(a, n) and a function g ∈ Mult(Da(Bd)) so that g(rT ) = p(rT ) and
‖g‖Mult(Da(Bd )) ≤ C(a, n)‖p‖∞. Moreover, since gr ∈ A(Da(Bd)) and π is continuous,

πr (p) = p(rT ) = g(rT ) = π(gr ) = πr (g).

Thus

‖πr (p)‖ = ‖πr (g)‖ ≤ ‖πr‖‖g‖Mult(Da(Bd )) ≤ C(a, n)‖π‖‖p‖∞.

Taking the limit r → 1, we obtain the desired conclusion for polynomials. By continuity,
the result follows for all f ∈ A(Da(Dd)). ��

We can now answer [3, Question 10.3].

Theorem 6.2 Let 0 < a < d. Then the algebras A(Da(Bd)) and Mult(Da(Bd)) are not
topologically subhomogeneous.

Proof If 0 < a < d , then the multiplier norm on Da(Bd) is not dominated by a constant
times the the supremum norm for polynomials; see [3, Proposition 9.7] and its proof. Thus,
it follows from Lemma 6.1 that A(Da(Bd)) is not topologically subhomogeneous. Hence,
the larger algebra Mult(Da(Bd)) is not topologically subhomogeneous either. ��

We also see that for a > 0, the n-point multiplier norm on Da(Bd) is comparable to the
supremum norm. If d = 1, this was shown in [3, Corollary 3.3].
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Corollary 6.3 Let a > 0. Then there exists a constant C(a, n) so that

‖ f ‖∞ ≤ ‖ f ‖Mult(Da(Bd )),n ≤ C(a, n)‖ f ‖∞
for all f ∈ H∞(Bd).

Proof The first inequality is trivial. For the second inequality, let f ∈ H∞(Bd) and suppose
that F ⊂ Bd with |F | ≤ n. Applying Lemma 4.6 to the diagonal tuple T = (T1, . . . , Td) ∈
Md

n whose entries are the points of F , we obtain a constant C(a, n) and g ∈ Mult(Da(Bd))

with g
∣
∣
F = f

∣
∣
F and ‖g‖Mult(Da(Bd )) ≤ C(a, n)‖ f ‖∞. Hence

‖ f
∣
∣
F‖

Mult(Da(Bd )

∣
∣
F
)
= ‖g∣∣F‖

Mult(Da(Bd )

∣
∣
F
)
≤ ‖g‖Mult(Da(Bd )) ≤ C(a, n)‖ f ‖∞.

Hence the second inequality holds. ��
We now use Theorem 4.7 and Lemma 6.1 to determine the finite dimensional represen-

tations of the algebras A(Da(Bd)). Let A(Bd) denote the ball algebra, that is, the algebra
of holomorphic functions in Bd which extend continuously to Bd . The ball algebra is the
closure in H∞(Bd), with respect to the supremum norm, of the polynomials. Recall that if
a ≥ d , then A(Da(Bd)) = A(Bd) completely isometrically.

Theorem 6.4 For all a > 0, the unital bounded n-dimensional representations of A(Da(Bd))

coincide with those of A(Bd). Every such representation is uniquely determined by a d-tuple
T , which is jointly similar to a row contraction, and such that π(p) = p(T ) for every
polynomial p ∈ C[z1, . . . , zd ].
Proof Suppose that π : A(Da(Bd)) → Mn is a bounded unital homomorphism. By the
first part of the proof of Lemma 6.1, there is a d-tuple T with σ(T ) ⊆ Bd , such that
π(p) = p(T ) for every polynomial. By Lemma 6.1, this extends uniquely to a continuous
unital representation of A(Bd). Indeed, when can simply define f (T ) := π( f ) := lim π(pn)
where pn are polynomials that converge to f uniformly on the closed ball.

Conversly, if π : A(Bd) → Mn is a bounded unital homomorphism, then it restricts to the
subalgebra A(Da(Bd)), and because the multiplier norm is always bigger than the supremum
norm, π

∣
∣
A(Da(Bd ))

is also bounded.
Finally, since the bounded and unital n-dimensional representations of all the algebras

A(Da(Bd)) coincide, and since a representation is clearly determined by the images of the
coordinate functions T1 = π(z1), . . . , Td = π(zd), it suffices to identify the representations
of Ad := A(D1(Bd)). However, by [24, Proposition 10.1], the bounded representations of
Ad are in one to one correspondence with the d-tuples T which are jointly similar to a row
contraction. ��
Remark 6.5 It is natural to ask whether one may replace the condition for the d-tuple T to be
similar to a row contraction, with the condition that σ(T ) ⊆ Bd . However, this is not true.
For example, consider the case d = 1 and T = (

1 1
0 1

)
. Then σ(T ) = {1} ⊆ D, but T is not

similar to a contraction. Indeed, T does not define a bounded representation of A(D), as T
is not power bounded.

7 An application to uniform continuity of noncommutative functions

In this section we use our previous results to answer an open question regarding uniform
continuity of noncommutative (nc) functions on the nc unit ball [23]. For a thorough intro-
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duction to the theory of nc functions, see [15]; the beginner might prefer to start with the
expository paper [2].

The multiplier algebra Mult(H2
d ) can be identified (via the functional calculus) with

the algebra H∞(CBd) of bounded nc holomorphic functions on the nc variety CBd =
�∞
n=1CBd(n), and we have ‖ f ‖Mult(H2

d ) = supT∈CBd
‖ f (T )‖; for a discussion of this point

of view see [23] (in particular Sect. 11).
For brevity and to be compatible with other parts of the literature, let us write Ad for

the norm closure of the polynomials in Mult(H2
d ), that is Ad will be just shorthand for

A(D1(Bd)). By [23, Corollary 9.4], Ad equals the subalgebra of H∞(CBd) consisting of
all bounded nc functions that extend uniformly continuously to CBd = �∞

n=1CBd(n). Here,
f ∈ H∞(CBd) is said to be uniformly continuous if for every ε > 0, there exists a δ > 0
such that for all n and all X , Y ∈ CBd(n), ‖X − Y‖ < δ implies ‖ f (X) − f (Y )‖ < ε.

By Theorem 6.4, every row contraction T ∈ CBd(n) gives rise to a a bounded unital
representation of A(Bd), which we denote f 
→ f (T ).

Proposition 7.1 For every f ∈ A(Bd) and every n, the map

CBd(n) → Mn, T 
→ f (T ),

is uniformly continuous, in the sense that for all n, and for every ε > 0, there exists a δ > 0
such that X , Y ∈ CBd(n) and ‖X − Y‖ < δ implies ‖ f (X) − f (Y )‖ < ε.

Proof It is clear that every p ∈ C[z1, . . . , zd ] can be evaluated at every T ∈ CBd(n), and
that p is uniformly continuous on CBd(n). Moreover, A(Bd) is the closure of C[z1, . . . , zd ]
with respect to the supremum norm. Therefore, if f ∈ A(Bd) and pn ∈ C[z1, . . . , zd ] is a
sequence of polynomials that converges in the supremumnorm to f , thenTheorem4.7 implies
that pn(T ) converges in norm to f (T ), and the convergence is uniform in T ∈ CBd(n). As
the uniform limit of the uniformly continuous functions pn : CBd(n) → Mn , the function
f : CBd(n) → Mn is also uniformly continuous. ��
By the proposition, every f ∈ A(Bd) extends to a function on CBd , and since f (T ) is

given by the functional calculus (see the appendix) it is not hard to see that f is actually an nc
function. Moreover, f is levelwise bounded and also levelwise uniformly continuous, in the
obvious sense. However, there are functions in A(Bd) which are not multipliers, and hence
not uniformly bounded on CBd (see Sect. 3.7 “The strict containment Md � H∞(Bd)” in
[25]).

Since bounded noncommutative functions have some remarkable regularity properties,
it might seem plausible that an nc function that is both globally bounded and uniformly
continuous on every level CBd(n), will be forced somehow to be uniformly continuous on
CBd . Question 9.16 in [23] askedwhether there exist functions in H∞(CB) that are levelwise
uniformly continuous but not uniformly continuous. We can now show that the answer to
this question is positive.

Proposition 7.2 There exists a function f ∈ Mult(H2
d ) = H∞(CBd) which is levelwise

uniformly continuous, but not uniformly continuous on CBd .

Proof By Proposition 7.1 every function in A(Bd) is levelwise uniformly continuous. How-
ever, we know that a bounded nc function is uniformly continuous on CBd if and only
if it is in Ad . Thus it all boils down to the question whether there exists a function
f ∈ Mult(H2

d ) ∩ A(Bd) = Mult(H2
d ) ∩ C(Bd) which is not in Ad . The existence of such a

function was established in Sect. 5.2 of [25] (“Continuous multipliers versus Ad”), where it
was explained how this follows from the methods of [11]. ��
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Appendix A. An elementary construction of a holomorphic functional
calculus for balls

The following result is a special case of the Arens–Calderon functional calculus. If B ⊂ C
d

is an open ball, we equip O(B) with the topology of of uniform convergence on compact
subsets of B.

Theorem A.1 Let B be a commutative unital Banach algebra, let a = (a1, . . . , ad) ∈ Bd

and let B be an open ball containing the joint spectrum σB(a). Then there exists a unique
continuous homomorphism 	 : O(B) → B such that 	(p) = p(a) for every polynomial
p ∈ C[z1, . . . , zd ].
Proof Uniqueness follows from density of the polynomials in O(B), as B is a ball. To show
existence, we define 	 by adapting the Cauchy integral formula for balls, see [22, Section
3.2]. Applying a translation and replacing a with ra for a suitable number r ∈ (0,∞), it
suffices to show that if σ(a) ⊂ Bd and R > 1, then there exists a continuous homomorphism
	 : O(BR(0)) → B extending the polynomial functional calculus.

Given ζ = (ζ1, . . . , ζd) ∈ ∂Bd , define

〈a, ζ 〉 =
d∑

i=1

aiζi .

Since σ(a) ⊂ Bd is compact, the Cauchy-Schwarz inequality in C
d implies that σ(〈a, ζ 〉) ⊂

{λ ∈ C : |λ| ≤ s} for some 0 < s < 1 for all ζ ∈ ∂Bd . Using continuity of the inverse inB,
we may therefore define

	( f ) =
∫

∂Bd

f (ζ )(1 − 〈a, ζ 〉)−ddσ(ζ ) ( f ∈ O(BR(0)),

where dσ is the normalized surface measure on ∂Bd . It is clear that 	 is linear. Moreover,

‖	( f )‖ ≤ sup
ζ∈∂Bd

| f (ζ )| sup
ζ∈∂Bd

‖(1 − 〈a, ζ 〉)−d‖,

where the last factor is finite by compactness of ∂Bd and continuity of the inverse inB. Thus,
	 is continuous.
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We finish the proof by showing that 	(zβ) = aβ for every monomial zβ . Since the
polynomial functional calculus is a homomorphism, it then follows that	 is a homomorphism
as well. As σ(〈a, ζ 〉) ⊂ {λ ∈ C : |λ| ≤ s} for all ζ ∈ ∂Bd , the spectrum of ζ 
→ 〈a, ζ 〉 in
the Banach algebra C(∂Bd ,B) of all continuous functions from ∂Bd intoB is contained in
{λ ∈ C : |λ| ≤ s} as well. Applying the spectral radius formula in C(∂Bd ,B), we find that
limn→∞ supζ∈∂Bd

‖〈a, ζ 〉n‖1/n ≤ s < 1. Consequently, we may expand (1− 〈a, ζ 〉)−d into
a binomial series that converges uniformly in ζ ∈ ∂Bd , so

	(zβ) =
∞∑

n=0

(
d + n − 1

n

) ∑

|α|=n

(
n

α

)

aα

∫

∂Bd

ζ βζ
α
dσ(ζ ).

A basic orthogonality relation for the surface integral (Propositions 1.4.8 and 1.4.9 in [22])
shows that

∫

∂Bd

ζ βζ
α
dσ(ζ ) = δαβ

(d − 1)!α!
(d − 1 + |α|)! ,

so 	(zβ) = aβ , as desired. ��
Alternatively, in the case of a tuple T = (T1, . . . , Td) of commuting Hilbert space opera-

tors, it is possible to define the holomorphic functional calculus 	 of Theorem A.1 with the
help of convergent power series. This uses one inequality of the multivariable spectral radius
formula [19, Theorem 1], namely

lim sup
n→∞

∥
∥
∥

∑

|α|=n

(
n

α

)

(T ∗)αT α
∥
∥
∥
1/2n ≤ sup{|λ| : λ ∈ σ(T )},

which can be proved in an elementary fashion. Using this, one shows that if σ(T ) ⊂ Bd ,
then for each f ∈ H2

d with homogeneous expansion f = ∑∞
n=0 fn , the series

∑∞
n=0 fn(T )

converges absolutely, fromwhich the holomorphic functional calculus can be easily deduced.
We omit the details.

As is customary, we usually write f (a) for 	( f ) in the setting of Theorem A.1. The
superposition principle for the functional calculus in our particular setting can also be obtained
by elementary means.

Proposition A.2 LetB be a commutative unital Banach algebra, let a ∈ Bd and let B be an
open ball containing the joint spectrum σB(a). Let f = ( f1, . . . , fk) ∈ O(B)k and write
f (a) = ( f1(a), . . . , fk(a)). Then:

(a) σB( f (a)) = f (σB(a)).
(b) If g is a holomorphic function on an open ball containing f (B), then g( f (a)) = (g ◦

f )(a).

Proof (a) Let a = (a1, . . . , ad). If χ is a character on B, then for every polnomial p,
we have χ(p(a)) = p(χ(a1), . . . , χ(ad)), hence χ( f j (a)) = f j (χ(a1), . . . , χ(ad)) for
j = 1, . . . , d by an approximation argument. The definition of joint spectrum then yields
σB( f (a)) = f (σB(a)).

(b) Since the functional calculus for the tuple a is a homomorphism, we have p( f (a)) =
(p ◦ f )(a) for every polynomial p. The general case then follows from an approximation
argument.

��
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