Please use this identifier to cite or link to this item:
doi:10.22028/D291-36307
Title: | An extension of a theorem of Bers and Finn on the removability of isolated singularities to the Euler–Lagrange equations related to general linear growth problems |
Author(s): | Bildhauer, Michael Fuchs, Martin |
Language: | English |
Title: | Calculus of Variations and Partial Differential Equations |
Volume: | 61 |
Issue: | 3 |
Publisher/Platform: | Springer Nature |
Year of Publication: | 2022 |
Free key words: | 49N60 49Q05 53A10 |
DDC notations: | 510 Mathematics |
Publikation type: | Journal Article |
Abstract: | A famous theorem of Bers and Finn states that isolated singularities of solutions to the nonparametric minimal surface equation are removable. We show that this result remains valid, if the area functional is replaced by a general functional of linear growth depending on the modulus of the gradient. |
DOI of the first publication: | 10.1007/s00526-022-02187-7 |
Link to this record: | urn:nbn:de:bsz:291--ds-363072 hdl:20.500.11880/32978 http://dx.doi.org/10.22028/D291-36307 |
ISSN: | 1432-0835 0944-2669 |
Date of registration: | 31-May-2022 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Professorship: | MI - Prof. Dr. Martin Fuchs |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Bildhauer-Fuchs2022_Article_AnExtensionOfATheoremOfBersAnd.pdf | 265,67 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License