Please use this identifier to cite or link to this item: doi:10.22028/D291-36307
Title: An extension of a theorem of Bers and Finn on the removability of isolated singularities to the Euler–Lagrange equations related to general linear growth problems
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Title: Calculus of Variations and Partial Differential Equations
Volume: 61
Issue: 3
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: 49N60
49Q05
53A10
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: A famous theorem of Bers and Finn states that isolated singularities of solutions to the nonparametric minimal surface equation are removable. We show that this result remains valid, if the area functional is replaced by a general functional of linear growth depending on the modulus of the gradient.
DOI of the first publication: 10.1007/s00526-022-02187-7
Link to this record: urn:nbn:de:bsz:291--ds-363072
hdl:20.500.11880/32978
http://dx.doi.org/10.22028/D291-36307
ISSN: 1432-0835
0944-2669
Date of registration: 31-May-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Martin Fuchs
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Bildhauer-Fuchs2022_Article_AnExtensionOfATheoremOfBersAnd.pdf265,67 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons